Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020
<p>Research area.</p> "> Figure 2
<p>Workflow diagram.</p> "> Figure 3
<p>Spatial sampling point design process.</p> "> Figure 4
<p>Partial data sequence test results.</p> "> Figure 5
<p>Impervious surface ratio of Wuhan City 2000–2020 extracted urban fringe area range.</p> "> Figure 6
<p>The spatial division of landscape flocculation in the urban fringe of Wuhan, 2000–2020.</p> "> Figure 7
<p>Spatial distribution of urban fringe areas in Wuhan from 2000 to 2020.</p> "> Figure 8
<p>Area distribution of Wuhan urban fringe areas along different directions of expansion, 2000–2020.</p> "> Figure 9
<p>Area histogram of the geographical spatial structure within each administrative region of Wuhan, 2000–2020.</p> ">
Abstract
:1. Introduction
2. Overview of the Research Area
3. Data and Methods
3.1. Data Source and Processing
3.2. Identification and Analysis Method of Urban Fringe Area
3.2.1. Impervious Surface Ratio and Moving t-Test Technique
3.2.2. Landscape Flocculation Degree
3.2.3. Population Density
3.3. Analysis of the Method of Land-Use Evolution in the Urban Fringe Area
3.3.1. Dynamic Change Degree of Land-Use
3.3.2. Land-Use Transition Matrix
3.4. Landscape Pattern Index Analysis Method
4. Results and Analysis
4.1. Identification of Urban Fringe Areas
4.1.1. Extraction of Impervious Surface Ratio Indicators
4.1.2. Extraction of Landscape Flocculation Index
4.1.3. Determination of Population Density Indicators
4.1.4. Determining the Extent of the Urban Fringe
4.2. Analysis of the Spatial Characteristics of Urban Fringe Expansion
4.2.1. Extended Types
4.2.2. Extended Directions
4.2.3. Extended Areas
4.3. Spatial and Temporal Dynamics of Land Use in Urban Fringe Areas
4.3.1. Analysis of Land Use Dynamics
4.3.2. Analysis of Land Use Shifts
4.4. Landscape Pattern Index Changes
4.4.1. Type Level Landscape Pattern Index Analysis
4.4.2. Horizontal Hierarchical Landscape Pattern Index Analysis
5. Discussion
5.1. Integration of Urban Fringe Dynamics with Urban Spatial Extension
5.1.1. The Urban Fringe Expansion Pattern of Wuhan
5.1.2. Wuhan Marginal Zone Expansion vs. Beijing, Guangzhou, and Changchun
5.2. Landscape Ecological Service Function of Landscape Patterns in Urban Fringe Areas
5.3. Policy Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Urban Territorial Structure | Land Types | 2010 Urban Core Area | 2010 Urban Fringe Area | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total | Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total | ||
2000 urban core area | Impervious surface | 168.313 | 0 | 0.004 | 0 | 0 | 0.189 | 168.506 | 0.541 | 0 | 0 | 0 | 0 | 0.003 | 0.544 |
Grassland | 0.007 | 0.001 | 0 | 0 | 0 | 0 | 0.008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Farmland | 20.182 | 0.019 | 16.155 | 0.001 | 0.058 | 0.479 | 36.895 | 0.395 | 0 | 0.526 | 0 | 0 | 0.027 | 0.948 | |
Unused land | 0.001 | 0 | 0 | 0.004 | 0 | 0 | 0.005 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Forest land | 0.047 | 0.001 | 0.214 | 0 | 0.712 | 0.003 | 0.976 | 0 | 0 | 0.001 | 0 | 0.002 | 0 | 0.003 | |
Water body | 5.961 | 0.001 | 2.831 | 0.002 | 0 | 36.231 | 45.025 | 0.125 | 0 | 0.147 | 0 | 0 | 0.170 | 0.443 | |
Total | 194.511 | 0.022 | 19.205 | 0.007 | 0.769 | 36.902 | 251.416 | 1.062 | 0 | 0.674 | 0 | 0.002 | 0.201 | 1.938 | |
2000 urban fringe | Impervious surface | 62.163 | 0 | 0.010 | 0 | 0 | 0.136 | 62.309 | 66.312 | 0 | 0.056 | 0 | 0 | 0.291 | 66.659 |
Grassland | 0.003 | 0.002 | 0 | 0.001 | 0 | 0.002 | 0.007 | 0.010 | 0.002 | 0.002 | 0 | 0 | 0 | 0.013 | |
Farmland | 39.705 | 0.221 | 47.676 | 0.007 | 0.077 | 1.190 | 88.876 | 41.913 | 0.157 | 83.802 | 0.003 | 0.701 | 3.723 | 130.298 | |
Unused land | 0 | 0 | 0 | 0.001 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Forest land | 0.042 | 0 | 0.296 | 0 | 0.812 | 0.004 | 1.154 | 0.061 | 0 | 0.609 | 0 | 4.781 | 0.008 | 5.459 | |
Water body | 5.411 | 0.024 | 6.763 | 0.012 | 0 | 29.815 | 42.024 | 7.682 | 0.018 | 9.667 | 0.016 | 0.012 | 59.758 | 77.153 | |
Total | 107.323 | 0.247 | 54.745 | 0.021 | 0.889 | 31.146 | 194.371 | 115.979 | 0.177 | 94.135 | 0.019 | 5.494 | 63.779 | 279.583 |
