A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells
<p>Comparison of reaction products predicted by PROXIMAL, Way2Drug, and BioTransformer. Five flavonoids were selected to represent the following subclasses: flavonol (quercetin), flavanone (naringenin), flavone (apigenin and luteolin), and isoflavone (genistein). Coverage was calculated with respect to the total number of distinct reaction products collectively predicted by the three tools. Full (100%) coverage by a tool for a reaction type indicates that the tool predicted all metabolites predicted by the other two tools for the same reaction type.</p> "> Figure 2
<p>Structural similarity and predicted reaction similarity of flavonoids. (<b>A</b>) Multidimensional scaling (MDS) map for 15 flavonoid aglycones, where the compounds’ coordinates were assigned based on a matrix of relative pairwise distances representing structural dissimilarities calculated using the SIMCOMP2 tool. Symbols and colors indicate the compounds’ subclasses. (<b>B</b>) MDS map where the compounds’ coordinates were assigned based on their predicted reaction patterns. (<b>C</b>) Correlation between structural and reaction dissimilarities of flavonoids. Solid and dashed lines show the best fit linear regression model and 95% confidence intervals, respectively.</p> "> Figure 3
<p>Distribution of predicted flavonoid metabolizing enzymes across different bacterial phyla. The color scale corresponds to the number of matching enzymes in the phylum. The number of matches for a phylum was normalized by the number of strains included in the model for the phylum. Each row corresponds to a different combination of phylum and type of reaction.</p> "> Figure 4
<p>Concentrations of 3-(4-hydroxyphenyl) propionic acid (3,4-HPPA) in naringenin-treated bacterial monocultures. (<b>A</b>) <span class="html-italic">F. plautii</span>, (<b>B</b>) <span class="html-italic">E. coli</span>, (<b>C</b>) <span class="html-italic">P. lactis</span>, (<b>D</b>) <span class="html-italic">L. plantarum</span>, (<b>E</b>) wild-type <span class="html-italic">B. subtilis</span>, and (<b>F</b>) mutant <span class="html-italic">B. subtilis</span> lacking chalcone synthase (Δ<span class="html-italic">bcsA</span>). Data shown are means ± SD (N = 3 biological replicates). Asterisks (*) indicate a significant difference (<span class="html-italic">p</span> < 0.05) compared to the vehicle control (0 µM naringenin) at the corresponding time point.</p> "> Figure 5
<p>Conversion of naringenin to phloretin and phloretin-(hydroxyphenyl-13C6) to 13C6-3,4-HPPA in fecal culture. (<b>A</b>) Proposed pathway for naringenin metabolism via C-ring cleavage in the fecal culture. The dotted arrow shows direct conversion of naringenin to phloretin via a flavanone-cleaving reduction of the C-ring. (<b>B</b>) Concentration of naringenin in the fecal culture at different times after naringenin supplementation. An asterisk (*) indicates a significant difference compared to the initial timepoint at 12 h. (<span class="html-italic">p</span> < 0.05). (<b>C</b>) Phloretin-(hydroxyphenyl-13C6) and (<b>D</b>) 13C6-3,4-HPPA concentrations at different times after 100 µM phloretin-(hydroxyphenyl-13C6) supplementation. Data shown are means ± SD (N = 3 biological replicates). An asterisk (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) compared to the vehicle control (0 µM) at the corresponding time point.</p> "> Figure 6
