Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control †
<p>(<b>a</b>) Temperature dependence of the storage moduli of stiff and soft shape memory polymers (SMPs); (<b>b</b>) a reversible dry adhesive hook employing the SMP.</p> "> Figure 2
<p>A test setup to measure the adhesion strength of an SMP sample. While an SMP adheres to the target plate, the bucket is filled with water. The adhesion strength of the SMP is measured once it fails to adhere to the target plate.</p> "> Figure 3
<p>(<b>a</b>) The fabrication of a single SMP sample. A 25 mm diameter circular form is carved out of a cured thick SMP; (<b>b</b>) the fabrication of a dual SMP sample; after curing and cutting a soft SMP into a ring form, a stiff SMP precursor is filled and cured inside the ring-shaped soft SMP; (<b>c</b>) the fabrication of a release tip SMP sample; a single drop of SMP precursor is deposited on the SMP surface and cured to form a release tip on a 25 mm diameter SMP sample.</p> "> Figure 4
<p>(<b>a</b>) The schematic dual SMP sample attached to the aluminum block with its boundary condition and the FEA plot of the first principal stress along the A−A’ line; (<b>b</b>) the schematic SMP with a release tip attached to the aluminum block with the boundary condition and the FEA plot of the first principal stress along the B−B’ line.</p> "> Figure 5
<p>(<b>a</b>) The maximal adhesion strength of single and dual SMPs, as tested experimentally; (<b>b</b>) adhesion strength of SMPs with and without release tip in glassy and rubbery states, as evaluated experimentally; the error bar represents the maximum and minimum of the three tested results.</p> "> Figure 6
<p>The fabrication of a bi-layer SMP sample. A 0.5 mm thick soft SMP is cured on a glass slide. Then, 2 mm thick stiff SMP is cured on top of the soft SMP. After being fully cured, the bi-layer SMP is cut using a laser cutter in a 25 mm diameter circular form.</p> "> Figure 7
<p>The force-distance curves for SMP samples. The areas under the curves, which indicate the work for the single-layer SMP and bi-layer SMP, are 631 Nmm and 682 Nmm, respectively.</p> "> Figure 8
<p>The schematic of a test setup with a thermoelectric Peltier module (TEC) for measuring the adhesion force at failure and the temperature at the center of a backing aluminum (BA) and at the interface between the SMP and the adherend (CI).</p> "> Figure 9
<p>The adhesion force that is formed using a thermoelectric module (TEC) and a hotplate (HP) as heating methods for four different adherend materials which are acrylic, wood, glass, and aluminum. The three lines of the error bar represent the maximum, median, and minimum values, respectively, from top to bottom.</p> "> Figure 10
<p>The temperature profiles at the center of the backing aluminum (BA) and at the interface between the SMP and the adherend (CI). The solid lines indicate the experimental results (EXP), and the dashed lines represent the finite element analysis results (FEA). Two different cases are tested: one using the thermoelectric module (TEC) for both heating and cooling, and another using only a hotplate as a heating method (HP). Four plots show the results from different adherend materials which are acrylic, wood, glass, and aluminum. The background of each plot is a gradient filled with colors based on the state of the SMP (rubbery or glassy state).</p> "> Figure 11
<p>Radially averaged Fourier power spectrum data from 2-dimensional raw roughness height data for different adherend materials including acrylic (<b>a</b>), wood (<b>b</b>), glass (<b>c</b>), and aluminum (<b>d</b>). The black line indicates the spectrum of the target adherend. The red and blue lines individually indicate the spectra of the SMP that has shape adapted to the target adherend using the thermoelectric Peltier module (TEC) and hotplate (HP), respectively. The green line indicates the spectrum for the flat state of the SMP before adhering which is identical for all (<b>a</b>–<b>d</b>).</p> "> Figure 12
