Optimizing Cycle Time of Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points
<p>In this case, the same image of the workpiece (yellow) can acquired by the camera (red), rotated by 180 degrees, with the robot in both configurations shown.</p> "> Figure 2
<p>Number of possible paths for a robotic tasks with multiple feasible configurations at the working points. (<b>a</b>) Free sequence (Equation (<a href="#FD2-robotics-11-00016" class="html-disp-formula">2</a>), <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>k</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>N</mi> </mrow> </semantics></math>). The line with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> is coincident with <math display="inline"><semantics> <msub> <mi>n</mi> <mi>N</mi> </msub> </semantics></math> (Equation (<a href="#FD1-robotics-11-00016" class="html-disp-formula">1</a>)); (<b>b</b>) number of possible paths with a fixed sequence (Equation (<a href="#FD3-robotics-11-00016" class="html-disp-formula">3</a>), <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>g</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>k</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>N</mi> </mrow> </semantics></math>).</p> "> Figure 3
<p>Ratio between the cost of the minimum solution with multiple configurations (<math display="inline"><semantics> <msub> <mi>t</mi> <mi>k</mi> </msub> </semantics></math>) and the corresponding solution with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math>): (<b>a</b>) no fixed point sequence; (<b>b</b>) fixed point sequence.</p> "> Figure 4
<p>Example of a cluster. The TSP solution enters the cluster and visits all the positions within the cluster before moving to another cluster.</p> "> Figure 5
<p>Example of connections within and between clusters. Each cluster comprises the feasible configurations of a working point, together with their mirror copies (identified with an asterisk <math display="inline"><semantics> <msup> <mrow/> <mo>*</mo> </msup> </semantics></math>).</p> "> Figure 6
<p>Example of clusters for a working cycle made of a set of Cartesian paths. Each cluster represents a path, and comprises all possible configurations of the starting point (e.g., <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </semantics></math>) and of the ending point (e.g., <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> </semantics></math>). The points are connected in such a way that the TSP will exit the cluster (i.e., the robot will exit the path) with the same configuration used while entering the cluster (i.e., with the same configuration held by the robot while entering the path).</p> "> Figure 7
<p>Optimization process by means of the modified TSP.</p> "> Figure 8
<p>Simulation results with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>: (<b>a</b>) normalized solution cost and (<b>b</b>) computational time (log scale).</p> "> Figure 9
<p>Experimental setup including one Adept s650 anthropomorphic manipulator, one AVT Pike F-505 industrial camera, and one piece to be inspected (the pyramid trunk, to the left).</p> "> Figure 10
<p>Monochromatic images of the symbols placed on the sides of the trunk pyramid.</p> "> Figure 11
<p>Optimized robot movement for the case study (<b>a</b>) and order defined by the operator (<b>b</b>).</p> "> Figure 12
<p>Joint displacements (<b>a</b>) and speeds (<b>b</b>) for the Test 1, Scenarios 1 (blue) and 3 (red) of <a href="#robotics-11-00016-t002" class="html-table">Table 2</a>.</p> ">
Abstract
:1. Introduction
- to find the optimal task order in the case of multiple working points with multiple configurations and no fixed sequence;
- to find the optimal configurations in the working points with multiple configurations and a fixed sequence.
2. Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points
3. Optimizing Cycle Time through the Travelling Salesman Problem
- The path must enter a cluster through one configuration and exit through its mirror copy.
- To avoid discrepancies in the final cost, the connections within a cluster must have null cost.
- Define the working positions as Cartesian points ().
- Identify the feasible redundant configurations for each point (), excluding the configurations that are outside of robot mechanical limits or that result in collisions with the workcell equipment.
- Solve the modified TSP using the feasible configurations and the cost matrix as inputs.
- Finally, the optimal task sequence is provided.
Optimizing Cycle Time in the Case of a Fixed Point Sequence
4. Validation
4.1. Simulation Results
4.2. Experimental Testing
- Each point has a single robot configuration;
- Each point has two robot configurations (flip/no flip);
- Each point has two robot configurations (flip/no flip) and the rotation takes place around the camera axis (considered case study).