<p>Induction of AhR-responsive genes by naringenin (Nar) and naringenin chalcone (Chalc). (<b>A</b>) CYP1A1, (<b>B</b>) CYP1B1, and (<b>C</b>) UGT1A1 in Caco-2 cells. (<b>D</b>) Cyp1a1, (<b>E</b>) Cyp1b1, and (<b>F</b>) Ugt1a1 in YAMC cells. (<b>G</b>–<b>I</b>) Induction of CYP1A1, CYP1B1, and UGT1A1 in Caco-2 cells by 3,4-HPPA alone and in combination with 10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The cells were treated with varying concentrations of the indicated compounds for 24 h. Gene (mRNA) expression was determined by real-time PCR. The data shown are means ± SD (N = 3 biological replicates). For panels (<b>A</b>–<b>F</b>), asterisks indicate a significant difference (*, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01) compared to vehicle control (DMSO), whereas hashes (#) indicate a significant difference (#, <span class="html-italic">p</span> < 0.05; ##, <span class="html-italic">p</span> < 0.01) between naringenin and naringenin chalcone at the same concentration. For panels G–I, an asterisk (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) compared to TCDD, which was used as the positive control for AhR-dependent induction of gene expression.</p> "> Figure 7
<p>Loss of naringenin ligand binding and immunomodulatory activity upon metabolism to 3,4-HPPA. Concentration-dependent quenching of tryptophan fluorescence in the ligand-binding domain (LBD) of NR4A1 with (<b>A</b>) naringenin and (<b>B</b>) 3,4-HPPA. (<b>C</b>) IL-8 concentration in conditioned medium following IL-1β stimulation of Caco-2 cells treated with naringenin, 3,4-HPPA, and phloretin. The data shown in panel (C) are means ± SD (N = 3 biological replicates). An asterisk (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) compared to the positive control.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines, Bacterial Strains, Culture Conditions, and Reagents
2.2. Bacterial Monoculture
2.3. Facal Culture
2.4. Metabolite Extraction
2.5. Targeted Analysis of Naringenin Metabolites
2.6. AhR Activity Assay
2.7. NR4A1/2 Binding Assay
2.8. Quantitative Real-Time Reverse Transcriptase PCR
2.9. Cytokine Measurement
2.10. Murine Intestinal Microbiota Model
2.11. Model Prediction of Flavonoid Metabolism
2.12. Prediction of Naringenin C-Ring Cleavage Enzymes
3. Results
3.1. Enzyme Promiscuity-Based Model Links Gut Microbiota Composition and Potential for Metabolizing Structurally Diverse Flavonoids
3.2. Gut Bacterial Metabolism of Flavonoids Is Predicted to Vary by Molecular Structure and Taxa
3.3. Monoculture Experiments Confirm Naringenin Metabolism by Selected Gut Bacteria
3.4. Fecal Microbiota Metabolizes Naringenin Through C-Ring Cleavage
3.5. Naringenin and Its Metabolites Elicit Different Biological Activities
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef]
- Safe, S.; Jin, U.H.; Morpurgo, B.; Abudayyeh, A.; Singh, M.; Tjalkens, R.B. Nuclear receptor 4A (NR4A) family—Orphans no more. J. Steroid Biochem. Mol. Biol. 2016, 157, 48–60. [Google Scholar] [CrossRef]
- Jin, U.H.; Park, H.; Li, X.; Davidson, L.A.; Allred, C.; Patil, B.; Jayaprakasha, G.; Orr, A.A.; Mao, L.; Chapkin, R.S.; et al. Structure-Dependent Modulation of Aryl Hydrocarbon Receptor-Mediated Activities by Flavonoids. Toxicol. Sci. 2018, 164, 205–217. [Google Scholar] [CrossRef]
- Avior, Y.; Bomze, D.; Ramon, O.; Nahmias, Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct. 2013, 4, 831–844. [Google Scholar] [CrossRef]
- Havlik, J.; Marinello, V.; Gardyne, A.; Hou, M.; Mullen, W.; Morrison, D.J.; Preston, T.; Combet, E.; Edwards, C.A. Dietary Fibres Differentially Impact on the Production of Phenolic Acids from Rutin in an In Vitro Fermentation Model of the Human Gut Microbiota. Nutrients 2020, 12, 1557. [Google Scholar] [CrossRef]
