Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen
<p>Geographical conditions of the territory of the city of Pilsen. Data sources: ArcČR500 (2016); Czech Office for Surveying, Mapping and Cadaster (2020); Openstreet maps and Geofabrik (2020).</p> "> Figure 2
<p>Flow-chart of the ecohydrological zoning of the city of Pilsen.</p> "> Figure 3
<p>Delimiting local climate zones (LCZ) in the cadastral area of Pilsen. Source: own processing based on classification algorithm [<a href="#B61-ijgi-10-00350" class="html-bibr">61</a>].</p> "> Figure 4
<p>Ecohydrological parameterization of LCZ raster on the basis of microstructures.</p> "> Figure 5
<p>Relative representation of microstructure types in LCZ 5–LCZ 9 (%).</p> "> Figure 6
<p>Box plots of LCZ classes according to ecohydrological parameters ((<b>A</b>) runoff coefficient, (<b>B</b>) evapotranspiration coefficient, (<b>C</b>) biotope area factor) and slope (<b>D</b>). The lower part of the box is the first quartile, and the upper is the third quartile. Whiskers indicate the lowest value still within 1.5 IQR (IQR = third quartile−first quartile) and the highest value still within 1.5 IQR. Points indicate outliers.</p> "> Figure 7
<p>Distributions of LCZ 5–LCZ 9 cells according to ecohydrological parameters ((<b>A</b>) runoff coefficient, (<b>B</b>) evapotranspiration coefficient, (<b>C</b>) biotope area factor).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology of Ecohydrological Zoning of the City
2.2.1. Choice of Two-Level Categorization of the Territory
2.2.2. Definition and Classification of the Microstructures
2.2.3. Classification of Elementary Areas
2.2.4. Parameterization of Microstructures
2.3. Methodology of Comparison of Ecohydrological Zoning and Local Climatic Zones
3. Results
3.1. The Structure of LCZ Classes according to Microstructure of Urban Landscape
3.2. Characteristics of LCZ Classes according to Ecohydrological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MS | Local Climate Zone Classes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | A | B | C | D | E | F | G | |
IA1 | 50.9 | 0.0 | 0.8 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.3 |
IA2 | 13.8 | 13.3 | 0.0 | 12.6 | 0.7 | 0.8 | 0.3 | 0.2 | 0.0 | 0.3 | 0.0 | 0.0 | 0.8 | 0.2 | 0.4 |
IA3 | 0.0 | 1.3 | 59.5 | 33.9 | 3.3 | 1.6 | 1.5 | 0.0 | 0.1 | 2.0 | 0.7 | 0.2 | 2.2 | 1.1 | 0.0 |
IA4 | 0.0 | 15.8 | 1.3 | 7.6 | 35.6 | 0.5 | 9.2 | 0.0 | 0.1 | 1.2 | 0.8 | 0.3 | 1.5 | 2.4 | 0.0 |
IA5 | 0.0 | 0.0 | 0.3 | 0.6 | 15.3 | 0.4 | 17.8 | 0.0 | 0.5 | 2.9 | 0.7 | 0.7 | 0.6 | 3.1 | 0.1 |
IA6 | 0.0 | 33.6 | 0.0 | 0.7 | 12.0 | 0.5 | 5.1 | 0.0 | 0.0 | 0.8 | 0.4 | 0.2 | 0.1 | 0.0 | 0.0 |
IB1 | 3.3 | 1.0 | 4.7 | 2.7 | 1.1 | 1.0 | 2.7 | 0.8 | 2.2 | 21.3 | 10.4 | 0.8 | 3.3 | 0.6 | 1.8 |
IB2 | 2.3 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
IB3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.1 | 22.0 | 0.0 | 0.5 | 5.4 | 0.4 | 0.5 | 0.0 | 0.0 | 0.8 |
IB4 | 0.0 | 1.2 | 0.0 | 0.2 | 0.7 | 0.3 | 4.5 | 0.0 | 0.3 | 9.7 | 0.9 | 0.6 | 0.4 | 0.0 | 0.6 |
IC1 | 0.1 | 0.0 | 0.6 | 3.9 | 0.1 | 8.2 | 0.1 | 0.0 | 0.0 | 0.7 | 0.7 | 0.3 | 2.8 | 0.1 | 0.0 |
