Significance of Necroptosis in Cartilage Degeneration
<p>The graphical presentation of common initiation executes significantly different pathways of apoptosis and necroptosis.</p> "> Figure 2
<p>A comparison between healthy and degenerated cartilage in the knee joints.</p> "> Figure 3
<p>Typical molecular mechanisms of necroptosis: Necroptosis-mediated cell death is initiated by the activation of death receptors such as the TNF receptor, FAS, Toll-like receptor, or interferon receptor. These receptors activate RIPK1 or other RIP homologous interaction motif (RHIM) domain-containing proteins, which then interact with RIPK3 to form the necrosome complex. RIPK3 is activated through phosphorylation and subsequently phosphorylates MLKL. Phosphorylated MLKL oligomerizes and moves to the plasma membrane, triggering necroptosis. RIPK1, RIPK3, and MLKL are the core components of TNF-induced necroptosis. Additionally, RIPK3 can activate CaMK II, leading to the opening of the mPTP and necroptosis in cardiomyocytes. RIPK3 can also be activated by other RHIM domain-containing proteins like TRIF and DAI, expanding the mechanisms of RIPK3.</p> "> Figure 4
<p>Categorization of arthritis.</p> "> Figure 5
<p><b>Molecular mechanisms of necroptosis in OA and TMJOA</b>: In TMJOA, TNFα induces Syndecan 4 (SDC4), which amplifies TNFα signaling and triggers necroptosis, releasing cartilage-degrading enzymes and intensifying inflammation. Inhibiting RIPK3, pMLKL, and SDC4 protects cartilage and reduces inflammation. BMP7 induces necroptosis through RIP1, with BMP7 silencing reducing RIPK1-induced necroptosis and restoring ECM gene expression. High RIPK3 expression accelerates cartilage degradation, while RIPK3 inhibition by AZ-628 mitigates OA progression. TRADD inhibition with ICCB-19 blocks the RIPK1-TAK1 pathway, reducing inflammation and necroptosis. PLCγ1 inhibition, combined with apoptosis and necroptosis blockers, enhances cartilage matrix synthesis. RIPK1 knockdown disrupts the TRIF/MyD88-RIPK1-TRAF2 pathway, alleviating OA. AZD8330 activates cIAP1, inhibiting RIPK1-associated necrosis, and preserving cartilage.</p> "> Figure 6
<p><b>Molecular mechanisms of necroptosis in RA:</b> Nec-1 and amiloride inhibit necroptosis in RA chondrocytes by targeting the RIP1/RIP3/p-MLKL pathway, with ASIC1a-mediated upregulation reversible by PcTx-1 or Nec-1. IFN-γ mitigates necroptosis and inflammation by reducing MLKL and modulating inflammatory responses, despite its proinflammatory role. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis, reducing RIPK1 and MLKL levels. Irisin reduces necroptotic signaling and inflammation via the NF-kB and Nrf2/HO-1 pathways, downregulating TNF-α, MCP1, and HMGB1, promoting chondrocyte recovery.</p> "> Figure 7
<p><b>Molecular mechanisms of necroptosis in trauma:</b> Nec-1, a RIPK1 inhibitor, surpasses zVAD in protecting against trauma-induced necroptosis by reducing MLKL expression and PGE2 production. ROS are crucial in RIPK1-mediated necroptosis, which is more prominent in late-stage OA. Necroptosis markers RIPK3 and MLKL in OA cartilage are linked to PGE2 and NO release, and necrostatin-1 inhibits post-trauma necroptosis. In TMJOA, RIP1 inhibition reduces apoptosis and necroptosis. Mechanical stress induces necroptosis in chondrocytes, with Nec-1 and Z-VAD reducing TNF-α-induced ROS and necroptosis. D469del-COMP retention triggers necroptosis via ER stress, oxidative stress, and DNA damage.</p> ">
Abstract
:1. Introduction
2. Relationship between Necroptosis and Cartilage Degeneration
3. Typical Molecular Mechanisms and Proteins Involved in Regulating Necroptosis
4. Significance of Necroptosis to Cartilage Degeneration
4.1. Significance of Necroptosis-Mediated Cartilage Degeneration in Osteoarthritis and Temporomandibular Joint Osteoarthritis
4.2. Significance of Necroptosis-Mediated Cartilage Degeneration in RA
4.3. Significance of Necroptosis-Mediated Cartilage Degeneration in Trauma-Induced Arthritis
5. Interactions with Other Regulated Cell Death Pathways
6. Targeting Necroptosis in Cartilage Degeneration: Promising Inhibitors and Therapeutic Potential
6.1. RIPK1 Inhibitors
6.2. RIPK3 Inhibitors
6.3. MLKL Inhibitors
7. Conclusion and Future Direction of Preventing Necroptosis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- CHAPTER 8G—Chondrocytes: Pathogenesis of Rheumatoid Arthritis. In Rheumatoid Arthritis; Marc, C.H. (Ed.) Mosby: Philadelphia, PA, USA, 2009; pp. 151–162. [Google Scholar]
- Buckwalter, J.A.; Mankin, H.J.; Grodzinsky, A.J. Articular cartilage and osteoarthritis. Instr. Course Lect. -Am. Acad. Orthop. Surg. 2005, 54, 465. [Google Scholar]
- Stockwell, R.A. Biology of cartilage cells. 1979: CUP Archive.Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef]
- Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017, 5, 17014. [Google Scholar] [CrossRef] [PubMed]