- Kampa, M.; Alexaki, V.I.; Notas, G.; Nifli, A.P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004, 6, R63–R74. [Google Scholar] [CrossRef]
- Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004, 36, 829–837. [Google Scholar] [CrossRef]
- Jenner, A.M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005, 38, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Day, A.J.; Canada, F.J.; Diaz, J.C.; Kroon, P.A.; McLauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000, 468, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Duenas, M.; Munoz-Gonzalez, I.; Cueva, C.; Jimenez-Giron, A.; Sanchez-Patan, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolome, B. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015, 2015, 850902. [Google Scholar] [CrossRef]
- Kim, M.; Kim, N.; Han, J. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1. J. Agric. Food Chem. 2014, 62, 12377–12383. [Google Scholar] [CrossRef]
- Braune, A.; Blaut, M. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ. Microbiol. 2011, 13, 482–494. [Google Scholar] [CrossRef]
- Possemiers, S.; Rabot, S.; Espin, J.C.; Bruneau, A.; Philippe, C.; Gonzalez-Sarrias, A.; Heyerick, A.; Tomas-Barberan, F.A.; De Keukeleire, D.; Verstraete, W. Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J. Nutr. 2008, 138, 1310–1316. [Google Scholar] [CrossRef]
- Possemiers, S.; Heyerick, A.; Robbens, V.; De Keukeleire, D.; Verstraete, W. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J. Agric. Food Chem. 2005, 53, 6281–6288. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J.; Yang, S.S. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J. Nat. Prod. 2006, 69, 488–498. [Google Scholar] [CrossRef]
- Schoefer, L.; Mohan, R.; Schwiertz, A.; Braune, A.; Blaut, M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl. Environ. Microbiol. 2003, 69, 5849–5854. [Google Scholar] [CrossRef]
- Braune, A.; Gutschow, M.; Engst, W.; Blaut, M. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol. 2001, 67, 5558–5567. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Engst, W.; Elsinghorst, P.W.; Furtmann, N.; Bajorath, J.; Gutschow, M.; Blaut, M. Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols. J. Bacteriol. 2016, 198, 2965–2974. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Gutschow, M.; Blaut, M. An NADH-Dependent Reductase from Eubacterium ramulus Catalyzes the Stereospecific Heteroring Cleavage of Flavanones and Flavanonols. Appl. Environ. Microbiol. 2019, 85, e01233-19. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Hong, S.; Yang, P.; Sun, Y.; Wang, Y.; Zhang, P.; Jiang, W.; Gu, Y. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat. Commun. 2021, 12, 790. [Google Scholar] [CrossRef]
- Miyake, Y.; Yamamoto, K.; Osawa, T. Metabolism of Antioxidant in Lemon Fruit (Citrus limon BURM. f.) by Human Intestinal Bacteria. J. Agric. Food Chem. 1997, 45, 3738–3742. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Fernandez-Quiros, B.; Ludwig, I.A.; Pradas, I.; Crozier, A.; Moreno-Rojas, J.M. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur. J. Nutr. 2018, 57, 231–242. [Google Scholar] [CrossRef]
- Goodman, A.L.; Kallstrom, G.; Faith, J.J.; Reyes, A.; Moore, A.; Dantas, G.; Gordon, J.I. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 6252. [Google Scholar] [CrossRef]