Urban Territorial Structure | Land Types | 2010 Urban Fringe Area Area | Rural Heartland 2010 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total | Impervious Surface | Grassland | Farmland | Shrub | Unused Land | Forest Land | Water Body | ||
2000 rural heartland | Impervious surface | 48.334 | 0 | 0.046 | 0 | 0 | 0.341 | 48.721 | 167.094 | 0.003 | 0.222 | 0 | 0 | 0.008 | 5.959 |
Grassland | 0.114 | 0.028 | 0.026 | 0 | 0 | 0.002 | 0.17 | 0.491 | 0.835 | 0.863 | 0 | 0.004 | 0.414 | 0.328 | |
Farmland | 83.561 | 0.711 | 281.746 | 0.006 | 1.036 | 10.587 | 377.647 | 106.612 | 1.349 | 5248.956 | 0 | 0.008 | 57.31 | 167.578 | |
Shrub | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.004 | 0.016 | 0 | 0.008 | 0 | |
Unused land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.308 | 0.143 | 0.087 | 0 | 0.118 | 0 | 0.385 | |
Forest land | 0.232 | 0.001 | 1.41 | 0 | 12.308 | 0.001 | 13.951 | 1.803 | 0.371 | 46.904 | 0 | 0 | 438.567 | 0.427 | |
Water Body | 5.588 | 0.01 | 26.078 | 0.065 | 0.001 | 110.492 | 142.234 | 9.931 | 0.052 | 139.122 | 0 | 0.013 | 0.161 | 827.957 | |
Total | 137.829 | 0.75 | 309.306 | 0.071 | 13.345 | 121.423 | 582.723 | 286.239 | 2.753 | 5436.158 | 0.016 | 0.143 | 496.468 | 1002.634 |
2020 Urban Core Area | 2020 Urban Fringe Area | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban Territorial Structure | Land Types | Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total | Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total |
2010 urban core area | Impervious surface | 313.699 | 0 | 0.060 | 0 | 0 | 1.436 | 315.195 | 2.218 | 0 | 0 | 0 | 0 | 0.014 | 2.232 |
Grassland | 0.269 | 0.007 | 0.009 | 0.011 | 0 | 0 | 0.296 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0.001 | |
Farmland | 32.521 | 0.019 | 51.831 | 0.024 | 0.352 | 2.008 | 86.756 | 0.285 | 0 | 1.582 | 0 | 0.012 | 0.002 | 1.881 | |
Unused land | 0.004 | 0 | 0 | 0.019 | 0.004 | 0.028 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Forest land | 0.011 | 0 | 0.209 | 0 | 1.430 | 0 | 1.649 | 0 | 0 | 0.007 | 0 | 0.040 | 0 | 0.047 | |
Water body | 2.175 | 0 | 4.518 | 0 | 0.001 | 67.803 | 74.496 | 0.017 | 0 | 0.037 | 0 | 0 | 0.779 | 0.833 | |
Total | 348.679 | 0.026 | 56.627 | 0.054 | 1.783 | 71.252 | 478.420 | 2.521 | 0 | 1.626 | 0 | 0.052 | 0.795 | 4.994 | |
2010 urban fringe area | Impervious surface | 86.139 | 0 | 0.020 | 0 | 0 | 0.184 | 86.343 | 166.537 | 0.004 | 0.478 | 0 | 0 | 1.239 | 168.257 |
Grassland | 0.192 | 0.002 | 0.018 | 0.002 | 0.214 | 0.559 | 0.031 | 0.087 | 0.031 | 0.002 | 0 | 0.711 | |||
Farmland | 38.574 | 0.067 | 80.745 | 0.037 | 0.613 | 1.831 | 121.867 | 59.332 | 0.147 | 215.642 | 0.014 | 1.458 | 3.960 | 280.554 | |
Unused land | 0.001 | 0 | 0 | 0.010 | 0 | 0 | 0.011 | 0.056 | 0 | 0 | 0.023 | 0 | 0 | 0.079 | |
Forest land | 0.034 | 0 | 0.485 | 0 | 3.323 | 0 | 3.843 | 0.085 | 0 | 1.222 | 0 | 13.687 | 0.003 | 14.997 | |
Water body | 1.824 | 0 | 6.018 | 0.002 | 0 | 42.700 | 50.544 | 4.894 | 0.007 | 13.673 | 0.015 | 0.004 | 116.056 | 134.649 | |
Total | 126.763 | 0.069 | 87.286 | 0.051 | 3.937 | 44.715 | 262.820 | 231.463 | 0.190 | 231.102 | 0.084 | 15.151 | 121.258 | 599.247 |
Urban Territorial Structure | Land Types | 2020 Urban Fringe Area | Rural Heartland 2020 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impervious Surface | Grassland | Farmland | Unused Land | Forest Land | Water Body | Total | Impervious Surface | Grassland | Farmland | Shrub | Unused Land | Forest Land | Water Body | Total | ||
Rural heartland 2010 | Impervious surface | 79.858 | 0 | 0.097 | 0 | 0 | 0.787 | 80.742 | 198.329 | 0 | 1.073 | 0 | 0 | 0.001 | 5.782 | 205.185 |
Grassland | 0.409 | 0.045 | 0.076 | 0.009 | 0.004 | 0.001 | 0.544 | 0.202 | 0.159 | 1.348 | 0 | 0 | 0.368 | 0.131 | 2.208 | |
Farmland | 77.444 | 0.473 | 333.048 | 0.030 | 4.691 | 7.260 | 422.946 | 101.486 | 0.239 | 4632.126 | 0 | 0.008 | 161.431 | 116.366 | 5011.656 | |
Shrub | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.003 | 0.004 | 0 | 0.010 | 0 | 0.016 | |
Unused land | 0.010 | 0.004 | 0 | 0 | 0 | 0 | 0.014 | 0.012 | 0 | 0.055 | 0 | 0.002 | 0 | 0.059 | 0.128 | |
