Extraction Methods for Brain Biopsy NMR Metabolomics: Balancing Metabolite Stability and Protein Precipitation
<p>Workflow of sample preparation and NMR acquisition for metabolic profiling of brain tissues using various extraction methods. (<b>A</b>) Steps for brain metabolite extraction. (<b>B</b>) Flow of <sup>1</sup>H NMR data acquisition and data analysis. The criteria for good extraction efficiency and reproducibility are defined as having a relative extraction efficiency greater than 0.7 and a median relative standard deviation (RSD) of less than 20%. UF, ultrafiltration. N, no. Y, yes.</p> "> Figure 2
<p>Efficiency and reproducibility of the extraction methods tested. (<b>A</b>) Relative extraction efficiency, expressed as the mean ± SEM, calculated as the sum of integrals normalised to that of the 50% MeCN group. (<b>B</b>) Protein levels of the NMR samples derived from different brain extracts, expressed as the mean ± SEM. (<b>C</b>) Extraction reproducibility, presented in boxplots, as determined by the relative spectral standard deviation across each of the 86 spectral buckets. (<b>D</b>) PCA scores plot of the brain metabolic profiles from different extraction methods at 0 h delay in NMR measurement. A smaller spread of the polygon indicates better reproducibility. Results of one-way ANOVA with Dunnett’s test for multiple comparisons are reported in reference to the 50% MeCN group. UF, ultrafiltration. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>Metabolite extract stability assessment for tested methods. (<b>A</b>) PCA scores plot demonstrating the temporal metabolome changes after NMR sample preparation. The ellipse indicates the 95% confidence interval for a multivariate distribution for each extraction method. The trajectory lines connect data points at different delay times from the same sample. (<b>B</b>) Heatmap depicting percentage changes, relative to the 0 h timepoint, in unstable metabolites for each extraction method. No aspartate-2-d<sub>1</sub> signals (grey) were observed in the 80% MeOH, MeOH/H<sub>2</sub>O/CHCl<sub>3</sub> (2:1:2), and 50% MeCN with ultrafiltration groups. UF, ultrafiltration. Asp, aspartate. Glu, glutamate. NAA, N-acetyl aspartate. GSH and GSSG, reduced form and oxidised form of glutathione, respectively.</p> "> Figure 4
<p>Changes in unstable metabolites across different extracts over time post sample preparation. Each data point refers to the mean of three replicates. Values were normalised to the 0 h delay group within each extraction method. UF, ultrafiltration. Asp, aspartate. Glu, glutamate. NAA, N-acetyl aspartate. GSH and GSSG, reduced form and oxidised form of glutathione, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brain Tissues
2.2. Brain Metabolite Extraction
2.2.1. MeCN/H2O Extraction Protocol
2.2.2. MeOH/H2O Extraction Protocol
2.2.3. MeOH/H2O/CHCl3 Extraction Protocol
2.2.4. MeCN/H2O and MeOH/H2O Extraction with Ultrafiltration Protocol
2.3. H NMR Analysis
2.4. Measurement of Protein Concentrations
2.5. NMR Data Pre-Processing
2.6. Data Analysis
3. Results and Discussion
3.1. Relative Extraction Efficiency
3.2. Protein Levels
3.3. Extraction Reproducibility
3.4. Metabolite Stability
3.4.1. Aspartate and Glutamate
3.4.2. N-Acetyl Aspartate and Acetate
3.4.3. Glutathione
3.4.4. Ascorbate
3.4.5. Macromolecules
3.5. Summary and Recommendations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hollywood, K.; Brison, D.R.; Goodacre, R. Metabolomics: Current Technologies and Future Trends. Proteomics 2006, 6, 4716–4723. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Garcia, A.; Barbas, C. Metabolomics Studies in Brain Tissue: A Review. J. Pharm. Biomed. Anal. 2016, 130, 141–168. [Google Scholar] [CrossRef] [PubMed]
- Letertre, M.P.M.; Giraudeau, P.; de Tullio, P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front. Mol. Biosci. 2021, 8, 698337. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Sánchez, B.; Priego-Capote, F.; de Castro, M.L. Metabolomics Analysis II. Preparation of Biological Samples Prior to Detection. TrAC Trends Anal. Chem. 2010, 29, 120–127. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, H.; Tjeerdema, R.S.; Viant, M.R. Evaluation of Metabolite Extraction Strategies from Tissue Samples Using NMR Metabolomics. Metabolomics 2007, 3, 55–67. [Google Scholar] [CrossRef]