<p>(<b>a</b>) A computer aided design (CAD) drawing and photograph of an SMP adhesive gripper. A battery and thermocouples are included in the gripper for heating/cooling and temperature sensing. (<b>b</b>) The SMP adhesive gripper is used to demonstrate pick-and-place functionality. (<b>c</b>) Images show the SMP adhesive gripper picking up sandpaper, a wooden plate, a tile, poster paper, and an angled acrylic plate, as well as an acrylic plate wet with blue-dyed water.</p> "> Figure 13
<p>Optical microscope images and surface roughness profiles of (<b>a</b>) sandpaper, (<b>b</b>) a wooden plate, (<b>c</b>) a tile, (<b>d</b>) poster paper, and (<b>e</b>) an acrylic plate used in the picking demonstration.</p> "> Figure 14
<p>The free body diagram of the foot of an SMP adhesive gripper: (<b>a</b>) forces during preloading; (<b>b</b>) forces during picking.</p> "> Figure 15
<p>(<b>a</b>) The magnified view of a pin-in-slot joint used between the links; (<b>b</b>) the schematic of a SMP adhesive gripper and the free body diagram of the links.</p> "> Figure 16
<p>The temperature profile of an SMP adhesive gripper foot during heating and cooling with a TEC as a function of time.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Fabrication of the SMP
2.2. Adhesion Test Setup
3. Dual SMP and Release Tip SMP
3.1. Fabrication of Dual SMP and Release Tip SMP
3.2. Numerical Results of Dual SMP and Release Tip SMP
3.3. Experimental Results of Dual SMP and Release Tip SMP
4. Bi-Layer SMP
4.1. Fabrication of Bi-Layer SMP
4.2. Experimental Results of Bi-Layer SMP
5. Thermoelectric Peltier Module
5.1. Schematics of Thermoelectric Peltier Module
5.2. Adhesion Strength and Temperature Profile
5.3. Radially Averaged Power Spectral Density for Surface Profiles
6. SMP Adhesive Gripper
6.1. Schematic of an SMP Gripper
6.2. Pick-and-Place Procedure
6.3. SMP Gripper Demonstration
6.4. Picking Mechanism of the SMP Gripper
6.5. Placing Mechanism of the SMP Gripper
6.6. Temperature Analysis
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farinelli, A.; Boscolo, N.; Zanotto, E.; Pagello, E. Advanced Approaches for Multi-Robot Coordination in Logistic Scenarios. Robot. Auton. Syst. 2017, 90, 34–44. [Google Scholar] [CrossRef]
- Stoyanov, T.; Vaskevicius, N.; Mueller, C.A.; Fromm, T.; Krug, R.; Tincani, V.; Mojtahedzadeh, R.; Kunaschk, S.; Mortensen Ernits, R.; Canelhas, D.R.; et al. No More Heavy Lifting: Robotic Solutions to the Container Unloading Problem. IEEE Robot. Autom. Mag. 2016, 23, 94–106. [Google Scholar] [CrossRef]
- Jiang, H.; Hawkes, E.W.; Fuller, C.; Estrada, M.A.; Suresh, S.A.; Abcouwer, N.; Han, A.K.; Wang, S.; Ploch, C.J.; Parness, A.; et al. A Robotic Device Using Gecko-Inspired Adhesives Can Grasp and Manipulate Large Objects in Microgravity. Sci. Robot. 2017, 2, 28. [Google Scholar] [CrossRef]
- Parness, A.; Frost, M.; Thatte, N.; King, J.P.; Witkoe, K.; Nevarez, M.; Garrett, M.; Aghazarian, H.; Kennedy, B. Gravity-Independent Rock-Climbing Robot and a Sample Acquisition Tool with Microspine Grippers. J. Field Robot. 2013, 30, 897–915. [Google Scholar] [CrossRef]
- Kuriyama, Y.; Okino, Y.; Wang, Z.; Hirai, S. A Wrapping Gripper for Packaging Chopped and Granular Food Materials. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019; pp. 114–119. [Google Scholar] [CrossRef]
- Wang, Z.; Furuta, H.; Hirai, S.; Kawamura, S. A Scooping-Binding Robotic Gripper for Handling Various Food Products. Front. Robot. AI 2021, 8, 43. [Google Scholar] [CrossRef]