Forest land | 0.139 | 0.002 | 1.561 | 0 | 13.879 | 0.001 | 15.582 | 0.506 | 0.009 | 35.487 | 0 | 0 | 444.202 | 0.127 | 480.331 | |
Water body | 4.146 | 0.020 | 22.447 | 0.082 | 0.001 | 68.254 | 94.949 | 4.067 | 0.008 | 155.687 | 0 | 0.051 | 0.785 | 746.834 | 907.433 | |
Total | 162.006 | 0.544 | 357.229 | 0.120 | 18.576 | 76.303 | 614.779 | 304.602 | 0.416 | 4825.778 | 0.004 | 0.061 | 606.796 | 869.300 | 6606.957 |
References
- Dong, Q.; Qu, S.; Qin, J.; Yi, D.; Liu, Y.; Zhang, J. A Method to Identify Urban Fringe Area Based on the Industry Density of POI. ISPRS Int. J. Geo-Inf. 2022, 11, 128. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Li, Y.; Zhang, Y.; Li, X. Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. GISci. Remote Sens. 2019, 56, 388–405. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Pu, L.; Jiang, B.; Yuan, S.; Xu, Y. A Novel Model for Detecting Urban Fringe and Its Expanding Patterns: An Application in Harbin City, China. Land 2021, 10, 876. [Google Scholar] [CrossRef]
- Chaolin, G.; Jiangbo, X. On Urban Fringe Studies. Geogr. Res. 1989, 8, 95–101. [Google Scholar] [CrossRef]
- Liansheng, C.; Hongying, Z. Discussion on The City’s Border Area of Beijing. J. Beijing Norm. Univ. 1995, 31, 127–133. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Yang, H. Spatial Recognition and Boundary Region Division of Urban Fringe Area in Xi’an City. J. Geo-Inf. Sci. 2017, 19, 1327–1335. [Google Scholar] [CrossRef]
- Dai, J.; Yang, S.; Sun, Y. Identification Method of Urban Fringe Area based on Spatial Mutation Characteristics. J. Geo-Inf. Sci. 2021, 23, 1401–1421. [Google Scholar] [CrossRef]
- Qiao, J.; Ma, Y. Spatial-Temporal Evolution and Differentiation of Urban-Rural Interface Based on Information Entropy: A Case Study of Gongyi City in Henan Province, China. Econ. Geogr. 2016, 36, 1–7. [Google Scholar]
- Turner, M.G. Landscape Ecology in North America: Past, Present, and Future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef]
- Hietala-Koivu, R. Agricultural landscape change: A case study in Yläne, southwest Finland. Landsc. Urban Plan. 1999, 46, 103–108. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Abbas, Z.; Zhu, Z.; Zhao, Y. Spatiotemporal analysis of landscape pattern and structure in the Greater Bay Area, China. Earth Sci. Inform. 2022, 15, 1977–1992. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yin, Q. Land use and landscape pattern changes in Nanjing during 1988–2007. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 680–683. [Google Scholar]
- Yaxin, M.; Hui, C.; Weibo, Z.; Han, Z. Landscape Pattern of Land Use Dynamic Development and Driving Force in Xi’an. J. Northwest For. Univ. 2017, 32, 186–192. [Google Scholar] [CrossRef]
- Yu, T.; Bao-tong, Z.; Wei, F.; Rong, W. Dynamic Evolution of Land Use Landscape Patterns in Mountainous Cities from 2000 to 2015:A Case Study of Yubei District in Chongqing. Resour. Environ. Yangtze Basin 2019, 28, 1344–1353. [Google Scholar]
- Fangwen, H.; Xijun, H.; Ziwei, L.; Zhipeng, X.; Fang, H.; Baojing, W. Dynamic analysis of landscape pattern of park green space in Shanghang county. Ecol. Sci. 2021, 40, 133–141. [Google Scholar] [CrossRef]
- Feng, X. A Study on the Spatial-temporal Land Use Change of Urban Fringe—Case Study Hongshan, Wuhan City. Master’s Thesis, Wuhan University, Wuhan, China, 2005. [Google Scholar]
- Xiumei, T.; Baiming, C.; Qingbin, L. Analysis on the landscape patterns changes of land use in urban fringe area: A case study in Daxing district of Beijing. China Popul. Resour. Environ. 2010, 20, 159–163. [Google Scholar] [CrossRef]
- He, J.H.; Wang, C.X.; Liu, D.F. Evaluating the Impact of Land Use Change on Habitat Quality in Metropolitan Fringe Areas from A Perspective of Ecological Network. Resour. Environ. Yangtze Basin 2019, 28, 903–916. [Google Scholar]
- Wang, Z.L.; Ya, S.Y.; Pu, H.X.; Mofakkarul, I.; Ou, L. Simulation of spatiotemporal variation of land use in mountainous-urban fringes based on improved CA-Markov model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 239–248. [Google Scholar]
- Li, L.; Li, L. Analysis of Land Resources Problems in Urbanization of Wuhan. Resour. Environ. Eng. 2012, 26, 190–193. [Google Scholar]