- Hjelle, K.; Solheim, E.; Strand, T.; Muri, R.; Brittberg, M. Articular cartilage defects in 1,000 knee arthroscopies. Arthrosc. J. Arthrosc. Relat. Surg. 2002, 18, 730–734. [Google Scholar] [CrossRef]
- Charlier, E.; Relic, B.; Deroyer, C.; Malaise, O.; Neuville, S.; Collée, J.; Malaise, M.G.; De Seny, D. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 2146. [Google Scholar] [CrossRef]
- Tanvir, A.H.; Khaleque, A.; Kim, G.-H.; Yoo, W.-Y.; Kim, Y.-Y. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics 2024, 9, 230. [Google Scholar] [CrossRef]
- Arden, N.; Nevitt, M.C. Nevitt, Osteoarthritis: Epidemiology. Best Pract. Res. Clin. Rheumatol. 2006, 20, 3–25. [Google Scholar] [CrossRef]
- Goldring, M.B.; Culley, K.L.; Otero, M. Pathogenesis of osteoarthritis in General. In Cartilage: Volume 2: Pathophysiology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–25. [Google Scholar]
- Cook, A.D.; Pobjoy, J.; Steidl, S.; Dürr, M.; Braine, E.L.; Turner, A.L.; Lacey, D.C.; Hamilton, J.A. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res. Ther. 2012, 14, R199. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wang, Z.-G.; Zhang, Z.-Z.; Chen, K.; Lv, Z.-T.; Wang, Y.-T.; Cheng, P.; Sun, K.; Yang, Q.; Chen, A.-M. Decreased RIPK1 expression in chondrocytes alleviates osteoarthritis via the TRIF/MyD88-RIPK1-TRAF2 negative feedback loop. Aging 2019, 11, 8664–8680. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.; Michaelis, M.; Ladel, C.; Siebuhr, A.; Bihlet, A.; Andersen, J.; Guehring, H.; Christiansen, C.; Bay-Jensen, A.; Kraus, V. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: Lessons learned from failures and opportunities for the future. Osteoarthr. Cartil. 2016, 24, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Johnson, V.L.; Hunter, D.J. The epidemiology of osteoarthritis. Best Pr. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.A.; Hoy, D.; Buchbinder, R.; Mansournia, M.A.; Bettampadi, D.; Ashrafi-Asgarabad, A.; Almasi-Hashiani, A.; Smith, E.; Sepidarkish, M.; et al. Global, regional, and national burden of neck pain in the general population, 1990-2017: Systematic analysis of the Global Burden of Disease Study 2017. BMJ 2020, 68, m791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lane, N.; Shidara, K.; Wise, B. Osteoarthritis year in review 2016: Clinical. Osteoarthr. Cartil. 2017, 25, 209–215. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Hu, Y.; Heng, B.C.; Yang, Z.; Ouyang, H.; Lee, E.H.; Cao, T. Osteoarthritis and therapy. Arthritis Care Res. 2006, 55, 493–500. [Google Scholar] [CrossRef]
- Gong, Y.; Li, S.; Wu, J.; Zhang, T.; Fang, S.; Feng, D.; Luo, X.; Yuan, J.; Wu, Y.; Yan, X.; et al. Autophagy in the pathogenesis and therapeutic potential of post-traumatic osteoarthritis. Burn. Trauma 2023, 11, tkac060. [Google Scholar] [CrossRef]
- Pitsillides, A.A.; Beier, F. Cartilage biology in osteoarthritis—Lessons from developmental biology. Nat. Rev. Rheumatol. 2011, 7, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Qiu, J.; Ye, J.; Jiang, T.; Zhang, W.; Zheng, X.; Zhu, Z.; Chen, L.; Wang, Z.; Mi, S.; et al. AZ-628 delays osteoarthritis progression via inhibiting the TNF-α-induced chondrocyte necroptosis and regulating osteoclast formation. Int. Immunopharmacol. 2022, 111, 109085. [Google Scholar] [CrossRef]
- Stolberg-Stolberg, J.; Sambale, M.; Hansen, U.; Schäfer, A.; Raschke, M.; Bertrand, J.; Pap, T.; Sherwood, J. Cartilage Trauma Induces Necroptotic Chondrocyte Death and Expulsion of Cellular Contents. Int. J. Mol. Sci. 2020, 21, 4204. [Google Scholar] [CrossRef] [PubMed]
- Kosonen, J.P.; Eskelinen, A.S.A.; Orozco, G.A.; Nieminen, P.; Anderson, D.D.; Grodzinsky, A.J.; Korhonen, R.K.; Tanska, P. Injury-related cell death and proteoglycan loss in articular cartilage: Numerical model combining necrosis, reactive oxygen species, and inflammatory cytokines. PLoS Comput Biol. 2023, 19, e1010337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, J.; Wainwright, S.D.; Lauder, S.; Amos, N.; Hughes, C.E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 2006, 8, R187. [Google Scholar] [CrossRef]
- Linkermann, A.; Green, D.R. Necroptosis. New Engl. J. Med. 2014, 370, 455–465. [Google Scholar] [CrossRef]
- Clarke, P.G.H. Developmental cell death: Morphological diversity and multiple mechanisms. Anat. Embryol. 1990, 181, 195–213. [Google Scholar] [CrossRef]
- Kroemer, G.; Dallaporta, B.; Resche-Rigon, M. The Mitochondrial Death/Life Regulator in Apoptosis And Necrosis. Annu. Rev. Physiol. 1998, 60, 619–642. [Google Scholar] [CrossRef]
- Edinger, A.L.; Thompson, C.B. Death by design: Apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 2004, 16, 663–669. [Google Scholar] [CrossRef]
- Seo, J.-Y.; Kim, J.; Ha, K.-Y.; Kim, Y.-H.; Kim, S.-I.; Lim, J.-H.; Seo, K.B.; Kang, H.; Choi, S.; Khaleque, A. Autophagy in an extruded disc compared to the remaining disc after lumbar disc herniation in the same patient. Eur. Spine J. 2023, 33, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Negroni, A.; Cucchiara, S.; Stronati, L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediat. Inflamm. 2015, 2015, 250762. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta (BBA) Bioenerg. 2006, 1757, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature 2015, 517, 311–320. [Google Scholar] [CrossRef]
