Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease
Abstract
:1. Introduction
2. IGFBP-1 in Physiology
2.1. IGFBP-1 Protein Structure and Function
2.2. IGFBP-1 Regulation
2.3. IGFBP-1 as a Marker of Hepatic Insulin Action
3. IGFBP-1 in Cardiovascular Diseases
3.1. IGFBP-1 as a Predictor of Cardiovascular Disease
3.2. Acute Coronary Syndrome
3.3. Heart Failure
3.4. Cerebrovascular Disease
3.5. Peripheral Vascular Disease
4. Relationship Between IGFBP-1 and Other Cardiometabolic Markers
5. Pathogenesis of Atherosclerosis
6. Concluding Comments
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, M.; Flatt, T.; Aguilaniu, H. Reproduction, fat metabolism, and life span: What is the connection? Cell Metab. 2013, 17, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Anversa, P. The insulin-like growth factor I system: Physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem. Pharmacol. 2015, 93, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Gautam, S.; Delafontaine, P.; Sukhanov, S. IGF-1 and cardiovascular disease. Growth Horm. IGF Res. 2019, 45, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Mozaffarian, D.; Pischon, T. Addressing the perfect storm: Biomarkers in obesity and pathophysiology of cardiometabolic risk. Clin. Chem. 2018, 64, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Denley, A.; Cosgrove, L.J.; Booker, G.W.; Wallace, J.C.; Forbes, B.E. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005, 16, 421–439. [Google Scholar] [CrossRef]
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef]
- Bach, L.A. IGF-binding proteins. J. Mol. Endocrinol. 2018, 61, T11–T28. [Google Scholar] [CrossRef]
- Jones, J.I.; Busby, W.H.; Wright, G.; Smith, C.E.; Kimack, N.M.; Clemmons, D.R. Identification of the sites of phosphorylation in insulin-like growth factor binding protein-1. Regulation of its affinity by phosphorylation of serine 101. J. Biol. Chem. 1993, 268, 1125–1131. [Google Scholar] [CrossRef]
- Jones, J.I.; Gockerman, A.; Busby, W.H.; Wright, G.; Clemmons, D.R. Insulin-like growth factor binding protein-1 stimulates cell migration and binds to the α5β1 integrin by means of its Arg-Gly-Asp sequence. Proc. Natl. Acad. Sci. USA 1993, 90, 10553–10557. [Google Scholar] [CrossRef]
- Gleeson, L.M.; Chakraborty, C.; McKinnon, T.; Lala, P.K. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through α5β1 integrin via mitogen-activated protein kinase pathway. J. Clin. Endocrinol. Metab. 2001, 86, 2484–2493. [Google Scholar] [CrossRef]
- Baxter, R.C.; Martin, J.L. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity labeling. Proc. Natl. Acad. Sci. USA 1989, 86, 6898–6902. [Google Scholar] [CrossRef] [PubMed]
- Guler, H.-P.; Zapf, J.; Schmid, C.; Froesch, E.R. Insulin-like growth factors I and II in healthy man. Estimations of half lives and production rates. Acta Endocrinol. 1989, 121, 753–758. [Google Scholar]
- Chen, A.W.; Biggar, K.; Nygard, K.; Singal, S.; Zhao, T.; Li, C.; Nathanielsz, P.W.; Jansson, T.; Gupta, M.B. IGFBP-1 hyperphosphorylation in response to nutrient deprivation is mediated by activation of protein kinase Calpha (PKCalpha). Mol. Cell. Endocrinol. 2021, 536, 111400. [Google Scholar] [CrossRef]
- Kakadia, J.H.; Khalid, M.U.; Heinemann, I.U.; Han, V.K. AMPK-mTORC1 pathway mediates hepatic IGFBP-1 phosphorylation in glucose deprivation: A potential molecular mechanism of hypoglycemia-induced impaired fetal growth. J. Mol. Endocrinol. 2024, 72, e230137. [Google Scholar] [CrossRef] [PubMed]
- Siddals, K.W.; Westwood, M.; Gibson, J.M.; White, A. IGF-binding protein-1 inhibits IGF effects on adipocyte function: Implications for insulin-like actions at the adipocyte. J. Endocrinol. 2002, 174, 289–297. [Google Scholar] [CrossRef]
- Clemmons, D.R.; Gardner, L.E. A factor contained in plasma is required for IGF binding protein-1 to potentiate the effect of IGF-I on smooth muscle cell DNA synthesis. J. Cell. Physiol. 1990, 145, 129–135. [Google Scholar] [CrossRef]
- Wang, J.; Shafqat, J.; Hall, K.; Ståhlberg, M.; Wivall-Helleryd, I.L.; Bouzakri, K.; Zierath, J.R.; Brismar, K.; Jörnvall, H.; Lewitt, M.S. Specific cleavage of insulin-like growth factor-binding protein-1 by a novel protease activity. Cell. Mol. Life Sci. 2006, 63, 2405–2414. [Google Scholar] [CrossRef]