- Mengxian, Z.; Yong, Z.; Junjun, C.; Guangping, C.; Qingqing, Y. Analysis of Spatial and Temporal Changes of Ecological Land Use in Wuhan City from 2000 to 2015. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 168–177. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, N.; Fang, L.; Zhou, J.; Song, J.; Jiang, J. The study on spatial expansion and its driving forces in the urban fringe of Beijing. Geogr. Res. 2010, 29, 471–480. [Google Scholar]
- Yan, L.; Jun, Y.; Xuejun, L. The Analysis on Space Dynamic Evolution and Characteristics of Urban Fringe Based on GIS and Fragstats Landscape Level. Electron. J. Geotech. Eng. 2014, 19, 17455–17463. [Google Scholar]
- Wangming, W.J.J.Y.L. Urban regional spatial structure based on urban fringe area demarcation: A case study on Hangzhou. City Plan. Rev. 2015, 39, 21–26+52. [Google Scholar]
- Long, H.Y. Spatial Zoning and Effect Analysis for Land Use Spatial Conflict in Pearl River Delta Urban Agglomeration. Master’s Thesis, Guangzhou University, Guangzhou, China, 2019. [Google Scholar]
- Tianyue, L.; Xuejun, L.; Jing, L.; Jufang, S.; Jingnan, H. Spatio-Temporal Evolution of Ecological Spatial Conflicts in Beijing-Tianjin-Hebei Urban Agglomeration. J. Geomat. 2021, 46, 88–92. [Google Scholar]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.N.; Wang, M.; Xu, Z.; Wu, J. Integrating land development size, pattern, and density to identify urban–rural fringe in a metropolitan region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Yang, Y.; Liu, J. Spatial-temporal characteristics and driving factors of urban construction land in Beijing-Tianjin-Hebei region during 1985–2015. Geogr. Res. 2018, 37, 37–52. [Google Scholar]
- Yao-yu, Z. Differences in driving-force mechanisms in urban land expansion in China. Resour. Sci. 2016, 38, 24–28. [Google Scholar]
- Liao, X.; Shu, T.; Shen, L.; Ren, Y.; Yang, N. Identification and evolution of peri-urban areas in the context of urban-rural integrated development:A case study of Suzhou City. Prog. Geogr. 2021, 40, 1847–1860. [Google Scholar] [CrossRef]
- Zatelli, P.; Gobbi, S.; Tattoni, C.; Cantiani, M.G.; Ciolli, M. Relevance of the cell neighborhood size in landscape metrics evaluation and FOSS implementations. Int. J. Geo-Inf. 2019, 8, 586. [Google Scholar] [CrossRef]
- Chen, B.; Xu, H. Urban expansion and its driving force analysis using remote sensed data: A case of Xiamen City. Econ. Geogr. 2005, 25, 79–83. [Google Scholar]
- Mu, F.; Zhang, Z.; Liu, B.; Wang, C.; Tan, W. Dynamic Monitoring of Built-up Area in Beijing during 1973–2005 Based on Multi-original Remote Sensed Images. J. Remote Sens. 2007, 11, 257–268. [Google Scholar]
- Long, Y. The Research on Urban Fringe Landscape Architecture Space Characteristic—Illustrated by the Case of Wuhan; Wuhan University: Wuhan, China, 2014. [Google Scholar]
- Wang, H.; Zhang, X. The Analysis on Spatial-temporal Evolution of Urban Fringe in Guangzhou. Acta Sci. Nat. Univ. Sunyatseni 2012, 51, 134–143. [Google Scholar]
- Chang, S.; Jiang, Q.; Wang, Z.; Xu, S.; Jia, M. Extraction and Spatial–Temporal Evolution of Urban Fringes: A Case Study of Changchun in Jilin Province, China. ISPRS Int. J. Geo-Inf. 2018, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Lilin, H.X.Z. Landscape Pattern Evolution of Land Use and Its Driving Mechanism in Yangtze River Economic Belt under the Guidance of Ecological Priority: Case Study of Wuhan City. Areal Res. Dev. 2020, 39, 138–143+149. [Google Scholar]
- Ning, F.; Ou, S.-J.; Hsu, C.-Y.; Chien, Y.-C. Analysis of landscape spatial pattern changes in urban fringe area: A case study of Hunhe Niaodao Area in Shenyang City. Landsc. Ecol. Eng. 2021, 17, 411–425. [Google Scholar] [CrossRef]
- Yan, L. Study on the concept and functional practice of landscape architecture space in urban fringe. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2014, 32, 8799–8804. [Google Scholar]
Type | Data | Data Source | Format | Year |
---|---|---|---|---|
Geographic information data | Land use data | The 30 m annual China land cover dataset (CLCD) https://doi.org/10.5281/zenodo.5210928 (accessed on 7 March 2022) | Raster data | 2000 2010 2020 |