- Qiu, X.; Zhuang, M.; Lu, Z.; Liu, Z.; Cheng, D.; Zhu, C.; Liu, J. RIPK1 suppresses apoptosis mediated by TNF and caspase-3 in intervertebral discs. J. Transl. Med. 2019, 17, 135. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19, 107–120. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.V.; Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 2010, 11, 700–714. [Google Scholar] [CrossRef]
- Cho, Y.S.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K.-M. Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation. Cell 2009, 137, 1112–1123. [Google Scholar] [CrossRef]
- Zampieri, C.; Ganini, C.; Melino, G. The biochemistry of cell death. Cell Death Dis. 2020, 11, 259. [Google Scholar] [CrossRef]
- He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α. Cell 2009, 137, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Weinlich, R.; Oberst, A.; Beere, H.M. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 127–136. [Google Scholar] [CrossRef]
- Tomassy, G.S.; Dershowitz, L.B.; Arlotta, P. Diversity Matters: A Revised Guide to Myelination. Trends Cell Biol. 2015, 26, 135–147. [Google Scholar] [CrossRef]
- Galluzzi, L.; Kepp, O.; Kroemer, G. RIP Kinases Initiate Programmed Necrosis. J. Mol. Cell Biol. 2009, 1, 8–10. [Google Scholar] [CrossRef]
- Degterev, A.; Hitomi, J.; Germscheid, M.; Ch’En, I.L.; Korkina, O.; Teng, X.; Abbott, D.; Cuny, G.D.; Yuan, C.; Wagner, G.; et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 2008, 4, 313–321. [Google Scholar] [CrossRef]
- Dondelinger, Y.; Declercq, W.; Montessuit, S.; Roelandt, R.; Goncalves, A.; Bruggeman, I.; Hulpiau, P.; Weber, K.; Sehon, C.A.; Marquis, R.W.; et al. MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates. Cell Rep. 2014, 7, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Declercq, W.; Van Herreweghe, F.; Berghe, T.V. The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis. Sci. Signal. 2010, 3, re4. [Google Scholar] [CrossRef]
- Silke, J.; Rickard, J.A.; Gerlic, M. The diverse role of RIP kinases in necroptosis and inflammation. Nat. Immunol. 2015, 16, 689–697. [Google Scholar] [CrossRef]
- Moriwaki, K.; Chan, F.K.-M. RIP3: A molecular switch for necrosis and inflammation. Genes Dev. 2013, 27, 1640–1649. [Google Scholar] [CrossRef]
- Van der Kraan, P. and W. Van den Berg, Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Erickson, E.A.; Long, D.L. Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr. Opin. Rheumatol. 2008, 20, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Ofengeim, D.; Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 2013, 14, 727–736. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; et al. Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell 2012, 148, 213–227. [Google Scholar] [CrossRef]
- Verkleij, S.; Luijsterburg, P.; Bohnen, A.; Koes, B.; Bierma-Zeinstra, S. NSAIDs vs acetaminophen in knee and hip osteoarthritis: A systematic review regarding heterogeneity influencing the outcomes. Osteoarthr. Cartil. 2011, 19, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, P.; Guo, S.; Schrodi, S.J.; He, D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 809806. [Google Scholar] [CrossRef]
- Hong, J.-M.; Kim, S.-J.; Lee, S.-M. Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion. Toxicol. Appl. Pharmacol. 2016, 308, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chang, X.; Feng, J.; Yu, J.; Chen, G. TRADD Mediates RIPK1-Independent Necroptosis Induced by Tumor Necrosis Factor. Front. Cell Dev. Biol. 2020, 7, 393. [Google Scholar] [CrossRef]
- Vanlangenakker, N.; Berghe, T.V.; Bogaert, P.; Laukens, B.; Zobel, K.; Deshayes, K.; Vucic, D.; Fulda, S.; Vandenabeele, P.; Bertrand, M.J.M. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011, 18, 656–665. [Google Scholar] [CrossRef]
- Chang, L.; Kamata, H.; Solinas, G.; Luo, J.-L.; Maeda, S.; Venuprasad, K.; Liu, Y.-C.; Karin, M. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turno-ver. Cell 2006, 124, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Du, F.; Wang, X. TNF-α Induces Two Distinct Caspase-8 Activation Pathways. Cell 2008, 133, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ. 2021, 28, 1757–1772. [Google Scholar] [CrossRef]
- He, S.; Huang, S.; Shen, Z. Biomarkers for the detection of necroptosis. Cell. Mol. Life Sci. 2016, 73, 2177–2181. [Google Scholar] [CrossRef]
- Galluzzi, L.; Kepp, O.; Chan, F.K.; Kroemer, G. Necroptosis: Mechanisms and Relevance to Disease. Annu Rev. Pathol. 2017, 12, 103–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Micheau, O.; Tschopp, J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef]