- Wang, Z.; Or, K.; Hirai, S. A Dual-Mode Soft Gripper for Food Packaging. Rob. Auton. Syst. 2020, 125, 103427. [Google Scholar] [CrossRef]
- Lien, T.K. Gripper Technologies for Food Industry Robots. In Robotics and Automation in the Food Industry Current and Future Technologies; Woodhead Publishing: Sawston, UK, 2013; pp. 143–170. [Google Scholar] [CrossRef]
- Zhang, H.; Kumar, A.S.; Chen, F.; Fuh, J.Y.H.; Wang, M.Y. Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands. IEEE/ASME Trans. Mechatron. 2019, 24, 120–131. [Google Scholar] [CrossRef]
- Rateni, G.; Cianchetti, M.; Ciuti, G.; Menciassi, A.; Laschi, C. Design and Development of a Soft Robotic Gripper for Manipulation in Minimally Invasive Surgery: A Proof of Concept. Meccanica 2015, 50, 2855–2863. [Google Scholar] [CrossRef]
- Galloway, K.C.; Becker, K.P.; Phillips, B.; Kirby, J.; Licht, S.; Tchernov, D.; Wood, R.J.; Gruber, D.F. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot. 2016, 3, 23–33. [Google Scholar] [CrossRef]
- Licht, S.; Collins, E.; Mendes, M.L.; Baxter, C. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools. Soft Robot. 2017, 4, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Cecil, J.; Vasquez, D.; Powell, D. A Review of Gripping and Manipulation Techniques for Micro-Assembly Applications. Int. J. Prod. Res. 2007, 43, 819–828. [Google Scholar] [CrossRef]
- Keum, H.; Yang, Z.; Han, K.; Handler, D.E.; Nguyen, T.N.; Schutt-Aine, J.; Bahl, G.; Kim, S. Microassembly of Heterogeneous Materials Using Transfer Printing and Thermal Processing. Sci. Rep. 2016, 6, 29925. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Micro-LEGO for MEMS. Micromachines 2019, 10, 267. [Google Scholar] [CrossRef]
- Becedas, J.; Payo, I.; Feliu, V. Two-Flexible-Fingers Gripper Force Feedback Control System for Its Application as End Effector on a 6-DOF Manipulator. IEEE Trans. Robot. 2011, 27, 599–615. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Lin, W.; Low, K.H. A Variable Stiffness Robotic Gripper Based on Structure-Controlled Principle. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1104–1113. [Google Scholar] [CrossRef]
- El-Atab, N.; Mishra, R.B.; Al-Modaf, F.; Joharji, L.; Alsharif, A.A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M.M. Soft Actuators for Soft Robotic Applications: A Review. Adv. Intell. Syst. 2020, 2, 2000128. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed]
- Petković, D.; Pavlović, N.D.; Shamshirband, S.; Anuar, N.B. Development of a New Type of Passively Adaptive Compliant Gripper. Ind. Rob. 2013, 40, 610–623. [Google Scholar] [CrossRef]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. 2011, 123, 1930–1935. [Google Scholar] [CrossRef]
- Do, T.N.; Phan, H.; Nguyen, T.-Q.; Visell, Y.; Do, T.N.; Visell, Y.; Phan, H.; Nguyen, T.-Q. Miniature Soft Electromagnetic Actuators for Robotic Applications. Adv. Funct. Mater. 2018, 28, 1800244. [Google Scholar] [CrossRef]
- Kofod, G.; Wirges, W.; Paajanen, M.; Bauer, S. Energy Minimization for Self-Organized Structure Formation and Actuation. Appl. Phys. Lett. 2007, 90, 081916. [Google Scholar] [CrossRef]
- Lau, G.K.; Heng, K.R.; Ahmed, A.S.; Shrestha, M. Dielectric Elastomer Fingers for Versatile Grasping and Nimble Pinching. Appl. Phys. Lett. 2017, 110, 182906. [Google Scholar] [CrossRef]
- Shian, S.; Bertoldi, K.; Clarke, D.R. Dielectric Elastomer Based “Grippers” for Soft Robotics. Adv. Mater. 2015, 27, 6814–6819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Zong, G.; Wang, W.; Liu, R. Sky Cleaner 3. IEEE Robot. Autom. Mag. 2006, 13, 32–41. [Google Scholar] [CrossRef]