- Want, E.J.; O’Maille, G.; Smith, C.A.; Brandon, T.R.; Uritboonthai, W.; Qin, C.; Trauger, S.A.; Siuzdak, G. Solvent-Dependent Metabolite Distribution, Clustering, and Protein Extraction for Serum Profiling with Mass Spectrometry. Anal. Chem. 2006, 78, 743–752. [Google Scholar] [CrossRef]
- Cai, X.; Li, R. Concurrent Profiling of Polar Metabolites and Lipids in Human Plasma Using HILIC-FTMS. Sci. Rep. 2016, 6, 36490. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Gowda, Y.N.; Raftery, D. Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy. Anal. Chem. 2015, 87, 706–715. [Google Scholar] [CrossRef]
- Lepoittevin, M.; Blancart-Remaury, Q.; Kerforne, T.; Pellerin, L.; Hauet, T.; Thuillier, R. Comparison between 5 Extractions Methods in Either Plasma or Serum to Determine the Optimal Extraction and Matrix Combination for Human Metabolomics. Cell Mol. Biol. Lett. 2023, 28, 43. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Raftery, D. Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy. Anal. Chem. 2014, 86, 5433–5440. [Google Scholar] [CrossRef]
- Diémé, B.; Lefèvre, A.; Nadal-Desbarats, L.; Galineau, L.; Madji Hounoum, B.; Montigny, F.; Blasco, H.; Andres, C.R.; Emond, P.; Mavel, S. Workflow Methodology for Rat Brain Metabolome Exploration Using NMR, LC-MS and GC-MS Analytical Platforms. J. Pharm. Biomed. Anal. 2017, 142, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, M.V.; Yanshole, L.V.; Tsentalovich, Y.P. Stability of Metabolomic Content during Sample Preparation: Blood and Brain Tissues. Metabolites 2022, 12, 811. [Google Scholar] [CrossRef] [PubMed]
- Paskevich, S.I.; Molchanov, M.V.; Timchenko, M.A.; Kutyshenko, V.P. Sample Pretreatment of Brain Tissues and Cerebrospinal Fluid for NMR Investigations. J. Anal. Chem. 2013, 68, 862–870. [Google Scholar] [CrossRef]
- Kamlage, B.; Maldonado, S.G.; Bethan, B.; Peter, E.; Schmitz, O.; Liebenberg, V.; Schatz, P. Quality Markers Addressing Preanalytical Variations of Blood and Plasma Processing Identified by Broad and Targeted Metabolite Profiling. Clin. Chem. 2014, 60, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Ghini, V.; Quaglio, D.; Luchinat, C.; Turano, P. NMR for Sample Quality Assessment in Metabolomics. New Biotechnol. 2019, 52, 25–34. [Google Scholar] [CrossRef]
- Ghini, V.; Abuja, P.M.; Polasek, O.; Kozera, L.; Laiho, P.; Anton, G.; Zins, M.; Klovins, J.; Metspalu, A.; Wichmann, H.-E.; et al. Impact of the Pre-Examination Phase on Multicenter Metabolomic Studies. New Biotechnol. 2022, 68, 37–47. [Google Scholar] [CrossRef]
- Kamlage, B.; Neuber, S.; Bethan, B.; González Maldonado, S.; Wagner-Golbs, A.; Peter, E.; Schmitz, O.; Schatz, P. Impact of Prolonged Blood Incubation and Extended Serum Storage at Room Temperature on the Human Serum Metabolome. Metabolites 2018, 8, 6. [Google Scholar] [CrossRef]
- Mushtaq, M.Y.; Choi, Y.H.; Verpoorte, R.; Wilson, E.G. Extraction for Metabolomics: Access to the Metabolome. Phytochem. Anal. 2014, 25, 291–306. [Google Scholar] [CrossRef]
- Blanchard, J. Evaluation of the Relative Efficacy of Various Techniques for Deproteinizing Plasma Samples Prior to High-Performance Liquid Chromatographic Analysis. J. Chromatogr. 1981, 226, 455–460. [Google Scholar] [CrossRef]
- Folch, J.; Ascoli, I.; Lees, M.; Meath, J.A.; LeBaron, F.N. Preparation of lipide extracts from brain tissue. J. Biol. Chem. 1951, 191, 833–841. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Andresen, C.; Boch, T.; Gegner, H.M.; Mechtel, N.; Narr, A.; Birgin, E.; Rasbach, E.; Rahbari, N.; Trumpp, A.; Poschet, G.; et al. Comparison of Extraction Methods for Intracellular Metabolomics of Human Tissues. Front. Mol. Biosci. 2022, 9, 932261. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, R.A.M.; Chen, Z.J. Ggplot2: Elegant Graphics for Data Analysis (2nd Ed.). Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 2012, 1, 726. [Google Scholar]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Kimhofer, T. Metabom8. 2021. Available online: https://github.com/tkimhofer/metabom8 (accessed on 5 November 2024).