- Dondelinger, Y.; Jouan-Lanhouet, S.; Divert, T.; Theatre, E.; Bertin, J.; Gough, P.J.; Giansanti, P.; Heck, A.J.; Dejardin, E.; Vandenabeele, P.; et al. NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Mol. Cell. 2015, 60, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.M.; Li, Y.Q.; Xu, K.Q.; Zhang, Y.Y.; Tan, S.M.; Zhang, Q.; Peng, J.; Luo, X.J. Jujuboside B promotes the death of acute leukemia cell in a RIPK1/RIPK3/MLKL pathway-dependent manner. Eur. J. Pharmacol. 2020, 876, 173041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Yu, D.; Zhu, X.; Liu, X.; Liao, J.; Li, S.; Wang, H. The MLKL kinase-like domain dimerization is an indispensable step of mammalian MLKL activation in necroptosis signaling. Cell Death Dis. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Sun, L.; Su, L.; Rizo, J.; Liu, L.; Wang, L.F.; Wang, F.S.; Wang, X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell. 2014, 54, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Mompeán, M.; Li, W.; Li, J.; Laage, S.; Siemer, A.B.; Bozkurt, G.; Wu, H.; McDermott, A.E. The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex. Cell 2018, 173, 1244–1253.e10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Feng, J.; Yu, J.; Chen, G. FKBP12 mediates necroptosis by initiating RIPK1–RIPK3–MLKL signal transduction in response to TNF receptor 1 ligation. J. Cell Sci. 2019, 132, jcs227777. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Aliagan, A.I.; Tombo, N.; Draeger, D.; Bopassa, J.C. RIP3 Translocation into Mitochondria Promotes Mitofilin Degradation to Increase Inflammation and Kidney Injury after Renal Ischemia–Reperfusion. Cells 2022, 11, 1894. [Google Scholar] [CrossRef]
- Wang, G.J.; Wang, H.X.; Yao, Y.S.; Guo, L.Y.; Liu, P. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy. Braz J. Med. Biol. Res. 2012, 45, 1045–1051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srivastava, A.; Tomar, B.; Sharma, P.; Kumari, S.; Prakash, S.; Rath, S.K.; Kulkarni, O.P.; Gupta, S.K.; Mulay, S.R. RIPK3-MLKL signaling activates mitochondrial CaMKII and drives intrarenal extracellular matrix production during CKD. Matrix Biol. 2022, 112, 72–89. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Kim, J.-H.; Hwang, B.-J.; Kang, J.-K.; Quan, M.; Kim, Y.-Y. Role of necroptosis in intervertebral disc degeneration. Int. J. Mol. Sci. 2023, 24, 15292. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Cui, M.; Jin, L.; Wang, Y.; Lv, F.; Liu, Y.; Zheng, W.; Shang, H.; Zhang, J.; et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress–induced myocardial necroptosis. Nat. Med. 2016, 22, 175–182. [Google Scholar] [CrossRef]
- Hu, H.; Wu, X.; Wu, G.; Nan, N.; Zhang, J.; Zhu, X.; Zhang, Y.; Shu, Z.; Liu, J.; Liu, X.; et al. RIP3-mediated necroptosis is regulated by inter-filament assembly of RIP homotypic interaction motif. Cell Death Differ. 2020, 28, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Feng, J.M.; Wang, Y.; Li, X.H.; Chen, X.X.; Su, Y.; Shen, Y.Y.; Chen, Y.; Xiong, B.; Yang, C.H.; et al. The B-RafV600E inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver inju-ry. Cell Death Dis. 2014, 5, e1278. [Google Scholar] [CrossRef]
- HE, F.; YU, S. Research Progress of Necroptosis on Cartilage Degeneration in TMJOA. J. Oral Sci. Res. 2021, 37, 15. [Google Scholar]
- Echtermeyer, F.; Bertrand, J.; Dreier, R.; Meinecke, I.; Neugebauer, K.; Fuerst, M.; Lee, Y.J.; Song, Y.W.; Herzog, C.; Theilmeier, G.; et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 2009, 15, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ma, Y.; Li, S.; Ren, H.; Liu, Q.; Chen, X.; Miao, H.; Ye, T.; Lu, Q.; Yang, Z.; et al. Necroptotic TNFα-Syndecan 4-TNFα Vicious Cycle as a Therapeutic Target for Preventing Temporomandibular Joint Osteoarthritis. J. Bone Miner Res. 2022, 37, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Van der Kraan, P.; Davidson, E.B.; van Den Berg, W. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing’s? Osteoarthr. Cartil. 2010, 18, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Duan, X.; Fu, X.; Jiang, Y.; Yang, P.; Cao, C.; Li, Q.; Zhang, J.; Hu, X.; Zhang, X.; et al. RIP1 Perturbation Induces Chondrocyte Necroptosis and Promotes Osteoarthritis Pathogenesis via Target-ing BMP7. Front. Cell Dev. Biol. 2021, 9, 638382. [Google Scholar] [CrossRef]