Population data | Population density | WorldPop 100 m Population density (https://hub.worldpop.org/geodata/listing?id=69) (accessed on 7 March 2022) | Raster data | 2000 2010 2020 |
Direction | Indicator Name | Index Name |
---|---|---|
Type-level landscape pattern index | Indicator name | Perimeter-area fractal dimension (PAFRAC) |
Shape metric | Largest patch index (LPI) | |
Area and edge metric | Mean of patch area (A REA_MN) | |
Class area (CA) | ||
Number of patches (NP) | ||
Aggregation metric | Patch density (PD) | |
Landscape shape index (LSI) | ||
Horizontal-level landscape pattern index. | Shape metric | Shannon evenness index (SHEI) |
Shannon diversity index (SHDI) | ||
Aggregation index (AI) | ||
Patch density (PD) |
Statistical Table of the Area of the Geospatial Structure | |||
---|---|---|---|
Sports event | Area/km2 by year | ||
2000 | 2010 | 2020 | |
City center district | 253.573 | 483.840 | 744.575 |
Urban fringe areas | 474.351 | 864.982 | 1220.104 |
Rural hinterland | 7853.823 | 7232.925 | 6617.068 |
Urban Core | Urban Fringe | |||||
---|---|---|---|---|---|---|
Extended Area (km2) | Expansion Ratio (%) | Expansion Rate (km2/a) | Extended Area (km2) | Expansion Ratio (%) | Expansion Rate (km2/a) | |
2000–2010 | 230.27 | 90.81 | 23.03 | 390.63 | 82.35 | 39.06 |
2010–2020 | 260.74 | 53.89 | 26.07 | 355.12 | 41.06 | 35.51 |
2000–2020 | 491.00 | 193.63 | 24.55 | 745.75 | 157.22 | 37.29 |
Geographical Spatial Structure shift in Wuhan from 2000 to 2010 (Unit: km2) | ||||
---|---|---|---|---|
2010 Geographical Spatial Structure | ||||
Geographical Spatial Structure in 2000 | Urban Core | Urban Fringe | Rural Hinterland | Aggregate |
Urban core | 251.63 | 1.94 | 0.00 | 253.57 |
Urban fringe | 194.54 | 279.81 | 0.00 | 474.35 |
Rural hinterland | 37.66 | 583.24 | 7232.92 | 7853.82 |
Aggregate | 483.84 | 864.98 | 7232.92 | 8581.75 |
Geographical Spatial Structure Shift in Wuhan from 2000 to 2010 (Unit: km2) | ||||
---|---|---|---|---|
Geographical Spatial Structure in 2010 | 2020 Geographical Spatial Structure | Aggregate | ||
Types | Urban Core | Urban Fringe | Rural Hinterland | |
Urban core | 478.84 | 5.00 | 0.00 | 483.84 |
Urban fringe | 263.06 | 599.75 | 2.18 | 864.98 |
Rural hinterland | 2.68 | 615.36 | 6614.89 | 7232.92 |
Aggregate | 744.57 | 1220.10 | 6617.07 | 8581.75 |
The Urban Fringe Area in Each Direction | Increment of the Urban Fringe Area in Each Direction | |||||
---|---|---|---|---|---|---|
Direction | 2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 |
North | 43.52 | 80.65 | 152.50 | 37.13 | 71.85 | 108.98 |
Northeast | 87.56 | 156.20 | 186.06 | 68.63 | 29.86 | 98.49 |
East | 83.23 | 115.44 | 180.73 | 32.21 | 65.29 | 97.50 |
Southeast | 82.33 | 104.33 | 95.80 | 22.00 | −8.53 | 13.48 |
South | 23.45 | 145.06 | 104.71 | 121.61 | −40.36 | 81.26 |
Southwest | 81.43 | 66.24 | 234.50 | −15.19 | 168.27 | 153.07 |
West | 46.06 | 128.18 | 156.13 | 82.13 | 27.95 | 110.08 |
Northwest | 26.77 | 68.88 | 109.67 | 42.11 | 40.79 | 82.90 |
Sum | 474.35 | 864.98 | 1220.10 | 390.63 | 355.12 | 745.75 |
Statistical Table of the Geographical Spatial Structure of the Administrative Regions of Wuhan City in Terms of Area (km2) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Administrative district | Urban core | Urban fringe | Rural hinterland | ||||||
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Ganglian District of central Chongqing municipality, formerly in Sichuan | 33.27 | 37.57 | 64.96 | 47.79 | 43.48 | 16.09 | 0.00 | 0.00 | 0.00 |
Jianghan District of central Chongqing municipality, formerly in Sichuan | 27.91 | 28.54 | 28.54 | 0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Qiaokou District of Qiaokou, Sichuan | 28.84 | 32.13 | 38.17 | 11.51 | 8.22 | 2.17 | 0.00 | 0.00 | 0.00 |
Hanyang District of central Chongqing municipality, formerly in Sichuan | 33.47 | 83.45 | 106.00 | 64.20 | 27.83 | 6.59 | 14.92 | 1.31 | 0.00 |
Wuchang District of Beijing | 68.08 | 69.06 | 73.08 | 27.48 | 31.17 | 27.22 | 4.74 | 0.07 | 0.00 |
Green Hills District of Beijing | 12.53 | 17.73 | 26.01 | 44.69 | 51.34 | 47.41 | 34.46 | 22.61 | 18.27 |
