Motion Signal Processing for a Remote Gas Metal Arc Welding Application
<p>Movement tracking setup with visual Feedback.</p> "> Figure 2
<p>Experimental setup with the welding gun and seam observation camera.</p> "> Figure 3
<p>Process chain for remote welding.</p> "> Figure 4
<p>Robot movement, <b>left</b>: measured data, <b>right</b>: created seam with experimental setup.</p> "> Figure 5
<p>Spectra of main axis motion components.</p> "> Figure 6
<p>Raw measured data of movement tracking.</p> "> Figure 7
<p>Prediction of the Kalman filter.</p> "> Figure 8
<p>Double integrator disturbance observer rearranged as a filter.</p> "> Figure 9
<p>Comparison of the presented approach to a second order IIR-filter.</p> "> Figure 10
<p>Successful application of the system on a complex welding application.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Motion Signal Analysis
2.3. Prediction Filter Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
KUKA | Keller und Knappich Augsburg |
RSI | Robot sensor interface |
MAG | Metal active gas |
Two times differentiable continuous |
References
- Papakostasa, N.; Pintzos, G.; Matsas, M.; Chryssolouris, G. Knowledge-enabled design of cooperating robots assembly cells. Procidia CIRP 2014, 23, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Pellegrinelli, S.; Pedrocchi, N.; Tosatti, L.M.; Fischer, A.; Tolio, T. Multi-robot spot-welding cells: An integrated approach to cell design and motion planning. CIRP Ann. 2014, 63, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Pellegrinelli, S.; Pedrocchi, N.; Tosatti, L.M.; Fischer, A.; Tolio, T. Validation of an Extended Approach to Multi-robot Cell Design and Motion Planning. Procedia CIRP 2015, 36, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Papakostas, N.; Alexopoulos, K.; Kopanakis, A. Integrating digital manufacturing and simulation tools in the assembly design process: A cooperating robots cell case. CIRP J. Manuf. Sci. Technol. 2011, 4, 96–100. [Google Scholar] [CrossRef]
- Bartelt, M.; Stumm, S.; Kuhlenkötter, B. Tool oriented Robot Cooperation. Procedia CIRP 2014, 23, 188–193. [Google Scholar] [CrossRef] [Green Version]
- van Essen, M.J.; van der Jagt, N.; Troll, M.; Wanders, M.; Erden, S.; van Beek, M.S.; Tomiyama, T. Identifying Welding Skills for Robot Assistance. In Proceedings of the IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Beijing, China, 12–15 October 2008; pp. 437–442. [Google Scholar]
- Singhand, B.; Singhal, P. Work Related Musculoskeletal Disorders (WMSDs) Risk Assessment for Different Welding Positions and Processes. In Proceedings of the 14th International Conference on Humanizing Work and Work Environment HWWE, Jalandhar, India, 8–11 December 2016. [Google Scholar]
- Kendzia, B.; Behrens, T.; Jöckel, K.-H.; Siemiatycki, J.; Kromhout, H.; Vermeulen, R.; Peters, S.; Van Gelder, R.; Olsson, A.; Brüske, I.; et al. Welding and Lung Cancer in a Pooled Analysis of Case-Control Studies. Am. J. Epidemiol. 2013, 178, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Popović, O.; Prokić-Cvetković, R.; Burzić, M.; Lukić, U.; Beljić, B. Fume and gas emission during arc welding: Hazards and recommendation. Renew. Sustain. Energy Rev. 2014, 37, 509–516. [Google Scholar] [CrossRef]
- Erden, M.S.; Billard, A. Hand Impedance Measurements During Interactive Manual Welding with a Robot. IEEE Trans. Robot. 2015, 31, 168–179. [Google Scholar] [CrossRef]
- Erden, M.S.; Billard, A. Robotic Assistance by Impedance Compensation for Hand Movements while Manual Welding. IEEE Trans. Cybern. 2016, 46, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Lin, W.; Hongming, G. Remote welding robot system. In Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891), Puszczykowo, Poland, 17–20 June 2004; pp. 317–320. [Google Scholar]
- Wang, Q.; Jiao, W.; Yu, R.; Johnson, M.T.; Zhang, Y. Virtual Reality Robot-Assisted Welding Based on Human Intention Recognition. IEEE Trans. Autom. Sci. Eng. 2020, 17, 799–808. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, G.; Hou, Z.; Wang, J.; Liang, J.; Bao, X.; Yang, W.; Wang, W. Advances in Multi-robotic Welding Techniques: A Review. Int. J. Mech. Eng. Robot. Res. 2020, 9, 421–428. [Google Scholar]
- Liu, Y.; Zhang, Y. Toward Welding Robot With Human Knowledge: A Remotely-Controlled Approach. IEEE Trans. Autom. Sci. Eng. 2015, 12, 769–774. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.M. Control of human arm movement in machine-human cooperative welding process. Control. Eng. Pract. 2014, 32, 161–171. [Google Scholar] [CrossRef]
- KUKA Aktiengesellschaft. Available online: https://www.kuka.com/en-gb/services/downloads?terms=Language:en:1 (accessed on 15 March 2020).
- Fronius USA LLC. Available online: https://www.fronius.com/en-us/usa (accessed on 15 March 2020).
- Micro-Epsilon Messtechnik GmbH & Co. KG. Available online: https://www.micro-epsilon.de/2D_3D/laser-scanner/scanCONTROL-2600/ (accessed on 15 March 2020).
- The Linux Foundation. Available online: https://wiki.linuxfoundation.org/realtime/start (accessed on 15 March 2020).
- Kim, P. Kalman Filter for Beginners; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2011. [Google Scholar]
- Parvez, I.; Rahmati, A.; Guvenc, I.; Sarwat, A.I.; Dai, H. A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 3098–3130. [Google Scholar] [CrossRef]
- Eto, H.; Harry, A.H. Seamless Manual-to-Autopilot Transition: An Intuitive Programming Approach to Robotic Welding. In Proceedings of the 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebel, L.C.; Zuther, P.; Maass, J.; Sheikhi, S. Motion Signal Processing for a Remote Gas Metal Arc Welding Application. Robotics 2020, 9, 30. https://doi.org/10.3390/robotics9020030
Ebel LC, Zuther P, Maass J, Sheikhi S. Motion Signal Processing for a Remote Gas Metal Arc Welding Application. Robotics. 2020; 9(2):30. https://doi.org/10.3390/robotics9020030
Chicago/Turabian StyleEbel, Lucas Christoph, Patrick Zuther, Jochen Maass, and Shahram Sheikhi. 2020. "Motion Signal Processing for a Remote Gas Metal Arc Welding Application" Robotics 9, no. 2: 30. https://doi.org/10.3390/robotics9020030
APA StyleEbel, L. C., Zuther, P., Maass, J., & Sheikhi, S. (2020). Motion Signal Processing for a Remote Gas Metal Arc Welding Application. Robotics, 9(2), 30. https://doi.org/10.3390/robotics9020030