- Brandt, K.; Wang, J.; Lundell, K.; Stahlberg, M.; Horn, H.; Ehrenborg, E.; Hall, K.; Jornvall, H.; Lewitt, M. IGFBP-1 protease activity and IGFBP-1 fragments in a patient with multiple myeloma. Growth Horm. IGF Res. 2009, 19, 507–512. [Google Scholar] [CrossRef]
- Baxter, R.C.; Cowell, C.T. Diurnal rhythm of growth hormone-independent binding protein for insulin-like growth factors in human plasma. J. Clin. Endocrinol. Metab. 1987, 65, 432–440. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Baxter, R.C. Insulin-like growth factor-binding protein-1: A role in glucose counterregulation? Mol. Cell. Endocrinol. 1991, 79, C147–C152. [Google Scholar] [CrossRef]
- Lee, P.D.K.; Conover, C.A.; Powell, D.R. Regulation and function of insulin-like growth factor-binding protein-1. Proc. Soc. Exp. Biol. Med. 1993, 204, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Suikkari, A.-M.; Koivisto, V.A.; Koistinen, R.; Seppälä, M.; Yki-Järvinen, H. Dose-response characteristics for suppression of low molecular weight plasma insulin-like growth factor-binding protein by insulin. J. Clin. Endocrinol. Metab. 1989, 68, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Conover, C.A.; Lee, P.D.K.; Kanaley, J.A.; Clarkson, J.T.; Jenson, M.D. Insulin regulation of insulin-like growth factor binding protein-1 in obese and nonobese humans. J. Clin. Endocrinol. Metab. 1992, 74, 1355–1360. [Google Scholar] [PubMed]
- Hilding, A.; Möller, C.; Hall, K.E. Glucagon and GLP-1 stimulate IGFBP-1 secretion in Hep G2 cells without effect on IGFBP-1 mRNA. Growth Horm. IGF Res. 2002, 12, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Hilding, A.; Brismar, K.; Thorén, M.; Hall, K. Glucagon stimulates insulin-like growth factor binding protein-1 secretion in healthy subjects, patients with pituitary insufficiency, and patients with insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1993, 77, 1142–1147. [Google Scholar]
- Fernqvist-Forbes, E.; Hilding, A.; Ekberg, K.; Brismar, K. Influence of circulating epinephrine and norepinephrine on insulin-like growth factor binding protein-1 in humans. J. Clin. Endocrinol. Metab. 1997, 82, 2677–2680. [Google Scholar] [CrossRef]
- Conover, C.A.; Divertie, G.D.; Lee, P.D.K. Cortisol increases plasma insulin-like growth factor binding protein-1 in humans. Acta Endocrinol. 1993, 128, 140–143. [Google Scholar] [CrossRef]
- Lang, C.H.; Nystrom, G.J.; Frost, R.A. Regulation of IGF binding protein-1 in Hep G2 cells by cytokines and reactive oxygen species. Am. J. Physiol. 1999, 276, G719–G727. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Mesotten, D.; Delhanty, P.J.; Vanderhoydonc, F.; Hardman, K.V.; Weekers, F.; Baxter, R.C.; Van den Berghe, G. Regulation of insulin-like growth factor binding protein-1 during protracted critical illness. J. Clin. Endocrinol. Metab. 2002, 87, 5516–5523. [Google Scholar] [CrossRef]
- Clemmons, D.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. N. Am. 2012, 41, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, U.J.; Ho, K.K. Modulation of growth hormone action by sex steroids. Clin. Endocrinol. 2006, 65, 413–422. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.C.; McCusker, R.H.; Strle, K.; Johnson, R.W.; Dantzer, R.; Kelley, K.W. Regulation of IGF-I function by proinflammatory cytokines: At the interface of immunology and endocrinology. Cell. Immunol. 2008, 252, 91–110. [Google Scholar] [CrossRef] [PubMed]
- Halldin, M.; Brismar, K.; Fahlstadius, P.; Vikstrom, M.; de Faire, U.; Hellenius, M.L. The metabolic syndrome and ECG detected left ventricular hypertrophy--influences from IGF-1 and IGF-binding protein-1. PLoS ONE 2014, 9, e108872. [Google Scholar] [CrossRef] [PubMed]
- Unden, A.L.; Elofsson, S.; Brismar, K. Gender differences in the relation of insulin-like growth factor binding protein-1 to cardiovascular risk factors: A population-based study. Clin. Endocrinol. 2005, 63, 94–102. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Hilding, A.; Brismar, K.; Efendic, S.; Ostenson, C.G.; Hall, K. Insulin-like growth factor-binding protein-1 and abdominal obesity in the development of type 2 diabetes in women. Eur. J. Endocrinol. 2010, 163, 233–242. [Google Scholar] [CrossRef]