- Jeon, J.; Noh, H.-J.; Lee, H.; Park, H.-H.; Ha, Y.-J.; Park, S.H.; Lee, H.; Kim, S.-J.; Kang, H.C.; Eyun, S.-I.; et al. TRIM24-RIP3 axis perturbation accelerates osteoarthritis pathogenesis. Ann. Rheum. Dis. 2020, 79, 1635–1643. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, S.; Huang, Z.; Zhang, C.; Wang, H.; Li, B.; Li, H. Receptor-interacting protein 1 inhibition prevents mechanical stress-induced temporomandibular joint osteoarthritis by regulating apoptosis and later-stage necroptosis of chondrocytes. Arch. Oral. Biol. 2023, 147, 105612. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Guo, Z.; Zhang, J.; Hou, L.; Liang, S.; Lu, F.; Wang, G.; Xu, J.; Zhang, X.; Guo, F.; et al. Inhibition of TRADD ameliorates chondrocyte necroptosis and osteoarthritis by blocking RIPK1-TAK1 pathway and restoring autophagy. Cell Death Discov. 2023, 9, 109. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R.; Xu, Y.; Xia, C. PLCγ1 inhibition combined with inhibition of apoptosis and necroptosis increases cartilage matrix synthesis in IL-1β-treated rat chondrocytes. FEBS Open Bio. 2021, 11, 435–445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, X.; Peng, S.; Yan, Y.; Li, J.; Zhou, J.; Dai, H.; Xu, J. Alleviation of temporomandibular joint osteoarthritis by targeting RIPK1-mediated inflammatory signalling. J. Cell Mol. Med. 2024, 28, e17929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, J.; Zheng, X.; Cai, G.; Ye, J.; Jiang, T.; Chen, L.; Li, Z.; Gong, Y.; Hong, Z.; Chen, H. Upregulation of cIAP1 induced by AZD8330 alleviates osteoarthritis progression by inhibiting the RIP1-associated necrosis signaling pathway. Int. Immunopharmacol. 2023, 125, 111169. [Google Scholar] [CrossRef]
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Redlich, K.; Zwerina, J.; Aletaha, D.; Steiner, G.; Schett, G. Pro-Inflammatory Cytokines in Rheumatoid Arthritis: Pathogenetic and Therapeutic Aspects. Clin. Rev. Allergy Immunol. 2005, 28, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, R.; Champigny, G.; Bassilana, F.; Heurteaux, C.; Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 1997, 386, 173–177. [Google Scholar] [CrossRef]
- Deval, E.; Lingueglia, E. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology 2015, 94, 49–57. [Google Scholar] [CrossRef]
- Raymond, L.; Eck, S.; Hays, E.; Tomek, I.; Kantor, S.; Vincenti, M. RelA is required for IL-1β stimulation of Matrix Metalloproteinase-1 expression in chondrocytes. Osteoarthr. Cartil. 2007, 15, 431–441. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.-J.; Zhu, F.; Dai, B.-B.; Song, S.-J.; Wang, Z.-Q.; Feng, Y.-B.; Ge, J.-F.; Zhou, R.-P.; Chen, F.-H. Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis. Biochem. Biophys. Res. Commun. 2018, 504, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kwon, J.Y.; Kim, S.-Y.; Jung, K.; Cho, M.-L. Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci. Rep. 2017, 7, 10133. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, Q.; Xi, X.; Cao, X.; Wang, X.; Zhang, M.; Xu, Y.; Deng, T.; Deng, X.; Zhang, G.; et al. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis. Front. Immunol. 2023, 14, 1135014. [Google Scholar] [CrossRef]
- Raafat Ibrahim, R.; Shafik, N.M.; El-Esawy, R.O.; El-Sakaa, M.H.; Arakeeb, H.M.; El-Sharaby, R.M.; Ali, D.A.; Safwat El-Deeb, O.; Ragab Abd El-Khalik, S. The emerging role of irisin in experimentally induced arthritis: A recent update involving HMGB1/MCP1/Chitotriosidase I-mediated necroptosis. Redox Rep. 2022, 27, 21–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riegger, J.; Joos, H.; Palm, H.G.; Friemert, B.; Reichel, H.; Ignatius, A.; Brenner, R.E. Antioxidative therapy in an ex vivo human cartilage trauma-model: Attenuation of trauma-induced cell loss and ECM-destructive enzymes by N-acetyl cysteine. Osteoarthr. Cartil. 2016, 24, 2171–2180. [Google Scholar] [CrossRef]
- Riegger, J.; Joos, H.; Palm, H.G.; Friemert, B.; Reichel, H.; Ignatius, A.; Brenner, R.E. Striking a new path in reducing cartilage breakdown: Combination of antioxidative therapy and chon-droanabolic stimulation after blunt cartilage trauma. J. Cell. Mol. Med. 2018, 22, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Riegger, J.; Zimmermann, M.; Joos, H.; Kappe, T.; Brenner, R.E. Hypothermia Promotes Cell-Protective and Chondroprotective Effects After Blunt Cartilage Trauma. Am. J. Sports Med. 2017, 46, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Riegger, J.; Brenner, R.E. Evidence of necroptosis in osteoarthritic disease: Investigation of blunt mechanical impact as possible trigger in regulated necrosis. Cell Death Dis. 2019, 10, 683. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, S.; Li, T.; Jiang, Y.; Huang, Z.; Wen, J.; Cheng, W.; Li, H. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis. Osteoarthr. Cartil. 2017, 25, 1324–1334. [Google Scholar] [CrossRef]
- Coustry, F.; Posey, K.L.; Liu, P.; Alcorn, J.L.; Hecht, J.T. D469del-COMP Retention in Chondrocytes Stimulates Caspase-Independent Necroptosis. Am. J. Pathol. 2011, 180, 738–748. [Google Scholar] [CrossRef]
- Liu, X.; Xie, X.; Ren, Y.; Shao, Z.; Zhang, N.; Li, L.; Ding, X.; Zhang, L. The role of necroptosis in disease and treatment. Medcomm 2021, 2, 730–755. [Google Scholar] [CrossRef] [PubMed]
- Dannappel, M.; Vlantis, K.; Kumari, S.; Polykratis, A.; Kim, C.; Wachsmuth, L.; Eftychi, C.; Lin, J.; Corona, T.; Hermance, N.; et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 2014, 513, 90–94. [Google Scholar] [CrossRef]