- Miyake, T.; Ishihara, H.; Tomino, T. Vacuum-Based Wet Adhesion System for Wall Climbing Robots -Lubricating Action and Seal Action by the Liquid-. In Proceedings of the 2008 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2008, Bangkok, Thailand, 22–25 February 2009; pp. 1824–1829. [Google Scholar] [CrossRef]
- Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv. Mater. 2016, 28, 231–238. [Google Scholar] [CrossRef]
- Glick, P.; Suresh, S.A.; Ruffatto, D.; Cutkosky, M.; Tolley, M.T.; Parness, A. A Soft Robotic Gripper with Gecko-Inspired Adhesive. IEEE Robot. Autom. Lett. 2018, 3, 903–910. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Christensen, D.L.; Han, A.K.; Jiang, H.; Cutkosky, M.R. Grasping without Squeezing: Shear Adhesion Gripper with Fibrillar Thin Film. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2305–2312. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Jiang, H.; Cutkosky, M.R. Three-Dimensional Dynamic Surface Grasping with Dry Adhesion. Int. J. Rob. Res. 2016, 35, 943–958. [Google Scholar] [CrossRef]
- Song, S.; Drotlef, D.M.; Majidi, C.; Sitti, M. Controllable Load Sharing for Soft Adhesive Interfaces on Three-Dimensional Surfaces. Proc. Natl. Acad. Sci. USA 2017, 114, E4344–E4353. [Google Scholar] [CrossRef]
- Song, S.; Sitti, M. Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing. Adv. Mater. 2014, 26, 4901–4906. [Google Scholar] [CrossRef]
- Hu, Q.; Dong, E.; Sun, D. Soft Gripper Design Based on the Integration of Flat Dry Adhesive, Soft Actuator, and Microspine. IEEE Trans. Robot. 2021, 37, 1065–1080. [Google Scholar] [CrossRef]
- Hao, Y.; Biswas, S.; Hawkes, E.W.; Wang, T.; Zhu, M.; Wen, L.; Visell, Y. A Multimodal, Enveloping Soft Gripper: Shape Conformation, Bioinspired Adhesion, and Expansion-Driven Suction. IEEE Trans. Robot. 2021, 37, 350–362. [Google Scholar] [CrossRef]
- Liu, C.; Qin, H.; Mather, P.T. Review of Progress in Shape-Memory Polymers. J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar] [CrossRef]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- McCoul, D.; Rosset, S.; Besse, N.; Shea, H. Multifunctional Shape Memory Electrodes for Dielectric Elastomer Actuators Enabling High Holding Force and Low-Voltage Multisegment Addressing. Smart Mater. Struct. 2017, 26, 025015. [Google Scholar] [CrossRef]
- Wang, W.; Ahn, S.H. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft Robot. 2017, 4, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chung, Y.S.; Rodrigue, H. Long Shape Memory Alloy Tendon-Based Soft Robotic Actuators and Implementation as a Soft Gripper. Sci. Rep. 2019, 9, 11251. [Google Scholar] [CrossRef]
- Xing, S.; Wang, P.; Liu, S.; Xu, Y.; Zheng, R.; Deng, Z.; Peng, Z.; Li, J.; Wu, Y.; Liu, L. A Shape-Memory Soft Actuator Integrated with Reversible Electric/Moisture Actuating and Strain Sensing. Compos. Sci. Technol. 2020, 193, 108133. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Leng, J. Light-Actuated Reversible Shape Memory Effect of a Polymer Composite. Compos. Part A Appl. Sci. Manuf. 2018, 110, 70–75. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, C.; Wei, D.W.; Bao, R.Y.; Ke, K.; Liu, Z.; Yang, M.B.; Yang, W. Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks. ACS Appl. Mater. Interfaces 2019, 11, 30332–30340. [Google Scholar] [CrossRef]
- Linghu, C.; Zhang, S.; Wang, C.; Yu, K.; Li, C.; Zeng, Y.; Zhu, H.; Jin, X.; You, Z.; Song, J. Universal SMP Gripper with Massive and Selective Capabilities for Multiscaled, Arbitrarily Shaped Objects. Sci. Adv. 2020, 6, eaay5120. [Google Scholar] [CrossRef]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal Robotic Gripper Based on the Jamming of Granular Material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Zhou, M.; Li, X.; Meng, Y.; Tian, Y. Flexible Adhesion Control by Modulating Backing Stiffness Based on Jamming of Granular Materials. Smart Mater. Struct. 2019, 28, 115023. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, H.; Zhang, W. A Spherical Self-Adaptive Gripper with Shrinking of an Elastic Membrane. In Proceedings of the 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), Macau, China, 18–20 August 2016; pp. 512–517. [Google Scholar] [CrossRef]