- Shrestha, R.; Mohankumar, K.; Martin, G.; Hailemariam, A.; Lee, S.O.; Jin, U.H.; Burghardt, R.; Safe, S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J. Exp. Clin. Cancer Res. 2021, 40, 392. [Google Scholar] [CrossRef]
- Lei, M.; Menon, R.; Manteiga, S.; Alden, N.; Hunt, C.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice. mSystems 2019, 4, 16. [Google Scholar] [CrossRef]
- Lagkouvardos, I.; Pukall, R.; Abt, B.; Foesel, B.U.; Meier-Kolthoff, J.P.; Kumar, N.; Bresciani, A.; Martinez, I.; Just, S.; Ziegler, C.; et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 2016, 1, 16131. [Google Scholar] [CrossRef]
- Yousofshahi, M.; Manteiga, S.; Wu, C.; Lee, K.; Hassoun, S. PROXIMAL: A method for Prediction of Xenobiotic Metabolism. BMC Syst. Biol. 2015, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Shigemizu, D.; Hattori, M.; Tokimatsu, T.; Kotera, M.; Goto, S.; Kanehisa, M. PathPred: An enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 2010, 38, W138–W143. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Lee, I.S. Microbial transformation of naringenin derivatives. Arch. Pharm. Res. 2017, 40, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, H.; He, Y.; Pan, W.; Yan, Z.; Liao, Y.; Peng, W.; Gan, L.; Zhang, Y.; Su, W.; et al. Simultaneously Quantitative Analysis of Naringin and Its Major Human Gut Microbial Metabolites Naringenin and 3-(4′-Hydroxyphenyl) Propanoic Acid via Stable Isotope Deuterium-Labeling Coupled with RRLC-MS/MS Method. Molecules 2019, 24, 4287. [Google Scholar] [CrossRef]
- Zou, W.; Luo, Y.; Liu, M.; Chen, S.; Wang, S.; Nie, Y.; Cheng, G.; Su, W.; Zhang, K. Human intestinal microbial metabolism of naringin. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 363–367. [Google Scholar] [CrossRef]
- Backman, T.W.; Cao, Y.; Girke, T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011, 39, W486–W491. [Google Scholar] [CrossRef]
- Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D.S. BioTransformer: A comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform. 2019, 11, 2. [Google Scholar] [CrossRef]
- Rudik, A.V.; Dmitriev, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. J. Cheminform. 2016, 8, 68. [Google Scholar] [CrossRef]
- Hattori, M.; Tanaka, N.; Kanehisa, M.; Goto, S. SIMCOMP/SUBCOMP: Chemical structure search servers for network analyses. Nucleic Acids Res. 2010, 38, W652–W656. [Google Scholar] [CrossRef]
- Stevens, Y.; Rymenant, E.V.; Grootaert, C.; Camp, J.V.; Possemiers, S.; Masclee, A.; Jonkers, D. The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health. Nutrients 2019, 11, 1464. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Jin, U.H.; Orr, A.A.; Echegaray, S.P.; Davidson, L.A.; Allred, C.D.; Chapkin, R.S.; Jayaraman, A.; Lee, K.; Tamamis, P.; et al. Isoflavones as Ah Receptor Agonists in Colon-Derived Cell Lines: Structure-Activity Relationships. Chem. Res. Toxicol. 2019, 32, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
- Burapan, S.; Kim, M.; Han, J. Demethylation of Polymethoxyflavones by Human Gut Bacterium, Blautia sp. MRG-PMF1. J. Agric. Food Chem. 2017, 65, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Jin, U.H.; Cheng, Y.; Park, H.; Davidson, L.A.; Callaway, E.S.; Chapkin, R.S.; Jayaraman, A.; Asante, A.; Allred, C.; Weaver, E.A.; et al. Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Sci. Rep. 2017, 7, 10163. [Google Scholar] [CrossRef]
- Claudine, M.; Odile, T.; Francoise, R.; Georgine, A.; Christian, D.; Christian, R. Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem. 1996, 7, 375–380. [Google Scholar] [CrossRef]