- Loos, R.J.; Verhaeghe, J.; De Zegher, F.; Beunen, G.; Derom, C.; Fagard, R.; Mathieu, C.; Vlietinck, R. Markers for cardiovascular disease in monozygotic twins discordant for the use of third-generation oral contraceptives. J. Hum. Hypertens. 2003, 17, 481–485. [Google Scholar] [CrossRef]
- Cardim, H.J.; Lopes, C.M.; Giannella-Neto, D.; da Fonseca, A.M.; Pinotti, J.A. The insulin-like growth factor-I system and hormone replacement therapy. Fertil. Steril. 2001, 75, 282–287. [Google Scholar] [CrossRef]
- Paassilta, M.; Karjalainen, A.; Kervinen, K.; Savolainen, M.J.; Heikkinen, J.; Backstrom, A.C.; Kesaniemi, Y.A. Insulin-like growth factor binding protein-1 (IGFBP-1) and IGF-I during oral and transdermal estrogen replacement therapy: Relation to lipoprotein(a) levels. Atherosclerosis 2000, 149, 157–162. [Google Scholar] [CrossRef]
- Heald, A.H.; Sharma, R.; Anderson, S.G.; Vyas, A.; Siddals, K.; Patel, J.; Bhatnagar, D.; Prabharkaran, D.; Rudenski, A.; Hughes, E.; et al. Dietary intake and the insulin-like growth factor system: Effects of migration in two related populations in India and Britain with markedly different dietary intake. Public Health Nutr. 2005, 8, 620–627. [Google Scholar] [CrossRef]
- Kaplan, R.C.; Buzkova, P.; Cappola, A.R.; Strickler, H.D.; McGinn, A.P.; Mercer, L.D.; Arnold, A.M.; Pollak, M.N.; Newman, A.B. Decline in circulating insulin-like growth factors and mortality in older adults: Cardiovascular health study all-stars study. J. Clin. Endocrinol. Metab. 2012, 97, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Mogul, H.R.; Marshall, M.; Frey, M.; Burke, H.B.; Wynn, P.S.; Wilker, S.; Southern, A.L.; Gambert, S.R. Insulin-like growth factor-binding protein-1 as a marker for hyperinsulinemia in obese menopausal women. J. Clin. Endocrinol. Metab. 1996, 81, 4492–4495. [Google Scholar] [PubMed]
- Weaver, J.U.; Holly, J.M.P.; Kopelman, P.G.; Noonan, K.; Giadom, C.G.; White, N.; Virdee, S.; Wass, J.A.H. Decreased sex hormone binding globulin (SHBG) and insulin-like growth factor binding protein (IGFBP-1) in extreme obesity. Clin. Endocrinol. 1990, 33, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Lewitt, M.S.; Hilding, A.; Ostenson, C.G.; Efendic, S.; Brismar, K.; Hall, K. Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 2008, 51, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Lennon, L.; Morris, R.W. Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch. Int. Med. 2005, 165, 2644–2650. [Google Scholar] [CrossRef]
- Blackard, W.G.; Nelson, N.C. Portal and peripheral vein immunoreactive insulin concentrations before and after glucose infusion. Diabetes 1970, 19, 302–306. [Google Scholar] [CrossRef]
- Bergman, R.N.; Piccinini, F.; Kabir, M.; Ader, M. Novel aspects of the role of the liver in carbohydrate metabolism. Metabolism 2019, 99, 119–125. [Google Scholar] [CrossRef]
- Yki-Järvinen, H.; Makimattila, S.; Utriainen, T.; Rutanen, E.M. Portal insulin concentrations rather than insulin sensitivity regulate serum sex hormone-binding globulin and insulin-like growth factor binding protein 1 in vivo. J. Clin. Endocrinol. Metab. 1995, 80, 3227–3232. [Google Scholar]
- Mohamed-Ali, V.; Pinkney, J.H.; Panahloo, A.; Cwyfan-Hughes, S.; Holly, J.M.; Yudkin, J.S. Insulin-like growth factor binding protein-1 in NIDDM: Relationship with the insulin resistance syndrome. Clin. Endocrinol. 1999, 50, 221–228. [Google Scholar] [CrossRef]
- Kamoda, T.; Saitoh, H.; Inudoh, M.; Miyazaki, K.; Matsui, A. The serum levels of proinsulin and their relationship with IGFBP-1 in obese children. Diabetes Obes. Metab. 2006, 8, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Kotronen, A.; Yki-Jarvinen, H. Fatty liver: A novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kotronen, A.; Lewitt, M.; Hall, K.; Brismar, K.; Yki-Jarvinen, H. Insulin-like growth factor binding protein 1 as a novel specific marker of hepatic insulin sensitivity. J. Clin. Endocrinol. Metab. 2008, 93, 4867–4872. [Google Scholar] [CrossRef] [PubMed]
- Legato, M.J.; Gelzer, A.; Goland, R.; Ebner, S.A.; Rajan, S.; Villagra, V.; Kosowski, M. Gender-specific care of the patient with diabetes: Review and recommendations. Gend. Med. 2006, 3, 131–158. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Lehmkuhl, E.; Weickert, M.O. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin. Res. Cardiol. 2006, 95, 136–147. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 2018, 7, 14. [Google Scholar] [CrossRef]