IC2 | 2.0 | 0.0 | 1.7 | 2.2 | 0.2 | 1.9 | 0.7 | 0.0 | 0.0 | 0.3 | 0.2 | 0.1 | 2.8 | 0.0 | 0.4 |
IC3 | 0.0 | 0.0 | 9.5 | 7.4 | 1.3 | 3.7 | 1.6 | 0.0 | 0.5 | 5.0 | 2.8 | 1.8 | 2.4 | 2.1 | 2.2 |
ID1 | 0.0 | 1.9 | 0.0 | 0.1 | 0.0 | 10.6 | 0.0 | 73.2 | 0.3 | 0.4 | 3.7 | 0.0 | 2.8 | 0.5 | 0.0 |
ID2 | 0.4 | 6.2 | 4.3 | 1.5 | 1.5 | 45.7 | 2.5 | 16.1 | 0.5 | 3.1 | 9.0 | 0.9 | 6.3 | 5.5 | 0.5 |
IE1 | 0.3 | 1.5 | 0.3 | 0.6 | 0.4 | 2.1 | 0.5 | 0.1 | 0.1 | 0.8 | 0.4 | 0.1 | 4.8 | 1.6 | 0.1 |
IE2 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 1.7 | 0.0 | 1.9 | 0.0 | 0.3 | 1.5 | 0.0 | 24.3 | 0.4 | 0.0 |
IF1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.4 | 3.8 | 0.6 | 0.7 | 2.8 | 0.3 | 0.2 | 48.0 | 0.1 |
IF2 | 0.0 | 0.2 | 0.0 | 0.1 | 0.1 | 2.3 | 0.1 | 0.1 | 0.2 | 0.6 | 0.2 | 0.3 | 0.1 | 0.0 | 0.3 |
IF3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.3 | 0.0 | 12.7 | 0.0 |
IIG | 0.0 | 0.3 | 0.0 | 0.1 | 0.8 | 0.8 | 4.0 | 0.0 | 84.5 | 8.0 | 10.3 | 1.9 | 1.1 | 4.1 | 3.3 |
IIH | 0.0 | 0.7 | 0.0 | 0.3 | 0.7 | 0.5 | 1.3 | 0.0 | 0.4 | 5.3 | 5.4 | 0.7 | 0.5 | 1.4 | 0.5 |
III | 0.0 | 0.1 | 1.2 | 0.6 | 1.8 | 2.6 | 4.7 | 0.0 | 1.8 | 9.8 | 35.0 | 11.9 | 5.6 | 7.9 | 0.5 |
IIJ | 0.0 | 0.1 | 0.0 | 0.1 | 1.4 | 1.7 | 6.4 | 0.0 | 2.0 | 5.0 | 4.2 | 71.8 | 2.1 | 4.0 | 0.4 |
IIK1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.5 | 0.4 | 0.0 | 0.1 | 0.0 | 0.0 | 28.7 |
IIK2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.4 | 0.0 | 0.2 | 0.4 | 0.0 | 0.1 | 0.0 | 0.0 | 47.8 |
IIL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.3 | 1.0 | 0.4 | 0.0 | 0.0 | 0.9 | 0.0 |
IIIM1 | 3.6 | 5.0 | 2.9 | 5.4 | 2.3 | 2.9 | 1.4 | 2.3 | 0.1 | 1.8 | 1.0 | 0.2 | 14.4 | 0.3 | 0.2 |
IIIM2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.8 | 0.5 | 0.0 | 0.5 | 0.1 | 2.0 | 0.8 | 9.9 | 0.0 | 0.2 |
IIIN1 | 12.5 | 0.0 | 5.4 | 3.8 | 1.2 | 2.1 | 0.6 | 0.7 | 0.0 | 1.1 | 0.6 | 0.3 | 1.7 | 0.4 | 0.3 |
IIIN2 | 10.7 | 13.9 | 6.4 | 12.4 | 14.8 | 2.5 | 6.4 | 0.1 | 0.3 | 2.2 | 1.1 | 0.4 | 1.9 | 1.6 | 0.5 |
IIIN3 | 0.0 | 2.1 | 0.0 | 0.1 | 1.2 | 0.5 | 2.3 | 0.0 | 0.8 | 0.8 | 1.0 | 1.3 | 0.3 | 0.4 | 0.5 |
IIIO | 0.0 | 0.1 | 0.1 | 0.2 | 0.6 | 0.8 | 0.7 | 0.2 | 0.8 | 1.3 | 1.4 | 0.4 | 3.9 | 0.3 | 0.6 |
IIIP1 | 0.0 | 1.4 | 0.0 | 0.2 | 0.3 | 0.5 | 0.9 | 0.6 | 0.6 | 5.7 | 1.2 | 1.4 | 1.6 | 0.3 | 8.4 |
IIIP2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.4 | 0.0 | 0.5 | 0.4 | 0.1 | 0.2 | 0.1 | 0.0 | 0.1 |
IIIP3 | 0.0 | 0.4 | 0.5 | 0.1 | 0.4 | 0.2 | 0.7 | 0.0 | 0.5 | 0.8 | 0.5 | 1.0 | 0.3 | 0.1 | 0.4 |
A (km2) | 0.41 | 0.35 | 0.38 | 8.89 | 9.59 | 12.68 | 5.63 | 0.52 | 28.21 | 9.73 | 4.14 | 47.12 | 2.53 | 0.85 | 2.17 |
References
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban. Areas—Linkages between Science, Policy and Practice; Theory and Practice of Urban Sustainability Transitions; Springer Open: Cham, Switzerland, 2017. [Google Scholar]