- Mohos, V.; Panovics, A.; Fliszar-Nyul, E.; Schilli, G.; Hetenyi, C.; Mladenka, P.; Needs, P.W.; Kroon, P.A.; Petho, G.; Poor, M. Inhibitory Effects of Quercetin and Its Human and Microbial Metabolites on Xanthine Oxidase Enzyme. Int. J. Mol. Sci. 2019, 20, 2681. [Google Scholar] [CrossRef]
- Di Pede, G.; Bresciani, L.; Calani, L.; Petrangolini, G.; Riva, A.; Allegrini, P.; Del Rio, D.; Mena, P. The Human Microbial Metabolism of Quercetin in Different Formulations: An In Vitro Evaluation. Foods 2020, 9, 1121. [Google Scholar] [CrossRef]
- Soukup, S.T.; Stoll, D.A.; Danylec, N.; Schoepf, A.; Kulling, S.E.; Huch, M. Metabolism of Daidzein and Genistein by Gut Bacteria of the Class Coriobacteriia. Foods 2021, 10, 2741. [Google Scholar] [CrossRef]
- Lee, P.G.; Kim, J.; Kim, E.J.; Lee, S.H.; Choi, K.Y.; Kazlauskas, R.J.; Kim, B.G. Biosynthesis of (-)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion. ACS Chem. Biol. 2017, 12, 2883–2890. [Google Scholar] [CrossRef]
- Wicker, J.; Lorsbach, T.; Gutlein, M.; Schmid, E.; Latino, D.; Kramer, S.; Fenner, K. enviPath--The environmental contaminant biotransformation pathway resource. Nucleic Acids Res. 2016, 44, D502–D508. [Google Scholar] [CrossRef]
- Greene, N.; Judson, P.N.; Langowski, J.J.; Marchant, C.A. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ. Res. 1999, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Duigou, T.; Faulon, J.L. Reinforcement Learning for Bioretrosynthesis. ACS Synth. Biol. 2020, 9, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Kyndt, J.A.; Meyer, T.E.; Cusanovich, M.A.; Van Beeumen, J.J. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett. 2002, 512, 240–244. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, R.; Botas, A.; Albillos, S.M.; Rumbero, A.; Martín, J.F.; Liras, P. Molecular genetics of naringeninbiosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb. Cell Factories 2015, 14, 178. [Google Scholar] [CrossRef]
- Sun, W.; Meng, X.; Liang, L.; Jiang, W.; Huang, Y.; He, J.; Hu, H.; Almqvist, J.; Gao, X.; Wang, L. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway. PLoS ONE 2015, 10, e0119054. [Google Scholar] [CrossRef]
- Zeng, X.; Zheng, Y.; He, Y.; Zhang, J.; Peng, W.; Su, W. Microbial Metabolism of Naringin and the Impact on Antioxidant Capacity. Nutrients 2022, 14, 3765. [Google Scholar] [CrossRef]
- Booth, A.N.; Deeds, F.; Jones, F.T.; Murray, C.W. The metabolic fate of rutin and quercetin in the animal body. J. Biol. Chem. 1956, 223, 251–257. [Google Scholar] [CrossRef]
- Ferrer, J.-L.; Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 1999, 6, 775–784. [Google Scholar] [CrossRef]
- Possemiers, S.; Bolca, S.; Verstraete, W.; Heyerick, A. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 2011, 82, 53–66. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Van Treuren, W.; Hou, B.H.; Higginbottom, S.K.; Dodd, D. Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites. Nat. Microbiol. 2022, 7, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liang, J.; Wang, P.; Xu, Y.; Wang, Y.; Wei, X.; Fan, M. Purification and characterization of a novel phloretin-2′-O-glycosyltransferase favoring phloridzin biosynthesis. Sci. Rep. 2016, 6, 35274. [Google Scholar] [CrossRef] [PubMed]
- Koper, J.E.B.; Loonen, L.M.P.; Wells, J.M.; Troise, A.D.; Capuano, E.; Fogliano, V. Polyphenols and Tryptophan Metabolites Activate the Aryl Hydrocarbon Receptor in an in vitro Model of Colonic Fermentation. Mol. Nutr. Food Res. 2019, 63, e1800722. [Google Scholar] [CrossRef] [PubMed]