- Harrela, M.; Qiao, Q.; Koistinen, R.; Tuomilehto, J.; Nissinen, A.; Seppala, M.; Leinonen, P. High serum insulin-like growth factor binding protein-1 is associated with increased cardiovascular mortality in elderly men. Horm. Metab. Res. 2002, 34, 144–149. [Google Scholar] [CrossRef]
- Yeap, B.B.; Chubb, S.A.; McCaul, K.A.; Ho, K.K.; Hankey, G.J.; Norman, P.E.; Flicker, L. Associations of IGF1 and IGFBPs 1 and 3 with all-cause and cardiovascular mortality in older men: The Health In Men Study. Eur. J. Endocrinol. 2011, 164, 715–723. [Google Scholar] [CrossRef]
- Laughlin, G.A.; Barrett-Connor, E.; Criqui, M.H.; Kritz-Silverstein, D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: The Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 2004, 89, 114–120. [Google Scholar] [CrossRef]
- Fischer, F.; Schulte, H.; Mohan, S.; Tataru, M.C.; Kohler, E.; Assmann, G.; von Eckardstein, A. Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin. Endocrinol. 2004, 61, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Juul, A.; Scheike, T.; Davidsen, M.; Gyllenborg, J.; Jorgensen, T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: A population-based case-control study. Circulation 2002, 106, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Mukama, T.; Srour, B.; Johnson, T.; Katzke, V.; Kaaks, R. IGF-1 and Risk of Morbidity and Mortality From Cancer, Cardiovascular Diseases, and All Causes in EPIC-Heidelberg. J. Clin. Endocrinol. Metab. 2023, 108, e1092–e1105. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.A.; Stolk, R.P.; Pols, H.A.; Grobbee, D.E.; Lamberts, S.W. Serum total IGF-I, free IGF-I, and IGFBP-1 levels in an elderly population: Relation to cardiovascular risk factors and disease. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Borai, A.; Livingstone, C.; Ghayour-Mobarhan, M.; Abuosa, A.; Shafi, S.; Mehta, S.; Heidari, A.; Emadzadeh, A.; Wark, G.; Ferns, G. Serum insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation status in subjects with and without ischaemic heart disease. Atherosclerosis 2010, 208, 593–598. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.; Jin, P.; Hu, J.; Zhou, Q. Role of IGFBP1 in the senescence of vascular endothelial cells and severity of aging-related coronary atherosclerosis. Int. J. Mol. Med. 2019, 44, 1921–1931. [Google Scholar] [CrossRef]
- Lee, W.L.; Chen, J.W.; Ting, C.T.; Lin, S.J.; Wang, P.H. Changes of the insulin-like growth factor I system during acute myocardial infarction: Implications on left ventricular remodeling. J. Clin. Endocrinol. Metab. 1999, 84, 1575–1581. [Google Scholar] [CrossRef]
- Zheng, W.; Lai, Y.; Jin, P.; Gu, W.; Zhou, Q.; Wu, X. Association of circulating IGFBP1 level with the severity of coronary artery lesions in patients with unstable angina. Dis. Markers 2017, 2017, 1917291. [Google Scholar] [CrossRef]
- Ruotolo, G.; Bavenholm, P.; Brismar, K.; Efendic, S.; Ericsson, C.G.; de Faire, U.; Nilsson, J.; Hamsten, A. Serum insulin-like growth factor-I level is independently associated with coronary artery disease progression in young male survivors of myocardial infarction: Beneficial effects of bezafibrate treatment. J. Am. Coll. Cardiol. 2000, 35, 647–654. [Google Scholar] [CrossRef]
- Ritsinger, V.; Brismar, K.; Mellbin, L.; Nasman, P.; Ryden, L.; Soderberg, S.; Norhammar, A. Elevated levels of insulin-like growth factor-binding protein 1 predict outcome after acute myocardial infarction: A long-term follow-up of the glucose tolerance in patients with acute myocardial infarction (GAMI) cohort. Diab. Vasc. Dis. Res. 2018, 15, 387–395. [Google Scholar] [CrossRef]
- Janszky, I.; Hallqvist, J.; Ljung, R.; Hammar, N. Insulin-like growth factor binding protein-1 is a long-term predictor of heart failure in survivors of a first acute myocardial infarction and population controls. Int. J. Cardiol. 2010, 138, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wallander, M.; Norhammar, A.; Malmberg, K.; Ohrvik, J.; Ryden, L.; Brismar, K. IGF binding protein 1 predicts cardiovascular morbidity and mortality in patients with acute myocardial infarction and type 2 diabetes. Diabetes Care 2007, 30, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.C.; McGinn, A.P.; Pollak, M.N.; Kuller, L.; Strickler, H.D.; Rohan, T.E.; Cappola, A.R.; Xue, X.; Psaty, B.M. High insulinlike growth factor binding protein 1 level predicts incident congestive heart failure in the elderly. Am. Heart J. 2008, 155, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Sama, I.E.; Woolley, R.J.; Nauta, J.F.; Romaine, S.P.R.; Tromp, J.; Ter Maaten, J.M.; van der Meer, P.; Lam, C.S.P.; Samani, N.J.; Ng, L.L.; et al. A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure. Eur. J. Heart Fail. 2020, 22, 821–833. [Google Scholar] [CrossRef]