- Wong, T.H.F.; Brown, R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokwa, A.; Dobrovolný, P.; Gál, T.; Geletič, J.; Gulyás, Á.; Hajto, M.J.; Holec, J.; Hollósi, B.; KielarI, R.; Lehnert, M.; et al. Urban Climate in Central European Cities and Global climate change. Acta Climatol. 2018, 51–52, 7–35. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Clim. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban. For. Urban. Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R.A. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban. Water J. 2016, 13, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Voskamp, I.M.; van de Ven, F.H.M. Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Build. Environ. 2015, 83, 159–167. [Google Scholar] [CrossRef]
- Howe, C.; Mitchell, C. (Eds.) Water Sensitive Cities; IWA Publishing: London, UK, 2012. [Google Scholar]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SUDS Manual (C753). CIRIA: London, UK, 2015. [Google Scholar]
- DiGiovanni-White, K.; Montalto, F.; Gaffin, S. A comparative analysis of micrometeorological determinants of evapotranspiration rates within a heterogeneous urban environment. J. Hydrol. 2018, 562, 223–243. [Google Scholar] [CrossRef]
- Lehnert, M.; Tokar, V.; Jurek, M.; Geletič, J. Summer thermal comfort in Czech cities: Measured effects of blue and green features in city centres. Int. J. Biometeorol. 2020, 1–13. [Google Scholar] [CrossRef]
- Žuvela-Aloise, M.; Koch, R.; Buchholz, S.; Früh, B. Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim. Chang. 2016, 135, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban. Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.H.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Järvi, L.; Grimmond, C.S.B.; Christen, A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. J. Hydrol. 2011, 411, 219–237. [Google Scholar] [CrossRef]
- Perini, K.; Sabbion, P. Urban Sustainability and River Restoration, Green and Blue Infrastructure Sensitive Cities; WILEY Blackwell: Chichester, UK, 2017. [Google Scholar]
- Thorne, C. (Ed.) Delivering and Evaluating Multiple Flood Risk Benefits in Blue-Green Cities; Key Project Outputs. EPSRC Project EP/K013661/1; University of Nottingham: Nottingham, UK, 2016. [Google Scholar]
- Bacchin, T.; Ashley, R.; Blecken, G.; Viklander, M.; Gersonius, B. Green-blue Infrastructure for Sustainable Cities: Innovative Socio-technical Solutions Bringing Multifunctional Value. In Proceedings of the Novatech, 9th International Conference on Planning and Technologies for Sustainable URBAN WATER Management, Lyon, France, 28 June–1 July 2016; pp. 1–4. [Google Scholar]
- Kopp, J.; Preis, J. The potential implementation of stormwater retention ponds into the blue-green infrastructure of the suburban landscape of Pilsen, Czechia. Appl. Ecol. Environ. Res. 2019, 17, 15055–15072. [Google Scholar] [CrossRef]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 2020, 703, 134980. [Google Scholar] [CrossRef] [PubMed]
- McPhearson, T.; Depietri, Y. Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer Open: Cham, Switzerland, 2017; pp. 91–109. [Google Scholar]