4.3. Applicability of the Modified TSP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Federation of Robotics. IFR Press Conference. 2020. Available online: https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf (accessed on 7 November 2021).
- Billard, A.; Calinon, S.; Dillmann, R.; Schaal, S. Survey: Robot Programming by Demonstration; Technical Report; Springrer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Alizadeh, T.; Karimi, N. Exploiting the task space redundancy in robot programming by demonstration. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 2394–2399. [Google Scholar] [CrossRef]
- Bottin, M.; Rosati, G. Trajectory optimization of a redundant serial robot using cartesian via points and kinematic decoupling. Robotics 2019, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Bottin, M.; Rosati, G.; Cipriani, G. Iterative Path Planning of a Serial Manipulator in a Cluttered Known Environment. Mech. Mach. Sci. 2021, 91, 237–244. [Google Scholar] [CrossRef]
- Lu, Y.A.; Tang, K.; Wang, C.Y. Collision-free and smooth joint motion planning for six-axis industrial robots by redundancy optimization. Robot. Comput.-Integr. Manuf. 2021, 68, 102091. [Google Scholar] [CrossRef]
- Calinon, S.; Sardellitti, I.; Caldwell, D. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010; pp. 249–254. [Google Scholar] [CrossRef]
- Touzani, H.; Hadj-Abdelkader, H.; Seguy, N.; Bouchafa, S. Multi-Robot Task Sequencing & Automatic Path Planning for Cycle Time Optimization: Application for Car Production Line. IEEE Robot. Autom. Lett. 2021, 6, 1335–1342. [Google Scholar] [CrossRef]
- Bellmore, M.; Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 1968, 16, 538–558. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, L.; Liu, Q. An improved whale optimization algorithm for the traveling salesman problem. Symmetry 2021, 13, 48. [Google Scholar] [CrossRef]
- Krishna, M.; Panda, N.; Majhi, S. Solving traveling salesman problem using hybridization of rider optimization and spotted hyena optimization algorithm. Expert Syst. Appl. 2021, 183, 115353. [Google Scholar] [CrossRef]
- Agrawal, A.; Ghune, N.; Prakash, S.; Ramteke, M. Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP. Expert Syst. Appl. 2021, 181, 115192. [Google Scholar] [CrossRef]
- Luo, Z.; Poon, M.; Zhang, Z.; Liu, Z.; Lim, A. The Multi-visit Traveling Salesman Problem with Multi-Drones. Transp. Res. Part C: Emerg. Technol. 2021, 128, 103172. [Google Scholar] [CrossRef]
- Bottin, M.; Faccio, M.; Minto, R.; Rosati, G. Sales kit automated production: An integrated procedure for setup reduction in case of high products variety. Appl. Sci. 2021, 11, 110. [Google Scholar] [CrossRef]
- Eren, E.; Rıfat Tuzkaya, U. Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19 pandemic. Comput. Ind. Eng. 2021, 157, 107328. [Google Scholar] [CrossRef]
- Vianello, C.; Strozzi, F.; Mocellin, P.; Cimetta, E.; Fabiano, B.; Manenti, F.; Pozzi, R.; Maschio, G. A perspective on early detection systems models for COVID-19 spreading. Biochem. Biophys. Res. Commun. 2021, 538, 244–252. [Google Scholar] [CrossRef]
- Su, F.; Kong, L.; Wang, H.; Wen, Z. Modeling and application for rolling scheduling problem based on TSP. App. Math. Comput. 2021, 407, 126333. [Google Scholar] [CrossRef]
- Hofmann, T.; Wenzel, D. How to minimize cycle times of robot manufacturing systems. Optim. Eng. 2021, 22, 895–912. [Google Scholar] [CrossRef]
- Alfandari, L.; Toulouse, S. Approximation of the Double Traveling Salesman Problem with Multiple Stacks. Theor. Comput. Sci. 2021, 877, 74–89. [Google Scholar] [CrossRef]