- Saeki, H.; Hamada, M.; Hiwada, K. Circulating levels of insulin-like growth factor-1 and its binding proteins in patients with hypertrophic cardiomyopathy. Circ. J. 2002, 66, 639–644. [Google Scholar] [CrossRef]
- Brankovic, M.; Akkerhuis, K.M.; Mouthaan, H.; Brugts, J.J.; Manintveld, O.C.; van Ramshorst, J.; Germans, T.; Umans, V.; Boersma, E.; Kardys, I. Cardiometabolic biomarkers and their temporal patterns predict poor outcome in chronic heart failure (Bio-SHiFT Study). J. Clin. Endocrinol. Metab. 2018, 103, 3954–3964. [Google Scholar] [CrossRef]
- Klimczak-Tomaniak, D.; de Bakker, M.; Bouwens, E.; Akkerhuis, K.M.; Baart, S.; Rizopoulos, D.; Mouthaan, H.; van Ramshorst, J.; Germans, T.; Constantinescu, A.; et al. Dynamic personalized risk prediction in chronic heart failure patients: A longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study). Sci. Rep. 2022, 12, 2795. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Butler, J.; Filippatos, G.; Januzzi, J.L.; Sumin, M.; Zwick, M.; Saadati, M.; Pocock, S.J.; Sattar, N.; et al. Effect of empagliflozin on circulating proteomics in heart failure: Mechanistic insights into the EMPEROR programme. Eur. Heart J. 2022, 43, 4991–5002. [Google Scholar] [CrossRef]
- Staerk, L.; Preis, S.R.; Lin, H.; Lubitz, S.A.; Ellinor, P.T.; Levy, D.; Benjamin, E.J.; Trinquart, L. Protein biomarkers and risk of atrial fibrillation: The FHS. Circ. Arrhythmia Electrophysiol. 2020, 13, e007607. [Google Scholar] [CrossRef]
- Santema, B.T.; Arita, V.A.; Sama, I.E.; Kloosterman, M.; van den Berg, M.P.; Nienhuis, H.L.A.; Van Gelder, I.C.; van der Meer, P.; Zannad, F.; Metra, M.; et al. Pathophysiological pathways in patients with heart failure and atrial fibrillation. Cardiovasc. Res. 2022, 118, 2478–2487. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.F.; Borlaug, B.A.; Roger, V.L.; Mirzoyev, S.A.; Rodeheffer, R.J.; Chirinos, J.A.; Redfield, M.M. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction a community-based study. Circ. Heart Fail. 2012, 5, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Westenbrink, B.D.; Ouwerkerk, W.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J. Am. Coll. Cardiol. 2018, 72, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Faxén, U.L.; Hage, C.; Benson, L.; Zabarovskaja, S.; Andreasson, A.; Donal, E.; Daubert, J.C.; Linde, C.; Brismar, K.; Lund, L.H. HFpEF and HFrEF display different phenotypes as assessed by IGF-1 and IGFBP-1. J. Card. Fail. 2017, 23, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; Silvestrini, A.; Calarco, R.; Favuzzi, A.M.R.; Vergani, E.; Nicolazzi, M.A.; d’Abate, C.; Meucci, E.; Mordente, A.; Landolfi, R.; et al. Anabolic hormones deficiencies in heart failure With preserved ejection fraction: Prevalence and impact on antioxidants Levels and Myocardial Dysfunction. Front. Endocrinol. 2020, 11, 281. [Google Scholar] [CrossRef]
- Haddad, F.; Ataam, J.A.; Amsallem, M.; Cauwenberghs, N.; Kuznetsova, T.; Rosenberg-Hasson, Y.; Zamanian, R.T.; Karakikes, I.; Horne, B.D.; Muhlestein, J.B.; et al. Insulin growth factor phenotypes in heart failure with preserved ejection fraction, an INSPIRE registry and CATHGEN study. J. Card. Fail. 2022, 28, 935–946. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Arnott, C.; Beale, A.L.; Chandramouli, C.; Hilfiker-Kleiner, D.; Kaye, D.M.; Ky, B.; Santema, B.T.; Sliwa, K.; Voors, A.A. Sex differences in heart failure. Eur. Heart J. 2019, 40, 3859–3868c. [Google Scholar] [CrossRef]
- Chandramouli, C.; Ting, T.W.; Tromp, J.; Agarwal, A.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.S.; Beussink-Nelson, L.; Lagerstrom Fermer, M.; et al. Sex differences in proteomic correlates of coronary microvascular dysfunction among patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 2022, 24, 681–684. [Google Scholar] [CrossRef]