- Son, C.H.; Kim, S. A Shape Memory Polymer Adhesive Gripper for Pick-and-Place Applications. In Proceedings of the Proceedings-IEEE International Conference on Robotics and Automation, Paris, France, 15 September 2020; pp. 10010–10016. [Google Scholar]
- Park, J.K.; Eisenhaure, J.D.; Kim, S. Reversible Underwater Dry Adhesion of a Shape Memory Polymer. Adv. Mater. Interfaces 2019, 6, 1801542. [Google Scholar] [CrossRef]
- Eisenhaure, J.; Kim, S. High-Strain Shape Memory Polymers as Practical Dry Adhesives. Int. J. Adhes. Adhes. 2018, 81, 74–78. [Google Scholar] [CrossRef]
- Eisenhaure, J.D.; Rhee, S., II; Al-Okaily, A.M.; Carlson, A.; Ferreira, P.M.; Kim, S. The Use of Shape Memory Polymers for MEMS Assembly. J. Microelectromechan. Syst. 2016, 25, 69–77. [Google Scholar] [CrossRef]
- Seo, J.; Eisenhaure, J.; Kim, S. Micro-Wedge Array Surface of a Shape Memory Polymer as a Reversible Dry Adhesive. Extrem. Mech. Lett. 2016, 9, 207–214. [Google Scholar] [CrossRef]
- Patil, S.; Malasi, A.; Majumder, A.; Ghatak, A.; Sharma, A. Reusable Antifouling Viscoelastic Adhesive with an Elastic Skin. Langmuir 2011, 28, 42–46. [Google Scholar] [CrossRef]
- Shahsavan, H.; Zhao, B. Bioinspired Functionally Graded Adhesive Materials: Synergetic Interplay of Top Viscous-Elastic Layers with Base Micropillars. Macromolecules 2014, 47, 353–364. [Google Scholar] [CrossRef]
- Dharmawan, A.G.; Xavier, P.; Hariri, H.H.; Soh, G.S.; Baji, A.; Bouffanais, R.; Foong, S.; Low, H.Y.; Wood, K.L. Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives. J. Mech. Robot. 2019, 11, 020902. [Google Scholar] [CrossRef]
- Minsky, H.K.; Turner, K.T. Composite Microposts with High Dry Adhesion Strength. ACS Appl. Mater. Interfaces 2017, 9, 18322–18327. [Google Scholar] [CrossRef]
- Dong, W.P.; Stout, K.J. Two-Dimensional Fast Fourier Transform and Power Spectrum for Surface Roughness in Three Dimensions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1995, 209, 381–391. [Google Scholar] [CrossRef]
- Eisenhaure, J.; Kim, S. An Internally Heated Shape Memory Polymer Dry Adhesive. Polymers 2014, 6, 2274–2286. [Google Scholar] [CrossRef]
- Astin, A.D. Finger Force Capability: Measurement and Prediction Using Anthropometric and Myoelectric Measures; Virginia Tech: Blacksburg, VA, USA, 1999. [Google Scholar]
Material | Thermal Conductivity | Surface Roughness Sa (μm) |
---|---|---|
Acrylic | 0.18 | 0.327 |
Wood | 0.1 | 7.52 |
Glass | 1.38 | 0.266 |
Aluminum | 237 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, C.; Jeong, S.; Lee, S.; Ferreira, P.M.; Kim, S. Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control. Robotics 2023, 12, 59. https://doi.org/10.3390/robotics12020059
Son C, Jeong S, Lee S, Ferreira PM, Kim S. Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control. Robotics. 2023; 12(2):59. https://doi.org/10.3390/robotics12020059
Chicago/Turabian StyleSon, ChangHee, Subin Jeong, Sangyeop Lee, Placid M. Ferreira, and Seok Kim. 2023. "Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control" Robotics 12, no. 2: 59. https://doi.org/10.3390/robotics12020059
APA StyleSon, C., Jeong, S., Lee, S., Ferreira, P. M., & Kim, S. (2023). Tunable Adhesion of Shape Memory Polymer Dry Adhesive Soft Robotic Gripper via Stiffness Control. Robotics, 12(2), 59. https://doi.org/10.3390/robotics12020059