- Blay, C.; Planes, S.; Ky, C.L. Crossing Phenotype Heritability and Candidate Gene Expression in Grafted Black-Lipped Pearl Oyster Pinctada margaritifera, an Animal Chimera. J. Hered. 2018, 109, 510–519. [Google Scholar] [CrossRef]
- Van der Heiden, E.; Bechoux, N.; Muller, M.; Sergent, T.; Schneider, Y.J.; Larondelle, Y.; Maghuin-Rogister, G.; Scippo, M.L. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal. Chim. Acta 2009, 637, 337–345. [Google Scholar] [CrossRef]
- Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.; Moore, K.P.; Rice-Evans, C.A. Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products. Free Radic. Biol. Med. 2004, 36, 212–225. [Google Scholar] [CrossRef]
- Tamura, M.; Hoshi, C.; Kobori, M.; Takahashi, S.; Tomita, J.; Nishimura, M.; Nishihira, J. Quercetin metabolism by fecal microbiota from healthy elderly human subjects. PLoS ONE 2017, 12, e0188271. [Google Scholar] [CrossRef]
- Zhang, S.; Qin, C.; Safe, S.H. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: Effects of structure and cell context. Environ. Health Perspect. 2003, 111, 1877–1882. [Google Scholar] [CrossRef]
- Safe, S.; Karki, K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol. Cancer Res. 2021, 19, 180–191. [Google Scholar] [CrossRef]
- Hamers, A.A.; van Dam, L.; Teixeira Duarte, J.M.; Vos, M.; Marinkovic, G.; van Tiel, C.M.; Meijer, S.L.; van Stalborch, A.M.; Huveneers, S.; Te Velde, A.A.; et al. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFkappaB Activity in Macrophages. PLoS ONE 2015, 10, e0133598. [Google Scholar] [CrossRef]
Gene | Primer Type | Sequence |
---|---|---|
CYP1A1 | Sense | 5′-GAC CAC AAC CAC CAA GAA C-3′ |
Antisense | 5′-AGC GAA GAA TAG GGA TGA AG-3′ | |
CYP1B1 | Sense | 5′-GGA TAT CAG CCA CGA CGA AT-3′ |
Antisense | 5′-ATT ATC TGG GCA AAG CAA CG-3′ | |
UGT1A1 | Sense | 5′-GAA TCA ACT GCC TTC ACC AAA AT-3′ |
Antisense | 5′-AGA GAA AAC CAC AAT TCC ATG TTC T-3′ | |
TBP | Sense | 5′-GAT CAG AAC AAC AGC CTG CC-3′ |
Antisense | 5′-TTC TGA ATA GGC TGT GGG GT-3′ | |
Mouse Cyp1a1 | Sense | 5′-CAG GAG AGC TGG CCC TTT A-3′ |
Antisense | 5′-TAA GCC TGC TC ATC CTG TG-3′ | |
Mouse Cyp1b1 | Sense | 5′-GGA TAT CAG CCA CGA CGA AT-3′ |
Antisense | 5′-ATT ATC TGG GCA AAG CAA CG-3′ | |
Mouse Ugt1a1 | Sense | 5′-ATG GCT TTC TTC TCC GGA AT-3′ |
Antisense | 5′-TCA GAA AAA GCC CCT ATC CC-3′ | |
Mouse TBP | Sense | 5′-GAA CAA TCC AGA CTA GCA GCA-3′ |
Antisense | 5′-GGG AAC TTC ACA TCA CAG CTC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gülşan, E.E.; Nowshad, F.; Leigh, M.D.; Crott, J.W.; Park, H.; Martin, G.; Safe, S.; Chapkin, R.S.; Jayaraman, A.; Lee, K. A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells. Metabolites 2025, 15, 146. https://doi.org/10.3390/metabo15030146
Gülşan EE, Nowshad F, Leigh MD, Crott JW, Park H, Martin G, Safe S, Chapkin RS, Jayaraman A, Lee K. A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells. Metabolites. 2025; 15(3):146. https://doi.org/10.3390/metabo15030146
Chicago/Turabian StyleGülşan, Ebru Ece, Farrhin Nowshad, Meredith Davis Leigh, Jimmy Walter Crott, Hyejin Park, Greg Martin, Stephen Safe, Robert S. Chapkin, Arul Jayaraman, and Kyongbum Lee. 2025. "A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells" Metabolites 15, no. 3: 146. https://doi.org/10.3390/metabo15030146
APA StyleGülşan, E. E., Nowshad, F., Leigh, M. D., Crott, J. W., Park, H., Martin, G., Safe, S., Chapkin, R. S., Jayaraman, A., & Lee, K. (2025). A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells. Metabolites, 15(3), 146. https://doi.org/10.3390/metabo15030146