- Gluckman, P.; Klempt, N.; Guan, J.; Mallard, C.; Sirimanne, E.; Dragunow, M.; Klempt, M.; Singh, K.; Williams, C.; Nokolics, K. A role for IGF-I in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem. Biophys. Res. Commun. 1992, 182, 593–599. [Google Scholar] [CrossRef]
- Boquist, S.; Ruotolo, G.; Skoglund-Andersson, C.; Tang, R.; Bjorkegren, J.; Bond, M.G.; de Faire, U.; Brismar, K.; Hamsten, A. Correlation of serum IGF-I and IGFBP-1 and -3 to cardiovascular risk indicators and early carotid atherosclerosis in healthy middle-aged men. Clin. Endocrinol. 2008, 68, 51–58. [Google Scholar] [CrossRef]
- van den Beld, A.W.; Bots, M.L.; Janssen, J.A.; Pols, H.A.; Lamberts, S.W.; Grobbee, D.E. Endogenous hormones and carotid atherosclerosis in elderly men. Am. J. Epidemiol. 2003, 157, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Åberg, D.; Gadd, G.; Jood, K.; Redfors, P.; Stanne, T.M.; Isgaard, J.; Blennow, K.; Zetterberg, H.; Jern, C.; Aberg, N.D.; et al. Serum IGFBP-1 concentration as a predictor of outcome after ischemic stroke-A prospective observational study. Int. J. Mol. Sci. 2023, 24, 9120. [Google Scholar] [CrossRef] [PubMed]
- Saber, H.; Himali, J.J.; Beiser, A.S.; Shoamanesh, A.; Pikula, A.; Roubenoff, R.; Romero, J.R.; Kase, C.S.; Vasan, R.S.; Seshadri, S. Serum insulin-like growth factor 1 and the risk of ischemic stroke. Stroke 2017, 48, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Schwab, S.; Spranger, M.; Krempien, S.; Hacke, W.; Bettendorf, M. Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 1997, 28, 1744–1748. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhu, H.; Zhu, L.; Fang, Z.; Fan, Y.; Liu, C.; Tian, Y.; Chen, Y.; Tang, W.; Ren, Z.; et al. A comprehensive contribution of genetic variations of the insulin-like growth factor 1 signalling pathway to stroke susceptibility. Atherosclerosis 2020, 296, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, S.K.; Park, H.J.; Chung, J.H.; Chun, J.; Yun, D.H.; Kim, Y.O. Polymorphisms of IGFI contribute to the development of ischemic stroke. Exp. Ther. Med. 2012, 3, 93–98. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Li, X.; Peng, J.; Han, S.; Zhang, R.; Xu, Y.; Nie, S. Insulin-like growth factor-1 receptor polymorphism and ischemic stroke: A case–control study in Chinese population. Acta Neurol. Scand. 2008, 118, 333–338. [Google Scholar] [CrossRef]
- Wang, J.; Razuvaev, A.; Folkersen, L.; Hedin, E.; Roy, J.; Brismar, K.; Hedin, U. The expression of IGFs and IGF binding proteins in human carotid atherosclerosis, and the possible role of IGF binding protein-1 in the regulation of smooth muscle cell proliferation. Atherosclerosis 2012, 220, 102–109. [Google Scholar] [CrossRef]
- Yeap, B.B.; Chubb, S.A.; McCaul, K.A.; Flicker, L.; Ho, K.K.; Golledge, J.; Hankey, G.J.; Norman, P.E. Associations of IGF1 and its binding proteins with abdominal aortic aneurysm and aortic diameter in older men. Eur. J. Endocrinol. 2012, 166, 191–197. [Google Scholar] [CrossRef]
- Panek, B.; Gacko, M.; Palka, J. Metalloproteinases, insulin-like growth factor-I and its binding proteins in aortic aneurysm. Int. J. Exp. Pathol. 2004, 85, 159–164. [Google Scholar] [CrossRef]
- Ramos-Mozo, P.; Rodriguez, C.; Pastor-Vargas, C.; Blanco-Colio, L.M.; Martinez-Gonzalez, J.; Meilhac, O.; Michel, J.B.; Vega de Ceniga, M.; Egido, J.; Martin-Ventura, J.L. Plasma profiling by a protein array approach identifies IGFBP-1 as a novel biomarker of abdominal aortic aneurysm. Atherosclerosis 2012, 221, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Resanovic, I.; Gluvic, Z.; Zaric, B.; Sudar-Milovanovic, E.; Vucic, V.; Arsic, A.; Nedic, O.; Sunderic, M.; Gligorijevic, N.; Milacic, D.; et al. Effect of hyperbaric oxygen therapy on fatty acid composition and insulin-like growth factor binding protein 1 in adult type 1 diabetes mellitus patients: A pilot study. Can. J. Diabetes 2020, 44, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Bousvarou, M.D.; Kostara, C.E.; Papakonstantinou, E.J.; Salamou, E.; Guzman, E. Insulin resistance and cardiovascular disease. J. Int. Med. Res. 2023, 51, 3000605231164548. [Google Scholar] [CrossRef] [PubMed]