- Alexander, P.J.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. A new classification system for urban climate sites. Bull. Am. Meteorol. Soc. 2009, 90, 922–923. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Amer. Meteor. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Richard, Y.; Emery, J.; Dudek, J.; Pergaud, J.; Chateau-Smith, C.; Zito, S.; Rega, M.; Vairet, T.; Castel, T.; Thévenin, T.; et al. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban. Clim. 2018, 26, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.-L.; Okujeni, A.; van der Linden, S.; Demuzere, M.; De Wulf, R.; van Coillie, F. Influence of neighbourhood information on ‘Local Climate Zone’ mapping in heterogeneous cities. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 102–113. [Google Scholar] [CrossRef]
- Quan, S.J.; Bansal, P. A systematic review of GIS-based local climate zone mapping studies. Build. Environ. 2021, 196, 107791. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Hidalgo, J.; Dumas, G.; Masson, V.; Petit, G.; Bechtel, B.; Bocher, E.; Foley, M.; Schoetter, R.; Mills, G. Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban. Clim. 2019, 27, 64–89. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Geletič, J.; Husák, J.; Vysoudil, M. Urban field classification by “local climate zones” in a medium-sized Central European city: The case of Olomouc (Czech Republic). Appl. Climatol. 2015, 122, 531–541. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Leconte, F.; Bouyer, J.; Claverie, R. Nocturnal cooling in Local Climate Zone: Statistical approach using mobile measurements. Urban. Clim. 2020, 33, 100629. [Google Scholar] [CrossRef]
- Xue, J.; You, R.; Liu, W.; Chen, C.; Lai, D. Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability 2020, 12, 8083. [Google Scholar] [CrossRef]
- Das, M.; Das, A. Estimation of Ecosystem Services (EESs) loss due to transformation of Local Climatic Zones (LCZs) in Sriniketan-Santiniketan Planning Area (SSPA) West Bengal, India. Sustain. Cities Soc. 2019, 47, 101474. [Google Scholar] [CrossRef]
- Antoszewski, P.; Świerk, D.; Krzyżaniak, M. Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. Int. J. Environ. Res. Public Health 2020, 17, 7093. [Google Scholar] [CrossRef]
- Wagner, I.; Breil, P. The role of ecohydrology in creating more resilient cities. Ecohydrol. Hydrobiol. 2013, 13, 113–134. [Google Scholar] [CrossRef]
- Lafortezza, R.; Chen, J.; van den Bosch, C.K.; Randrup, T.B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Bozovic, R.; Maksimovic, C.; Mijic, A.; Smith, K.M.; Suter, I.; van Reeuwijk, M. Blue Green Solutions. A Systems Approach to Sustainable, Resilient and Cost-Efficient Urban Development; Climate-KIC Limited, Imperial College London: London, UK, 2017. [Google Scholar]
- Alexander, P.J.; Mills, G.; Fealy, R. Using LCZ data to run an urban energy balance model. Urban. Clim. 2015, 13, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, V.G.; Cleugh, H.A.; Grimmond, C.S.B.; Xu, J. Linking urban water balance and energy balance models to analyse urban design options. Hydrol. Process. 2008, 22, 2891–2900. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G.; Simpson, J.R.; Ustin, S.L. Hydrologic processes at the urban residential scale. Hydrol. Process. 2007, 21, 2174–2188. [Google Scholar] [CrossRef]