Hongshan Suburban District of Hong Kong | 45.48 | 130.37 | 169.86 | 137.61 | 149.98 | 191.19 | 331.49 | 234.24 | 153.54 |
Caidian District, Hainan | 0.00 | 38.62 | 88.33 | 38.13 | 107.05 | 228.58 | 1051.69 | 944.15 | 772.92 |
East-West Lake District | 3.98 | 14.72 | 27.32 | 42.89 | 113.41 | 157.86 | 444.77 | 363.52 | 306.46 |
Han’nan District of central Chongqing municipality, formerly in Sichuan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 35.25 | 289.19 | 289.19 | 253.94 |
Huangpi District | 0.00 | 0.00 | 0.28 | 26.31 | 112.11 | 237.13 | 2219.10 | 2133.31 | 2008.02 |
Jiangxia District | 0.00 | 31.65 | 122.04 | 33.12 | 194.46 | 183.77 | 1977.97 | 1784.98 | 1705.28 |
Xinzhou District | 0.00 | 0.00 | 0.00 | 0.00 | 25.94 | 86.84 | 1477.10 | 1451.16 | 1390.26 |
Aggregate | 3.98 | 84.99 | 237.96 | 140.46 | 552.97 | 929.42 | 7459.82 | 6966.31 | 6436.88 |
Percentage of Geographical Spatial Structure by Administrative Districts in Wuhan | ||||||
---|---|---|---|---|---|---|
Administrative district | urban core | Urban fringe areas | ||||
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Ganglian District of central Chongqing municipality, formerly in Sichuan | 0.13 | 0.08 | 0.09 | 0.10 | 0.05 | 0.01 |
Jianghan District of central Chongqing municipality, formerly in Sichuan | 0.11 | 0.06 | 0.04 | 0.00 | 0.00 | 0.00 |
Qiaokou District of Qiaokou, Sichuan | 0.11 | 0.07 | 0.05 | 0.02 | 0.01 | 0.00 |
Hanyang District of central Chongqing municipality, formerly in Sichuan | 0.13 | 0.17 | 0.14 | 0.14 | 0.03 | 0.01 |
Wuchang District of Beijing | 0.27 | 0.14 | 0.10 | 0.06 | 0.04 | 0.02 |
Green Hills District of Beijing | 0.05 | 0.04 | 0.03 | 0.09 | 0.06 | 0.04 |
Hongshan Suburban District of Hong Kong | 0.18 | 0.27 | 0.23 | 0.29 | 0.17 | 0.16 |
Caidian District, Hainan | 0.00 | 0.08 | 0.12 | 0.08 | 0.12 | 0.19 |
East-West Lake District | 0.02 | 0.03 | 0.04 | 0.09 | 0.13 | 0.13 |
Hannan District of central Chongqing municipality, formerly in Sichuan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 |
Huangpi District | 0.00 | 0.00 | 0.00 | 0.06 | 0.13 | 0.19 |
Jiangxia District | 0.00 | 0.07 | 0.16 | 0.07 | 0.22 | 0.15 |
Xinzhou District | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 |
Aggregate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Geospatial Structure | Urban Core | Urban Fringe Areas | Rural Hinterland | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Land use | impermeable surface | 66.73 | 65.69 | 64.05 | 27.21 | 29.49 | 32.48 | 2.90 | 3.96 | 4.62 |
Grassland | 0.00 | 0.06 | 0.01 | 0.00 | 0.11 | 0.06 | 0.04 | 0.04 | 0.01 | |
Cultivated land | 14.94 | 18.34 | 19.46 | 46.24 | 46.76 | 48.40 | 76.25 | 75.25 | 73.04 | |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Wasteland | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | |
Woodland | 0.39 | 0.35 | 0.84 | 1.40 | 2.18 | 2.77 | 6.40 | 6.87 | 9.18 | |
Water | 17.95 | 15.59 | 15.62 | 25.15 | 21.45 | 16.27 | 14.40 | 13.88 | 13.16 | |
Aggregate | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Year | Variations | Impermeable Surface | Grassland | Cultivated Land | Shrub | Wasteland | Woodland | Water Column |
---|---|---|---|---|---|---|---|---|
2000–2010 | Magnitude of change in area/km2 | 333.207 | 0.841 | −309.481 | −0.012 | −0.787 | 7.350 | −31.119 |
Average annual change | 33.321 | 0.084 | −30.948 | −0.001 | −0.079 | 0.735 | −3.112 | |
Single-motion attitude/% | 6.343 | 2.684 | −0.496 | −4.196 | −7.517 | 0.144 | −0.240 | |
2010–2020 | Magnitude of change in area/km2 | 319.229 | −2.730 | −367.068 | −0.013 | 0.111 | 129.851 | −79.381 |
Average annual variation | 31.923 | −0.273 | −36.707 | −0.001 | 0.011 | 12.985 | −7.938 | |
Single-motion attitude/% | 3.718 | −6.867 | −0.619 | −7.776 | 4.256 | 2.512 | −0.628 | |
2000–2020 | Magnitude of change in area/km2 | 652.437 | −1.889 | −676.549 | −0.024 | −0.677 | 137.202 | −110.500 |
Average annual change | 32.622 | −0.094 | −33.827 | −0.001 | −0.034 | 6.860 | −5.525 | |
Single-motion attitude/% | 6.210 | −3.013 | −0.542 | −4.355 | −3.230 | 1.346 | −0.427 |
Geographical Spatial Structure in 2000 | Land Type | Geographical Spatial Structure in 2010 | Aggregate | ||
---|---|---|---|---|---|
Urban Core | Urban Fringe | Rural Hinterland | |||