- Dai, W.; Cheng, J.; Leng, X.; Hu, X.; Ao, Y. The potential role of necroptosis in clinical diseases (Review). Int. J. Mol. Med. 2021, 47, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Falcieri, E.; Battistelli, M. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res. 2022, 389, 159–170. [Google Scholar] [CrossRef]
- Cao, L.; Mu, W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol. Res. 2020, 163, 105297. [Google Scholar] [CrossRef]
- Berger, S.B.; Harris, P.; Nagilla, R.; Kasparcova, V.; Hoffman, S.; Swift, B.; Dare, L.; Schaeffer, M.; Capriotti, C.; Ouellette, M.; et al. Characterization of GSK’963: A structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov. 2015, 1, 15009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.; Zhang, Y.; Bai, G.; Li, H. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis. 2011, 2, e115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, J.; Amin, P.; Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 2018, 20, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhong, B.; Zhao, L.; Hou, Y.; Wang, X.; Chen, X. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors Necrostatin-1 (Nec-1) and 7-Cl-O-Nec-1 (Nec-1s) are potent inhibitors of NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free. Radic. Biol. Med. 2021, 173, 64–69. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Grootjans, S.; Callewaert, N.; Takahashi, N. Necrostatin-1 blocks both RIPK1 and IDO: Consequences for the study of cell death in experimental disease models. Cell Death Differ. 2013, 20, 185–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosenbaum, D.M.; Degterev, A.; David, J.; Rosenbaum, P.S.; Roth, S.; Grotta, J.C.; Cuny, G.D.; Yuan, J.; Savitz, S.I. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 2010, 88, 1569–1576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, P.A.; Berger, S.B.; Jeong, J.U.; Nagilla, R.; Bandyopadhyay, D.; Campobasso, N.; Capriotti, C.A.; Cox, J.A.; Dare, L.; Dong, X.; et al. Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases. J. Med. Chem. 2017, 60, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, P.S.; Lepsik, M.; Hajduch, M. Aurora kinase inhibitors: Progress towards the clinic. Investig. New Drugs 2012, 30, 2411–2432. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, X.-M.; Zhao, W.-J.; Ban, X.-X.; Li, Y.; Huang, Y.-X.; Wan, H.; He, Y.; Liao, L.-S.; Shang, L.; et al. Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases. Int. J. Biol. Sci. 2023, 19, 658–674. [Google Scholar] [CrossRef]
- Tummers, B.; Green, D.R. Mechanisms of TNF-independent RIPK3-mediated cell death. Biochem. J. 2022, 479, 2049–2062. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiang, Y.; Liu, S.; Li, C.; Dong, J.; Kong, X.; Ji, X.; Cheng, X.; Zhang, L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov. 2024, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Coornaert, I.; Hofmans, S.; Devisscher, L.; Augustyns, K.; Van Der Veken, P.; De Meyer, G.R.; Martinet, W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin. Drug Discov. 2018, 13, 477–488. [Google Scholar] [CrossRef]
- Mandal, P.; Berger, S.B.; Pillay, S.; Moriwaki, K.; Huang, C.; Guo, H.; Lich, J.D.; Finger, J.; Kasparcova, V.; Votta, B.; et al. RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Mol. Cell 2014, 56, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-H.; Park, S.-Y.; Mah, S.; Park, J.-H.; Hong, S.-S.; Hong, S.; Kim, Y.-S. HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Exp. Mol. Med. 2018, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.X.; Guo, D.; Wang, F.C.; Ding, W.Y. Necrosulfonamide (NSA) protects intervertebral disc degeneration via necroptosis and apoptosis inhibition. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2683–2691. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, Y.; Ren, P.; Sun, S.; Wu, M. Necrosulfonamide Ameliorates Neurological Impairment in Spinal Cord Injury by Improving Antioxidative Capacity. Front. Pharmacol. 2020, 10, 1538. [Google Scholar] [CrossRef]
- Ueda, S.; Chen-Yoshikawa, T.; Mineura, K.; Yamanashi, K.; Oda, H.; Yokoyama, Y.; Ikeda, M.; Tokuno, J.; Kayawake, H.; Yamagishi, H.; et al. Protective Effects of Necrosulfonamide on Ischemia-Reperfusion Injury in Rat Lung. J. Heart Lung Transplant. 2020, 39, S353. [Google Scholar] [CrossRef]
- Jhun, J.; Na, H.S.; Cho, K.-H.; Kim, J.; Moon, Y.-M.; Lee, S.Y.; Lee, J.S.; Lee, A.R.; Kim, S.J.; Cho, M.-L.; et al. A green-lipped mussel reduces pain behavior and chondrocyte inflammation and attenuated experimental osteoarthritis progression. PLoS ONE 2021, 16, e0259130. [Google Scholar] [CrossRef]
Study Focus | Key Findings | Experimental Model | Reference |
---|---|---|---|
TRIF/MyD88-RIPK1-TRAF2 feedback loop and its involvement in necroptosis | Decreased RIPK1 expression modulates the TRIF/MyD88-RIPK1-TRAF2 feedback loop to reduce inflammation. | OA models: RIPK1 knockdown reduced cartilage damage and inflammation. | [14] |
BMP7 and its involvement in necroptosis | BMP7, induced by RIPK1, drives chondrocyte necroptosis and cartilage damage. | OA models: overexpression of BMP7 led to increased necroptosis and cartilage loss. | [86] |