- Omidvar, H.; Sun, T.; Grimmond, S.; Bilesbach, D.; Black, A.; Chen, J.; Duan, Z.; Gao, Z.; Iwata, H.; McFadden, J.P. Surface [Urban] Energy and Water Balance Scheme (v2020a) in non-urban areas: Developments, parameters and performance. Geosci. Model. Dev. Discuss. 2020. [Google Scholar] [CrossRef]
- Aubrechtová, T.; Geletič, J.; Lehnert, M. Identifikace Lokalit Ohrožených Teplotním Stresem—Nástroj Pro Udržitelné Plánování Měst (Identification of Locations Vulnerable to Thermal Stress—A Tool for Sustainable Urban Planning); Project No. TJ01000118. Project Final Report; Global Change Research Institute of the Czech Academy of Sciences: Brno, Czech Republic; Palacký University Olomouc: Olomouc, Czech Republic, 2019. (In Czech) [Google Scholar]
- Vít, V.; Kopp, J. Typology of Outdoor Seating Areas of Restaurants Based on Factors Influencing Their Thermal Comfort. A Case Study of Pilsen City Centre, Czechia. J. Settl. Spat. Plan. 2019, 10, 131–142. [Google Scholar]
- Kopp, J.; Raška, P.; Vysoudil, M.; Ježek, J.; Dolejš, M.; Veith, T.; Frajer, J.; Novotná, M.; Hašová, E. Ekohydrologický Management Mikrostruktur Městské Krajiny (Ecohydrological Management of the Urban Landscape´s Microstructures); Západočeská univerzita v Plzni: Plzeň, Czech Republic, 2017. (In Czech) [Google Scholar]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban. Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, The Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Sulzer, W. Reale Abbildung der Stadtentwicklung Graz—Landnutzungskartierung 1945–2015; Eigenverlag der Stadt Graz: Graz, Austria, 2016. [Google Scholar]
- Zonneveld, I.S. The land unit—A fundamental concept in landscape ecology, and its applications. Landsc. Ecol. 1989, 3, 67–86. [Google Scholar] [CrossRef]
- Faltermaier, M.; Stock, H.; Tonndorf, T. (Eds.) Stadtentwicklungsplan Klima KONKRET Klimaanpassung in der Wachsenden Stadt; Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 2016. [Google Scholar]
- Kazmierczak, A.; Carter, J. Adaptation to Climate Change Using Green and Blue Infrastructure. A Database of Case Studies; University of Manchester: Manchester, UK, 2010. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop. Evapotranspiration—Guidelines 157 for Computing Water Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Costello, L.R.; Matheny, N.P.; Clark, J.R.; Jones, K.S. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California. The Landscape Coefficient Method and WUCOLS III; University of California Cooperative Extension; California Department of Water Resources: Sacramento, CA, USA, 2000. [Google Scholar]
- Kjelgren, R.; Beeson, R.C.; Pittenger, D.R.; Montague, D.T. Simplified landscape irrigation demand estimation: Slide rules. Appl. Eng. Agric. 2016, 32, 363–378. [Google Scholar] [CrossRef]
- Lehnert, M.; Geletič, J.; Dobrovolný, P.; Jurek, M. Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim. Res. 2018, 75, 53–64. [Google Scholar] [CrossRef]
- Developing the City of Helsinki Green Factor Method. Report Summary; City of Helsinki, Environment Centre Helsinki: Helsinki, Finland, 2016.
- Handlungsziele für Stadtgrün und Deren Empirische Evidenz. Indikatoren, Kenn- und Orientierungswerte; Bundesinstitut für Bau-, Stadt- und Raumforschung: Bonn, Germany, 2018.