Urban core | Impermeable surface | 168.506 | 0.544 | 0 | 169.051 |
Grassland | 0.008 | 0 | 0 | 0.008 | |
Cultivated land | 36.895 | 0.948 | 0 | 37.843 | |
Wasteland | 0.005 | 0 | 0 | 0.005 | |
Woodland | 0.976 | 0.003 | 0 | 0.979 | |
Water column | 45.025 | 0.443 | 0 | 45.468 | |
Aggregate | 251.416 | 1.938 | 0 | 253.354 | |
Urban fringe | Impermeable surface | 62.309 | 66.659 | 0 | 128.969 |
Grassland | 0.007 | 0.013 | 0 | 0.021 | |
Cultivated land | 88.876 | 130.298 | 0 | 219.173 | |
Wasteland | 0.001 | 0 | 0 | 0.001 | |
Woodland | 1.154 | 5.459 | 0 | 6.613 | |
Water column | 42.024 | 77.153 | 0 | 119.178 | |
Aggregate | 194.371 | 279.583 | 0 | 473.954 | |
Rural hinterland | Impermeable surface | 5.302 | 48.721 | 173.286 | 227.309 |
Grassland | 0 | 0.170 | 2.935 | 3.105 | |
Cultivated land | 21.914 | 377.647 | 5581.813 | 5981.375 | |
Shrub | 0 | 0 | 0.028 | 0.028 | |
Wasteland | 0 | 0 | 1.041 | 1.041 | |
Woodland | 0.039 | 13.951 | 488.072 | 502.062 | |
Water column | 10.372 | 142.234 | 977.235 | 1129.842 | |
Aggregate | 37.627 | 582.724 | 7224.411 | 7844.762 | |
Aggregate | 483.415 | 864.245 | 7224.411 | 8572.071 |
Geographical Spatial Structure in 2010 | Land Type | Geographical Spatial Structure in 2020 | Aggregate | ||
---|---|---|---|---|---|
Urban Core | Urban Fringe | Rural Hinterland | |||
Urban core | Impermeable surface | 315.195 | 2.232 | 0 | 317.427 |
Grassland | 0.296 | 0.001 | 0 | 0.296 | |
Cultivated land | 86.756 | 1.881 | 0 | 88.637 | |
Wasteland | 0.028 | 0 | 0 | 0.028 | |
Woodland | 1.649 | 0.047 | 0 | 1.696 | |
Water column | 74.496 | 0.833 | 0 | 75.330 | |
Aggregate | 478.420 | 4.994 | 0 | 483.415 | |
Urban fringe | Impermeable surface | 86.343 | 168.257 | 0.269 | 254.869 |
Grassland | 0.214 | 0.711 | 0.002 | 0.927 | |
Cultivated land | 121.867 | 280.554 | 1.695 | 404.115 | |
Wasteland | 0.011 | 0.079 | 0 | 0.090 | |
Woodland | 3.843 | 14.997 | 0 | 18.840 | |
Water column | 50.544 | 134.649 | 0.212 | 185.404 | |
Aggregate | 262.820 | 599.247 | 2.178 | 864.245 | |
Rural hinterland | Impermeable surface | 0.312 | 80.742 | 205.185 | 286.239 |
Grassland | 0 | 0.544 | 2.208 | 2.752 | |
Cultivated land | 1.555 | 422.946 | 5011.656 | 5436.158 | |
Shrub | 0 | 0 | 0.016 | 0.016 | |
Wasteland | 0 | 0.014 | 0.128 | 0.142 | |
Woodland | 0.555 | 15.582 | 480.331 | 496.468 | |
Water column | 0.253 | 94.949 | 907.433 | 1002.635 | |
Aggregate | 2.675 | 614.779 | 6606.957 | 7224.411 | |
Aggregate | 743.916 | 1219.020 | 6609.134 | 8572.071 |
Name of Land Type | Year | CA (km2) | NP | PD (Pcs/km2) | LPI (%) | AREA_MN | PAFRAC |
---|---|---|---|---|---|---|---|
Impermeable surface | 2000 | 12,905.19 | 1936 | 1.8509 | 3.1461 | 6.6659 | 1.4357 |
2010 | 25,508.79 | 3086 | 1.1718 | 1.8743 | 8.266 | 1.4441 | |
2020 | 39,632.67 | 4525 | 1.1939 | 1.4342 | 8.7586 | 1.433 | |
Cultivated land | 2000 | 21,936.51 | 1872 | 1.7897 | 4.1573 | 11.7182 | 1.4367 |
2010 | 40,449.15 | 3914 | 1.4863 | 2.2681 | 10.3345 | 1.4242 | |
2020 | 59,048.46 | 5525 | 1.4577 | 2.1769 | 10.6875 | 1.4264 | |
Water column | 2000 | 11,929.05 | 1642 | 1.5698 | 3.1086 | 7.265 | 1.3586 |
2010 | 18,560.52 | 2264 | 0.8597 | 1.2571 | 8.1981 | 1.5458 | |
2020 | 19,850.22 | 2068 | 0.5456 | 0.8758 | 9.5988 | 1.3248 | |
Grassland | 2000 | 2.07 | 12 | 0.0115 | 0.0004 | 0.1725 | 1.4951 |
2010 | 93.51 | 220 | 0.0835 | 0.0022 | 0.425 | 1.3858 | |
2020 | 73.53 | 164 | 0.0433 | 0.0016 | 0.4484 | 1.4634 | |
Wasteland | 2000 | 0.09 | 1 | 0.001 | 0.0001 | 0.09 | ---- |
2010 | 9.18 | 20 | 0.0076 | 0.0008 | 0.459 | 1.3577 | |
2020 | 20.7 | 54 | 0.0142 | 0.0005 | 0.3833 | 1.4271 | |
Woodland | 2000 | 663.48 | 282 | 0.2696 | 0.0977 | 2.3528 | 1.3562 |
2010 | 1884.96 | 314 | 0.1192 | 0.3148 | 6.0031 | 1.3201 | |
2020 | 3379.05 | 488 | 0.1288 | 0.2083 | 6.9243 | 1.2784 |
Year | PD | LSI | SHDI | SHEI | AI |
---|---|---|---|---|---|
2000 | 5.4952 | 32.8363 | 1.1959 | 0.6146 | 94.1677 |
2010 | 3.7297 | 35.9494 | 1.0068 | 0.5174 | 95.9574 |
2020 | 3.384 | 42.4062 | 0.9879 | 0.5077 | 96.0006 |
Wuhan | Beijing | Guangzhou | Changchun | |
---|---|---|---|---|