TRIM24-RIP3 and its involvement in necroptosis | TRIM24-RIP3 axis regulates OA progression; AZ-628 reduces OA severity. | Mouse model: AZ-628 treatment significantly reduced OA severity and cartilage damage. | [87] |
SDC4 and its involvement in necroptosis | TNF-α activates SDC4, which amplifies inflammation via RIPK3 and pMLKL, leading to necroptosis and cartilage degradation. | Unilateral arthritis condition (UAC) model: targeting RIPK3, pMLKL, and SDC4 reduced necroptosis and protected cartilage. | [88] |
RIPK1-TAK1 pathway and its involvement in necroptosis | ICCB-19 inhibits TRADD, blocks the RIPK1-TAK1 pathway, and restores autophagy. | DMM mouse model: ICCB-19 reduced necroptosis, inflammation, and cartilage degeneration. | [89] |
PLCγ1and its involvement in necroptosis | U73122 inhibits PLCγ1 and, combined with apoptosis and necroptosis inhibitors, enhances cartilage matrix synthesis. | IL-1β-treated rat chondrocytes: U73122 improved cartilage matrix synthesis and reduced damage. | [90] |
RIPK1 and its involvement in necroptosis | RIPK1 inhibition protects TMJOA cartilage by suppressing inflammatory signaling and necroptosis. | TMJOA models: RIPK1 inhibition reduced cartilage degradation and inflammatory factors. | [91] |
cIAP1 and its involvement in necroptosis | AZD8330 activates cIAP1 and inhibits RIP1-associated necrosis pathway, preventing chondrocyte necroptosis. | DMM mouse model: AZD8330 significantly reduced necroptosis markers and preserved cartilage integrity. | [92] |
Study Focus | Key Findings | Experimental Model | Reference |
---|---|---|---|
ASICs and their involvement in necroptosis | ASIC1a mediates necroptosis through the RIPK1/RIPK3/p-MLKL pathway in RA cartilage injury. | Adjuvant arthritis (AA) rat model: Nec-1 and amiloride inhibit acid-induced chondrocyte necroptosis in RA, reducing necroptosis markers (RIPK1, RIPK3, p-MLKL, PGAM5) and inflammatory cytokines (TNF-α, IL-1β) to protect cartilage. ASIC1a binds RIPK1 upon acidosis, confirmed by immunofluorescence. Both inhibitors alleviate cartilage injury, with RIPK1 and RIPK3 upregulation via ASIC1a reversible by PcTx-1 or Nec-1. | [98] |
IFN-γ and their involvement in necroptosis | IFN-γ attenuates necroptosis by decreasing MLKL production. IFN-γ reduces inflammation by inhibiting necroptosis, despite its known proinflammatory role. | IFN-γ reduces cartilage damage in CIA mice and RA patients by downregulating cFLIPL and inhibiting necroptosis mediators (RIPK1, RIPK3, MLKL). Its absence worsens inflammation via STAT3 activation and increases TNF-α/IL-17 levels. | [99] |
KW2449 and their involvement in necroptosis | KW2449 ameliorates CIA by inhibiting RIPK1-dependent necroptosis. | KW2449 effectively reduces joint swelling, arthritis scores, and plasma cytokines compared to MTX in CIA rats. It inhibits RIPK1-mediated necroptosis, reducing RIPK1 and MLKL levels, and enhances cell viability. | [100] |
Irisin and their involvement in necroptosis | Irisin reduces necroptotic signaling and inflammation in RA. | Downregulated TNF-α, MCP1, and HMGB1; anti-inflammatory and antioxidant effects through NF-kB and Nrf2/HO-1 pathways. | [101] |
Study Focus | Key Findings | Experimental Model | Reference |
---|---|---|---|
Role of necroptosis in PTA and OA | Increased necroptosis post-trauma in OA cartilage. Necroptosis causes inflammation via cellular content release. RIPK1 inhibitor necrostatin-1 reduces necroptosis. Release of DAMPs perpetuates inflammation. | In human and murine cartilage models, RIPK3 and MLKL markers linked to PGE2 and NO release, consistent necroptosis marker expression in murine models, and variable marker expression in human samples due to trauma and fixation timing. | [25] |
Necroptosis in late-stage TMJOA and effects of RIP1 inhibition | Significant chondrocyte death post-mechanical force. Increased Caspase-8 at 4 days, reduced at 7 days. Increased RIP3 at 7 days. | Mechanical force application on TMJOA, TUNEL staining for chondrocyte death, Caspase-8 and RIP3 expression analysis, decreased apoptosis and necroptosis in F + siRIP1 group. | [88] |
Role of necroptosis in OA, and oxidative stress | Nec-1 protects against trauma-induced necroptosis, ROS initiates RIPK1-mediated necroptosis, Nec-1 and NAC attenuate necroptosis | Human cartilage subjected to trauma, reduced MLKL gene expression and PGE2 production, attenuation of TNF/CHX-induced p-MLKL-positive cells, potential increase in necroptosis in later OA stages. | [105] |
Role of necroptosis in TMJOA and mechanisms involving calcium and ROS | Mechanical stress induces chondrocyte necroptosis, RIP1 peaks and normalizes within 7 days, Caspase-8 blockade did not increase necroptosis, Nec-1 and Z-VAD reduce TNF-α-induced necroptosis. | Mechanical stress on chondrocytes, TNF-α peaks 4 days post-force, combined Nec-1 and Z-VAD treatment mitigated ROS and necroptosis, normalization of RIP1, RIP3, and Caspase-8 levels by 7 days. | [106] |