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2020, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.W. (Ed.) The Biotope Area Factor as an Ecological Parameter. Principles for Its Determination and Identification of the Target; Becker Giseke Mohren Richard, Landschaft Planen & Bauen: Berlin, Germany, 1990. [Google Scholar]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Brabec, M.; Jurek, M.; Tokar, V.; Geletič, J. The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustain. Cities Soc. 2021, 66, 102683. [Google Scholar] [CrossRef]
- Tratalos, J.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban form, biodiversity potential and ecosystem services. Landsc. Urban. Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Stewart, I.D. Developing a field guide to identify ‘local climate zones’ in cities. In Proceedings of the 10th International Conference on Urban Climate/14th Symposium on the Urban Environment, New York, NY, USA, 6–10 August 2018. Abstract 12E.1. [Google Scholar]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef]
Dataset | Year | Attribute | Source | Use |
---|---|---|---|---|
Basic functional areas | 2011 | polygons of function areas by master plan | Municipality of the city of Pilsen | Delimiting of microstructures and identification of types |
Technical map | 2017 | polygons of roads and streets | ||
Cadaster of real estate | 2016 | state administration systems of descriptive and geodetic information | Czech Office for Surveying, Mapping and Cadaster | |
RÚIAN | 2016 | registry of territorial identification, addresses and real estates | ||
DIBAVOD | 2010 | digital base of water management data—polygons of water bodies | T. G. Masaryk Water Research Institute | Identification of water bodies |
3D model of the city | 2017 | building multipatch layer | Municipality of the city of Pilsen | Refinement and replenishment of the ground plan of buildings |
Orthophoto | 2014 | orthophoto in vegetation period, raster resolution 0.25 m | Czech Office for Surveying, Mapping and Cadaster | Delimiting and classification of the elementary areas |
Green space inventory | 2017 | polygons of public green space inventory | Municipality of the city of Pilsen | Delimiting and classification of greenery and calibration of autoclassification results |
DMR 5G | 2013 | digital terrain model of the Czech Republic of the 5th generation (DMR 5G) | Czech Office for Surveying, Mapping and Cadaster | Addition of greenery classification, slope analysis |
DMP 1G | 2013 | digital surface model of the Czech Republic of the 1st generation (DMP 1G) |
Classes of Microstructures | Types of Microstructures | Subtypes of Microstructures | ||
---|---|---|---|---|
I Urban areas | IA | Residential areas | IA1 | Compact urban built-up areas |
IA2 | Urban built-up areas | |||
IA3 | Low density urban built-up areas | |||
IA4 | Detached house areas | |||
IA5 | Low density detached house areas | |||
IA6 | Rural built-up areas | |||