- Heald, A.H.; Cruickshank, J.K.; Riste, L.K.; Cade, J.E.; Anderson, S.; Greenhalgh, A.; Sampayo, J.; Taylor, W.; Fraser, W.; White, A.; et al. Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations. Diabetologia 2001, 44, 333–339. [Google Scholar] [CrossRef]
- Bhangoo, A.; Gupta, R.; Shelov, S.P.; Carey, D.E.; Accacha, S.; Fennoy, I.; Altshuler, L.; Lowell, B.; Rapaport, R.; Rosenfeld, W.; et al. Fasting serum IGFBP-1 as a marker of insulin resistance in diverse school age groups. Front. Endocrinol. 2022, 13, 840361. [Google Scholar] [CrossRef]
- Katz, L.E.; Gralewski, K.A.; Abrams, P.; Brar, P.C.; Gallagher, P.R.; Lipman, T.H.; Brooks, L.J.; Koren, D. Insulin-like growth factor-I and insulin-like growth factor binding protein-1 are related to cardiovascular disease biomarkers in obese adolescents. Pediatr. Diabetes 2016, 17, 77–86. [Google Scholar] [CrossRef]
- Ko, J.M.; Park, H.K.; Yang, S.; Kim, E.Y.; Chung, S.C.; Hwang, I.T. Association between insulin-like growth factor binding protein-2 levels and cardiovascular risk factors in Korean children. Endocr. J. 2012, 59, 335–343. [Google Scholar] [CrossRef]
- Levitsky, L.L.; Drews, K.L.; Haymond, M.; Glubitosi-Klug, R.A.; Levitt Katz, L.E.; Mititelu, M.; Tamborlane, W.; Tryggestad, J.B.; Weinstock, R.S.; Group, T.S. The obesity paradox: Retinopathy, obesity, and circulating risk markers in youth with type 2 diabetes in the TODAY Study. J. Diabetes Complicat. 2022, 36, 108259. [Google Scholar] [CrossRef]
- Karczewska-Kupczewska, M.; Nikolajuk, A.; Stefanowicz, M.; Matulewicz, N.; Arnoriaga-Rodriguez, M.; Fernandez-Real, J.M.; Straczkowski, M. Novel laboratory index, based on fasting blood parameters, accurately reflects insulin sensitivity. J. Clin. Endocrinol. Metab. 2021, 106, e5208–e5221. [Google Scholar] [CrossRef]
- Harrela, M.; Koistinen, R.; Tuomilehto, J.; Nissinen, A.; Seppala, M. Low serum insulin-like growth factor-binding protein-1 is associated with an unfavourable cardiovascular risk profile in elderly men. Ann. Med. 2000, 32, 424–428. [Google Scholar] [CrossRef]
- Heald, A.H.; Anderson, S.G.; Ivison, F.; Laing, I.; Gibson, J.M.; Cruickshank, K. C-reactive protein and the insulin-like growth factor (IGF)-system in relation to risk of cardiovascular disease in different ethnic groups. Atherosclerosis 2003, 170, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, K.; Heald, A.H.; Siddals, K.W.; Sandhu, M.S.; Dunger, D.B.; Gibson, J.M.; Wareham, N.J. The impact of abnormalities in IGF and inflammatory systems on the metabolic syndrome. Diabetes Care 2004, 27, 2682–2688. [Google Scholar] [CrossRef] [PubMed]
- Brismar, K.; Hilding, A.; Ansurudeen, I.; Flyvbjerg, A.; Frystyk, J.; Ostenson, C.G. Adiponectin, IGFBP-1 and -2 are independent predictors in forecasting prediabetes and type 2 diabetes. Front. Endocrinol. 2022, 13, 1092307. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.M.; Westwood, M.; Young, R.J.; White, A. Reduced insulin-like growth factor binding protein-1 (IGFBP-1) levels correlate with increased cardiovascular risk in non-insulin dependent diabetes mellitus (NIDDM). J. Clin. Endocrinol. Metab. 1996, 81, 860–863. [Google Scholar] [CrossRef]
- Rajpathak, S.N.; McGinn, A.P.; Strickler, H.D.; Rohan, T.E.; Pollak, M.; Cappola, A.R.; Kuller, L.; Xue, X.; Newman, A.B.; Strotmeyer, E.S.; et al. Insulin-like growth factor-(IGF)-axis, inflammation, and glucose intolerance among older adults. Growth Horm. IGF Res. 2008, 18, 166–173. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Farahi, L.; Sinha, S.K.; Lusis, A.J. Roles of macrophages in atherogenesis. Front. Pharmacol. 2021, 12, 785220. [Google Scholar] [CrossRef]
- Ezzat, V.A.; Duncan, E.R.; Wheatcroft, S.B.; Kearney, M.T. The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes Obes. Metab. 2008, 10, 198–211. [Google Scholar] [CrossRef]
- Childs, B.G.; Zhang, C.; Shuja, F.; Sturmlechner, I.; Trewartha, S.; Fierro Velasco, R.; Baker, D.; Li, H.; van Deursen, J.M. Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis. Nat. Aging 2021, 1, 698–714. [Google Scholar] [CrossRef]