- He, P.; Hao, J.K.; Wu, Q. Grouping memetic search for the colored traveling salesmen problem. Inf. Sci. 2021, 570, 689–707. [Google Scholar] [CrossRef]
- Li, S.; Zeng, Q.; Chen, F.; Huang, X. A cost-effective planning method for automatic measurement based on task similarity and octopus optimization. Meas. Sci. Technol. 2021, 32, 095001. [Google Scholar] [CrossRef]
- Mocellin, P.; Vianello, C.; Maschio, G. CO2 transportation hazards in CCS and EOR Operations: Preliminary lab—Scale experimental investigation of CO2 pressurized releases. Chem. Eng. Trans. 2016, 48, 553–558. [Google Scholar] [CrossRef]
- Dutot, A.; Olivier, D. 5—Swarm Problem-Solving. In Agent-Based Spatial Simulation with NetLogo; Banos, A., Lang, C., Marilleau, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 117–172. [Google Scholar] [CrossRef]
- Bottin, M.; Rosati, G.; Boschetti, G. Working Cycle Sequence Optimization for Industrial Robots. Mech. Mach. Sci. 2021, 91, 228–236. [Google Scholar] [CrossRef]
- Kuffner, J.J., Jr.; La Valle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar]
- Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-connect algorithm based on triangular inequality for robot path planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Doan, N.C.N.; Lin, W. Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robot. Comput.-Integr. Manuf. 2017, 48, 233–242. [Google Scholar] [CrossRef]
- Bottin, M.; Boschetti, G.; Rosati, G. A novel collision avoidance method for serial robots. Mech. Mach. Sci. 2019, 66, 293–301. [Google Scholar] [CrossRef]
- Rossi, A.; Rosati, G.; Cenci, S.; Carli, A.; Riello, V.; Foroni, A.; Mantovani, M.; Zanotti, L. Flexible assembly system for heat exchanger coils. In Proceedings of the ETFA2011, Toulouse, France, 5–9 September 2011. [Google Scholar] [CrossRef]
- Pires, J.; Loureiro, A.; Godinho, T.; Ferreira, P.; Fernando, B.; Morgado, J. Welding robots. IEEE Robot. Autom. Mag. 2003, 10, 45–55. [Google Scholar] [CrossRef]
- Boschetti, G.; Faccio, M.; Milanese, M.; Minto, R. C-ALB (Collaborative Assembly Line Balancing): A new approach in cobot solutions. Int. J. Adv. Manuf. Technol. 2021, 116, 3027–3042. [Google Scholar] [CrossRef]
() | ||
---|---|---|
1 | 4 | 4 |
2 | 1 | 1 |
Scenario | Movement Time [s] | Mean Time Reduction | ||||
---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | ||
1 | 3.1755 | 3.2651 | 3.3701 | 3.376 | 3.216 | - |
2 | 3.0278 | 3.0972 | 3.1748 | 3.131 | 2.9833 | 6.02% |
3 | 2.969 | 3.0183 | 3.1519 | 3.131 | 2.9226 | 7.38% |
Cost | Movement Time [s] | ||||
---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | |
Minimum (TSP) | 2.969 | 3.0183 | 3.1519 | 3.131 | 2.9226 |
Mean | 6.5620 | 6.5752 | 6.6562 | 6.7475 | 6.5519 |
Maximum | 10.8018 | 10.7906 | 10.7883 | 10.9330 | 10.8422 |
Scenario | Movement Time [s] | Mean Time Reduction |
---|---|---|
1 | 3.766 | - |
2 | 3.758 | <1% |
3 | 3.486 | 7.43% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottin, M.; Boschetti, G.; Rosati, G. Optimizing Cycle Time of Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points. Robotics 2022, 11, 16. https://doi.org/10.3390/robotics11010016
Bottin M, Boschetti G, Rosati G. Optimizing Cycle Time of Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points. Robotics. 2022; 11(1):16. https://doi.org/10.3390/robotics11010016
Chicago/Turabian StyleBottin, Matteo, Giovanni Boschetti, and Giulio Rosati. 2022. "Optimizing Cycle Time of Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points" Robotics 11, no. 1: 16. https://doi.org/10.3390/robotics11010016
APA StyleBottin, M., Boschetti, G., & Rosati, G. (2022). Optimizing Cycle Time of Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points. Robotics, 11(1), 16. https://doi.org/10.3390/robotics11010016