IB | Recreation and community areas | IB1 | Public green areas | |
IB2 | Public impervious areas | |||
IB3 | Private recreation areas | |||
IB4 | Gardening community areas | |||
IC | Public facilities areas | IC1 | Large shops and services areas | |
IC2 | Small and medium shops and services areas | |||
IC3 | School and sports facilities | |||
ID | Industrial and store areas | ID1 | Heavy industry areas | |
ID2 | Light industry and store areas | |||
IE | Transport infrastructure areas | IE1 | Road infrastructure areas | |
IE2 | Railways’ infrastructure areas | |||
IF | Infrastructure areas | IF1 | Technical infrastructure areas | |
IF2 | Water infrastructure areas | |||
IF3 | Waste management areas | |||
II Peri-urban areas | IIG | Forests | ||
IIH | Orchards and gardens | |||
III | Meadows and pastures | |||
IIJ | Arable land | |||
IIK | Water areas | IIK1 | Ponds | |
IIK2 | Water reservoirs | |||
IIL | Wetlands | |||
III Corridors | IIIM | Main road corridors | IIIM1 | Main urban roads |
IIIM2 | Main extra-urban roads and highways | |||
IIIN | Local road corridors | IIIN1 | Local transit streets | |
IIIN2 | Local living streets | |||
IIIN3 | Local extra-urban road | |||
IIIO | Railways | |||
IIIP | Bio-corridors and watercourses | IIIP1 | River corridors | |
IIIP2 | Brook corridors | |||
IIIP3 | Green and episodic runoff corridors |
Types of Elementary Areas | Subtypes |
---|---|
1 Roofs | |
2 Impervious surfaces | |
3 Semi-permeable surfaces | |
4 Bare land | |
5 Greenery | 5a Lawns |
5b Shrubs | |
5c Trees | |
5d Flowerbeds | |
6 Water areas | |
7 Meadows and pastures | |
8 Arable land | |
9 Forests |
LCZ | LCZ 2 | LCZ 3 | LCZ 4 | LCZ 5 | LCZ 6 | LCZ 8 | LCZ 9 | LCZ 10 | |
---|---|---|---|---|---|---|---|---|---|
N | 41 | 35 | 38 | 887 | 959 | 1267 | 562 | 52 | |
Runoff | Mean | 0.7287 | 0.5876 | 0.4145 | 0.5071 | 0.4480 | 0.5451 | 0.3497 | 0.5843 |
Median | 0.7205 | 0.6078 | 0.3973 | 0.4921 | 0.4519 | 0.5572 | 0.3386 | 0.6333 | |
Min | 0.6297 | 0.3950 | 0.2449 | 0.2692 | 0.1604 | 0.1777 | 0.1192 | 0.3140 | |
Max | 0.8139 | 0.7090 | 0.7010 | 0.8187 | 0.6813 | 0.8019 | 0.6702 | 0.7164 | |
Var | 0.0032 | 0.0065 | 0.0077 | 0.0114 | 0.0061 | 0.0130 | 0.0079 | 0.0183 | |
SD | 0.0565 | 0.0807 | 0.0878 | 0.1065 | 0.0778 | 0.1138 | 0.0888 | 0.1354 | |
CV | 7.7564 | 13.7251 | 21.1755 | 21.0085 | 17.3685 | 20.8821 | 25.3997 | 23.1693 | |
ETcoef | Mean | 0.2276 | 0.4577 | 0.6557 | 0.5340 | 0.6484 | 0.4956 | 0.8346 | 0.4359 |
Median | 0.2304 | 0.4582 | 0.6743 | 0.5479 | 0.6329 | 0.4617 | 0.8559 | 0.3561 | |
Min | 0.1212 | 0.2742 | 0.3086 | 0.1539 | 0.2853 | 0.1477 | 0.3087 | 0.2463 | |
Max | 0.3461 | 0.7648 | 0.9046 | 1.0147 | 1.1289 | 1.1916 | 1.1609 | 0.7687 | |
Var | 0.0058 | 0.0140 | 0.0149 | 0.0232 | 0.0191 | 0.0352 | 0.0176 | 0.0314 | |
SD | 0.0761 | 0.1182 | 0.1219 | 0.1524 | 0.1382 | 0.1877 | 0.1327 | 0.1773 | |
CV | 33.4311 | 25.8243 | 18.5922 | 28.5372 | 21.3170 | 37.8809 | 15.8970 | 40.6748 | |