- García-Martín, M.L.; García-Espinosa, M.A.; Ballesteros, P.; Bruix, M.; Cerdán, S. Hydrogen Turnover and Subcellular Compartmentation of Hepatic [2-13C]Glutamate and [3-13C]Aspartate as Detected by 13C NMR*. J. Biol. Chem. 2002, 277, 7799–7807. [Google Scholar] [CrossRef]
- BIRNBAUM, S.M.; LEVINTOW, L.; KINGSLEY, R.B.; GREENSTEIN, J.P. Specificity of Amino Acid Acylases. J. Biol. Chem. 1952, 194, 455–470. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Pascua, V.; Raftery, D. Extending the Scope of 1H NMR Based Blood Metabolomics for the Analysis of Labile Antioxidants: Reduced and Oxidized Glutathione. Anal. Chem. 2021, 93, 14844–14850. [Google Scholar] [CrossRef]
- Bourafai-Aziez, A.; Jacob, D.; Charpentier, G.; Cassin, E.; Rousselot, G.; Moing, A.; Deborde, C. Development, Validation, and Use of 1H-NMR Spectroscopy for Evaluating the Quality of Acerola-Based Food figure ments and Quantifying Ascorbic Acid. Molecules 2022, 27, 5614. [Google Scholar] [CrossRef]
- Belle, J.E.L.; Harris, N.G.; Williams, S.R.; Bhakoo, K.K. A Comparison of Cell and Tissue Extraction Techniques Using High-Resolution 1H-NMR Spectroscopy. NMR Biomed. 2002, 15, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef] [PubMed]
RSD (%) | Number of Variables (%) | |||||
---|---|---|---|---|---|---|
50% MeCN | 50% MeOH | 67% MeOH | 80% MeOH | MeOH/ H2O/CHCl3 (2:1:2) | 50% MeCN + UF | |
0–15 | 70 (82) | 68 (81) | 60 (71) | 73 (90) | 76 (94) | 77 (95) |
15–30 | 9 (11) | 6 (7) | 11 (13) | 8 (10) | 5 (6) | 4 (5) |
>30 | 6 (7) | 10 (12) | 13 (15) | 0 (0) | 0 (0) | 0 (0) |
Extraction Method | Relative Extraction Efficiency (Mean ± SE) | Reproducibility, RSD (%, Median [IQR]) | Protein Levels (mg/mL, Mean ± SE) | Asp and Glu Deuteration | NAA Conversion into Aspartate and Acetate | GSH Oxidation to GSSG | Ascorbic Acid Reduction | Macromolecule Signals |
---|---|---|---|---|---|---|---|---|
50% MeCN | 1 ± 0.01 | 3.68 (3.49) | 0.4 ± 0.01 | ++ | ++ | + | + | + |
50% MeOH | 0.88 ± 0.01 | 4.66 (5.67) | 0.35 ± 0.01 | ++ | + | + | + | - |
67% MeOH | 0.88 ± 0.03 | 7.48 (4.49) | 0.31 ± 0.03 | ++ | -* | - | + | - |
80% MeOH | 0.79 ± 0.03 | 5.93 (3.85) | 0.26 ± 0.01 | - | - | ++ | + | + |
MeOH/H2O/ CHCl3 (2:1:2) | 0.96 ± 0.05 | 9.62 (2.66) | 0.3 ± 0.01 | - | - | + | + | - |
50% MeCN + UF | 0.73 ± 0.01 | 3.54 (5.55) | 0.2 ± 0.02 | - | - | + | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Zirpel, F.; Cader, M.Z.; Anthony, D.C.; Probert, F. Extraction Methods for Brain Biopsy NMR Metabolomics: Balancing Metabolite Stability and Protein Precipitation. Metabolites 2024, 14, 609. https://doi.org/10.3390/metabo14110609
Xiong W, Zirpel F, Cader MZ, Anthony DC, Probert F. Extraction Methods for Brain Biopsy NMR Metabolomics: Balancing Metabolite Stability and Protein Precipitation. Metabolites. 2024; 14(11):609. https://doi.org/10.3390/metabo14110609
Chicago/Turabian StyleXiong, Wenzheng, Florian Zirpel, M. Zameel Cader, Daniel C. Anthony, and Fay Probert. 2024. "Extraction Methods for Brain Biopsy NMR Metabolomics: Balancing Metabolite Stability and Protein Precipitation" Metabolites 14, no. 11: 609. https://doi.org/10.3390/metabo14110609