Expansion speed | Urban core expansion rate of 23.03 km2/a and urban fringe rate of 39.06 km2/a in 2000–2010; urban core expansion rate of 26.07 km2/a and urban fringe rate of 35.51 km2/a in 2010–2020 | Urban core expansion rate of 18.58 km2/a and urban fringe rate of 57.24 km2/a in 1994–1999 1999–2004 Urban core expansion rate 9.36 km2/a and urban fringe expansion rate 195.32 km2/a | From 1990–2000, the area of the urban core increased by 27.86 km2/a per year and the area of the urban fringe grew by 9.6 km2/a per year Annual growth rate of urban core area 9.4 km2/a and urban fringe area −2.05 km2/a from 2000–2009 | Expansion rates of 15.41 km2/a in the urban core and 50.33 km2/a in the urban fringe, 1995–2005; 10.42 km2/a in the urban core and 2.98 km2/a in the urban fringe, 2005–2015. |
Direction of expansion | 2000–2020 mainly in five directions: new southwest, west, north, northeast, east; 2000–2010 in south, west, northeast; 2010–2020 in southwest, north, east | 1994–1999 urban fringe expansion mainly to the northeast of the city, urban core expansion mainly to the southwest; 1999–2004 tends to even out in all directions | From 1990 to 2000, the strongest expansion of the urban core was located in the northern part of Guangzhou, and the urban fringe areas were in the southern and northern parts of Guangzhou; from 2000 to 2009, the urban core expanded mainly in the southern and eastern parts, and the urban fringe areas were concentrated in Panyu | Urban fringe area extends mainly to the east, southeast and north from 1995–2015; mainly to the east, southeast and south from 1995–2005; mainly to the north from 2005–2015 |
Expansion model | 2000–2010 urban fringe is mainly outward expansion; 2010–2020 urban fringe is mainly outward expansion and internal infill | 1994–1999 focused mainly on infill and development within the marginal zone; 1999–2004 focused mainly on outward expansion | Outward expansion in urban fringe areas 1990–2000, in-fill 2000–2009 | Urban fringe areas were mainly outward sprawling from 1995–2015; mainly outward sprawling from 1995–2005; and mainly in-fill from 2005–2015 |
Expansion area | The urban fringe expansion areas are mainly in Hongshan District, Caidian District, East-West Lake District, Hannan District, Huangpi District, Jiangxia District and Xinzhou District; the core expansion areas are in Jiangan District, Qiaokou District, Jianghan District, Wuchang District, Qingshan District, Hongshan District, Caidian District, East-West Lake District, and Jiangxia District | Districts with large urban fringe expansion areas Tongzhou, Changping, Daxing, Shunyi | The main expansion areas of the urban core are Panyu, Baiyun, and Luogang districts; the proportion of urban fringe areas in Baiyun, Luogang, Huadu, and Nansha districts increased and then decreased during the period 1990–2009 | - |
Landscape pattern | The fragmentation of the landscape in Wuhan’s three urban fringe areas is on a declining trend, and landscape heterogeneity has continued to decrease over 20 years | - | Increasing fragmentation in urban core and fringe areas from 1990–2000 and decreasing fragmentation from 2000–2009 | The number of patches in the urban fringe increased and the average patch size decreased from 1995–2005. From 2005–2015, the average patch size increased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Luo, S.; Liu, X.; Luo, T.; Liu, X. Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020. ISPRS Int. J. Geo-Inf. 2022, 11, 483. https://doi.org/10.3390/ijgi11090483
Long Y, Luo S, Liu X, Luo T, Liu X. Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020. ISPRS International Journal of Geo-Information. 2022; 11(9):483. https://doi.org/10.3390/ijgi11090483
Chicago/Turabian StyleLong, Yan, Shiqi Luo, Xi Liu, Tianyue Luo, and Xuejun Liu. 2022. "Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020" ISPRS International Journal of Geo-Information 11, no. 9: 483. https://doi.org/10.3390/ijgi11090483
APA StyleLong, Y., Luo, S., Liu, X., Luo, T., & Liu, X. (2022). Research on the Dynamic Evolution of the Landscape Pattern in the Urban Fringe Area of Wuhan from 2000 to 2020. ISPRS International Journal of Geo-Information, 11(9), 483. https://doi.org/10.3390/ijgi11090483