Effects of D469del-COM induces necroptosis in chondrocytes | D469del-COMP retention induces necroptosis, increased Chop and Gadd34 expression, high Nox4 and Ero1 levels increased the ROS and DNA damage, as indicated by Gadd genes and H2AX. | After 4 days mRNA expression, 5 days without inducing agent, there was stimulation of ER stress markers, increased ROS and oxidative stress, presence of tAIF, and absence of activated caspases | [107] |
Name of Inhibitors | Mechanism of Action | Potential Benefits | Side Effects | Clinical Trial |
---|---|---|---|---|
Necrostatins (Nec-1, Nec-7, Nec-1s) | RIPK1 inhibitors prevent necroptosis by blocking RIPK1-RIPK3 complex formation | Effective in inhibiting necroptosis; Nec-1s lacks indoleamine 2,3-dioxygenase (IDO) pathway inhibition | Nec-1 inhibits IDO; potential off-target effects | Clinical trials ongoing, particularly in cancer therapy |
GSK’963, GSK’872 | GSK’963 targets RIPK1, GSK’872 inhibits RIPK3 | Fewer off-target effects, promising in inflammatory disease models | Long-term outcomes unclear; GSK’872 induces apoptosis at high doses | Ongoing clinical trials for necroptosis-related diseases |
RIPA-56 | Selective RIPK1 inhibitor, similar to necrostatins | Prevents disease progression in multiple sclerosis models | Potential cytotoxicity concerns | Clinical trials ongoing for necroptosis-related conditions |
Furo[2,3-d]pyrimidines | Selective RIPK1 inhibitors | Potent anti-inflammatory effects; potential in cartilage degeneration | More research needed for cartilage-related pathologies | Under investigation in necroptosis-related conditions |
VX-680, MK-0457 | Inhibitors of Aurora kinase, involved in cell division and necroptosis | Effective in cancer models, leukemia, and ovarian cancer | Strong cardiac toxicity, cytotoxic effects | Clinical trials suspended (MK-0457); further research needed |
Dabrafenib, HS-1371, AZ-628 | RIPK1/RIPK3 inhibitors | Reduce necroptosis and protect against liver injury | Off-target kinase effects, including skin reactions and cancer risks | Clinical trials ongoing for ischemic injury and related conditions |
U73122 | Modulate cell death pathways, U73122 is a PLC inhibitor | Potential in modulating cell death and calcium signaling | Complex effects on cell death pathways | Further exploration needed |
DCC2036 | DCC-2036 directly inhibits RIPK1 and RIPK3 kinase activities (R53) | Potential in reducing chondrocyte damage and inflammation | Off-target effects in rapidly dividing cells | Clinical trials ongoing for cartilage degeneration and arthritis |
PcTx-1, amiloride | Inhibitors of ASIC and sodium channels | Reduce inflammation and necroptosis | Amiloride may cause electrolyte imbalances | Requires further research |
ICCB-19 | Target oxidative stress and TRADD | Reduce oxidative stress and necroptosis | Prolonged ROS inhibition may impair normal signaling | Not yet advanced to human clinical trials |
TUDCA | Anti-necroptotic bile acid derivative | Well-tolerated, effective in protecting cells from various stressors | Minimal side effects | Ongoing trials, need specific trials for necroptosis-related conditions |
Hydroxyanisole, DPI | Antioxidants inhibit NADPH oxidase and reduce ROS | May reduce oxidative stress and apoptosis | Potential disruption of mitochondrial function | Undergoing phase II/III trials for oxidative stress-related conditions |
GLM | RIPK1, RIPK3, and MLKL inhibitors | Reduced the expression of RIPK1, RIPK3, MLKL, and anti-inflammatory response | Not known | Requires further research |
Thioredoxin-1 (Trx1) | MLKL inhibitors | MLKL disulfide bond formation and polymerization | Not known | Requires further research |
KW2449 | Phosphorylated RIPK1 | Potential in reducing chondrocyte damage and inflammation | Not known | Requires further research |
Zharp-99 | Inhibitor of RIPK3 kinase activity | Significantly ameliorates TNF-induced systemic inflammatory response syndrome (SIRS) in mouse model. | Not known | The starting point for development, requires further investigation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaleque, M.A.; Kim, J.-H.; Tanvir, M.A.H.; Park, J.-B.; Kim, Y.-Y. Significance of Necroptosis in Cartilage Degeneration. Biomolecules 2024, 14, 1192. https://doi.org/10.3390/biom14091192
Khaleque MA, Kim J-H, Tanvir MAH, Park J-B, Kim Y-Y. Significance of Necroptosis in Cartilage Degeneration. Biomolecules. 2024; 14(9):1192. https://doi.org/10.3390/biom14091192
Chicago/Turabian StyleKhaleque, Md Abdul, Jea-Hoon Kim, Md Amit Hasan Tanvir, Jong-Beom Park, and Young-Yul Kim. 2024. "Significance of Necroptosis in Cartilage Degeneration" Biomolecules 14, no. 9: 1192. https://doi.org/10.3390/biom14091192
APA StyleKhaleque, M. A., Kim, J. -H., Tanvir, M. A. H., Park, J. -B., & Kim, Y. -Y. (2024). Significance of Necroptosis in Cartilage Degeneration. Biomolecules, 14(9), 1192. https://doi.org/10.3390/biom14091192