- Rajwani, A.; Ezzat, V.; Smith, J.; Yuldasheva, N.Y.; Duncan, E.R.; Gage, M.; Cubbon, R.M.; Kahn, M.B.; Imrie, H.; Abbas, A.; et al. Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis. Diabetes 2012, 61, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Gridley, T. Notch signaling in the vasculature. Curr. Top. Dev. Biol. 2010, 92, 277–309. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zou, Y.; Zhou, Q.; Huang, L.; Gong, H.; Sun, A.; Tateno, K.; Katsube, K.; Radtke, F.; Ge, J.; et al. Role of Jagged1 in arterial lesions after vascular injury. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2000–2006. [Google Scholar] [CrossRef]
- Cui, H.; Yang, Y.; Li, X.; Zong, W.; Li, Q. Resveratrol regulates paracrine function of cardiac microvascular endothelial cells under hypoxia/reoxygenation condition. Pharmazie 2022, 77, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bar, R.S.; Boes, M.; Clemmons, D.R.; Busby, W.H.; Sandra, A.; Dake, B.L.; Booth, B.A. Insulin differentially alters transcapillary movement of intravascular IGFBP-1, IGFBP-2 and endothelial cell IGF-binding proteins in the rat heart. Endocrinology 1990, 127, 497–499. [Google Scholar] [CrossRef]
- Maddux, B.A.; Chan, A.; De Filippis, E.A.; Mandarino, L.J.; Goldfine, I.D. IGF-binding protein-1 levels are related to insulin-mediated glucose disposal and are a potential serum marker of insulin resistance. Diabetes Care 2006, 29, 1535–1537. [Google Scholar] [CrossRef]
- Chisalita, S.I.; Dahlstrom, U.; Arnqvist, H.J.; Alehagen, U. Proinsulin and IGFBP-1 predicts mortality in an elderly population. Int. J. Cardiol. 2014, 174, 260–267. [Google Scholar] [CrossRef]
- Hjortebjerg, R.; Tarnow, L.; Jorsal, A.; Parving, H.H.; Rossing, P.; Bjerre, M.; Frystyk, J. IGFBP-4 Fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy. J. Clin. Endocrinol. Metab. 2015, 100, 3032–3040. [Google Scholar] [CrossRef]
- Holly, J.M.P.; Biernacka, K.; Perks, C.M. The neglected insulin: IGF-II, a metabolic Regulator with Implications for diabetes, obesity, and cancer. Cells 2019, 8, 1207. [Google Scholar] [CrossRef]
- Kalme, T.; Seppala, M.; Qiao, Q.; Koistinen, R.; Nissinen, A.; Harrela, M.; Loukovaara, M.; Leinonen, P.; Tuomilehto, J. Sex hormone-binding globulin and insulin-like growth factor-binding protein-1 as indicators of metabolic syndrome, cardiovascular risk, and mortality in elderly men. J. Clin. Endocrinol. Metab. 2005, 90, 1550–1556. [Google Scholar] [CrossRef]
- Dencker, M.; Gardinger, Y.; Bjorgell, O.; Hlebowicz, J. Effect of food intake on 92 biomarkers for cardiovascular disease. PLoS ONE 2017, 12, e0178656. [Google Scholar] [CrossRef] [PubMed]
- Petersson, U.; Ostgren, C.J.; Brudin, L.; Nilsson, P.M. A consultation-based method is equal to SCORE and an extensive laboratory-based method in predicting risk of future cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 536–540. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Marini, M.A.; Grembiale, A.; Lugara, M.; Andreozzi, F.; Sciacqua, A.; Hribal, M.L.; Lauro, R.; Perticone, F.; Sesti, G. Differences in cardiovascular risk profile based on relationship between post-load plasma glucose and fasting plasma levels. Diabetes Metab. Res. Rev. 2009, 25, 351–356. [Google Scholar] [CrossRef]
- Succurro, E.; Marini, M.A.; Arturi, F.; Grembiale, A.; Lugara, M.; Andreozzi, F.; Sciacqua, A.; Lauro, R.; Hribal, M.L.; Perticone, F.; et al. Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 2009, 207, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.C.; Strizich, G.; Aneke-Nash, C.; Dominguez-Islas, C.; Buzkova, P.; Strickler, H.; Rohan, T.; Pollak, M.; Kuller, L.; Kizer, J.R.; et al. Insulinlike growth factor binding protein-1 and ghrelin predict health outcomes among older adults: Cardiovascular Health Study Cohort. J. Clin. Endocrinol. Metab. 2017, 102, 267–278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewitt, M.S.; Boyd, G.W. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Biomolecules 2024, 14, 1475. https://doi.org/10.3390/biom14111475
Lewitt MS, Boyd GW. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Biomolecules. 2024; 14(11):1475. https://doi.org/10.3390/biom14111475
Chicago/Turabian StyleLewitt, Moira S., and Gary W. Boyd. 2024. "Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease" Biomolecules 14, no. 11: 1475. https://doi.org/10.3390/biom14111475
APA StyleLewitt, M. S., & Boyd, G. W. (2024). Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Biomolecules, 14(11), 1475. https://doi.org/10.3390/biom14111475