BAF | Mean | 0.1196 | 0.2485 | 0.3372 | 0.2788 | 0.3430 | 0.2466 | 0.4642 | 0.2274 |
Median | 0.1212 | 0.2530 | 0.3425 | 0.2861 | 0.3342 | 0.2235 | 0.4551 | 0.1742 | |
Min | 0.0626 | 0.1358 | 0.1328 | 0.0751 | 0.1480 | 0.0539 | 0.1482 | 0.1057 | |
Max | 0.1892 | 0.4795 | 0.4989 | 0.6422 | 0.9271 | 0.8743 | 1.0000 | 0.4642 | |
Var | 0.0016 | 0.0056 | 0.0051 | 0.0072 | 0.0072 | 0.0116 | 0.0123 | 0.0091 | |
SD | 0.0402 | 0.0746 | 0.0713 | 0.0847 | 0.0851 | 0.1078 | 0.1110 | 0.0954 | |
CV | 33.5891 | 30.0388 | 21.1411 | 30.3674 | 24.8037 | 43.7268 | 23.9244 | 41.9435 |
LCZ | LCZ 5 | LCZ 6 | LCZ 8 | LCZ 9 | |
---|---|---|---|---|---|
Runoff | Skewness | 0.5078 | −0.2780 | −0.5246 | 0.5363 |
SE of Skewness | 0.0821 | 0.0790 | 0.0687 | 0.1031 | |
Kurtosis | −0.3773 | 0.3530 | −0.2481 | −0.0356 | |
SE of Kurtosis | 0.1640 | 0.1578 | 0.1374 | 0.2057 | |
ETcoef | Skewness | −0.2837 | 0.5273 | 0.8144 | −0.4723 |
SE of Skewness | 0.0821 | 0.0790 | 0.0687 | 0.1031 | |
Kurtosis | −0.2482 | 0.1330 | 0.3595 | 0.3143 | |
SE of Kurtosis | 0.1640 | 0.1578 | 0.1374 | 0.2057 | |
BAF | Skewness | −0.1181 | 1.2043 | 1.1602 | 0.5385 |
SE of Skewness | 0.0821 | 0.0790 | 0.0687 | 0.1031 | |
Kurtosis | 0.1404 | 3.8164 | 1.8776 | 1.0636 | |
SE of Kurtosis | 0.1640 | 0.1578 | 0.1374 | 0.2059 |
LCZ | LCZ 2 | LCZ 3 | LCZ 4 | LCZ 5 | LCZ 6 | LCZ 8 | LCZ 9 | LCZ 10 |
---|---|---|---|---|---|---|---|---|
N | 41 | 35 | 38 | 887 | 959 | 1267 | 562 | 52 |
Mean | 0.9571 | 3.2275 | 1.6581 | 1.9319 | 2.6994 | 1.5425 | 3.3630 | 1.2814 |
Median | 0.8716 | 2.7713 | 1.4485 | 1.7180 | 2.3654 | 1.0604 | 3.0009 | 1.0367 |
Min | 0.1857 | 0.4522 | 0.0806 | 0.0502 | 0.0897 | 0.0165 | 0.0730 | 0.0397 |
Max | 2.2292 | 6.8566 | 4.9525 | 7.0350 | 14.4265 | 12.9549 | 14.4487 | 4.4768 |
Var | 0.2957 | 2.5864 | 1.4618 | 1.5546 | 3.0368 | 2.1303 | 4.7662 | 1.2275 |
SD | 0.5438 | 1.6082 | 1.2091 | 1.2468 | 1.7426 | 1.4595 | 2.1832 | 1.1079 |
CV | 56.8190 | 49.8297 | 72.9162 | 64.5388 | 64.5551 | 94.6226 | 64.9177 | 86.4611 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopp, J.; Frajer, J.; Novotná, M.; Preis, J.; Dolejš, M. Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. ISPRS Int. J. Geo-Inf. 2021, 10, 350. https://doi.org/10.3390/ijgi10050350
Kopp J, Frajer J, Novotná M, Preis J, Dolejš M. Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. ISPRS International Journal of Geo-Information. 2021; 10(5):350. https://doi.org/10.3390/ijgi10050350
Chicago/Turabian StyleKopp, Jan, Jindřich Frajer, Marie Novotná, Jiří Preis, and Martin Dolejš. 2021. "Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen" ISPRS International Journal of Geo-Information 10, no. 5: 350. https://doi.org/10.3390/ijgi10050350
APA StyleKopp, J., Frajer, J., Novotná, M., Preis, J., & Dolejš, M. (2021). Comparison of Ecohydrological and Climatological Zoning of the Cities: Case Study of the City of Pilsen. ISPRS International Journal of Geo-Information, 10(5), 350. https://doi.org/10.3390/ijgi10050350