Paquitop.arm, a Mobile Manipulator for Assessing Emerging Challenges in the COVID-19 Pandemic Scenario
<p>(<b>a</b>) The updated Paquitop mobile platform with the mounting structure. The two steering wheels are positioned along the major axis of the elliptical footprint, and the passive castor wheels are positioned along the minor axis. Thus, the resulting support polygon has a rhombic shape. (<b>b</b>) Paquitop.arm system and reference frame definition. Notice that <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mi>c</mi> <mo>}</mo> </mrow> </mrow> </semantics></math> is fixed to the mobile platform, positioned at ground level and in the center of the elliptical footprint. <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <mi>c</mi> <mi>l</mi> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> is the r.f. of a LiDAR camera, which is presented and discussed below.</p> "> Figure 2
<p>Example of four kinematics solutions to reach the target point <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0.15</mn> <mo>,</mo> <mn>0.25</mn> <mo>,</mo> <mn>0.55</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> m. While (<b>a</b>) is quite similar to (<b>b</b>,<b>c</b>) is similar to (<b>d</b>), only (<b>a</b>,<b>c</b>) are admitted due to the joint limit constraints.</p> "> Figure 3
<p>Paquitop.arm prototype with the Intel L515. On the right of the figure, the camera depth view is shown, with the distance measurement of a door handle point.</p> "> Figure 4
<p>Overall architecture for autonomous task execution.</p> "> Figure 5
<p>Task space representation with the arm in the retracted posture. The platform was supposed to reach the desired task space with a minimum <math display="inline"><semantics> <mi>y</mi> </semantics></math> distance of <math display="inline"><semantics> <mrow> <mn>0.05</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> between the task and the platform edge. The mounting parameters were <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> m, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> m, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>0</mn> <mo>°</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> on the relative position between the robot workspace (colored points cloud) and desired task spaces (gray rectangles): (<b>a</b>) with <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>0</mn> <mo>°</mo> </msup> </mrow> </semantics></math>, the elevator space was not reached; (<b>b</b>) with <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.15</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>0</mn> <mo>°</mo> </msup> </mrow> </semantics></math>, the elevator space was fully reached and the value of the <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>k</mi> </mrow> </semantics></math> parameter inside the table space increased.</p> "> Figure 7
<p>(<b>a</b>) Level curves of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> with respect to r.f. <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mi>c</mi> <mo>}</mo> </mrow> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>0</mn> <mo>°</mo> </msup> </mrow> </semantics></math>. The domain is a <math display="inline"><semantics> <mrow> <mi>X</mi> <mi>Y</mi> </mrow> </semantics></math> plane in order to evaluate the best position of the platform to approach the task. (<b>b</b>) Posture of the robot with <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <mi>e</mi> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> r.f. positioned at <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <mn>0.85</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> m. (<b>c</b>) Level curves of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> with respect to r.f. <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mi>c</mi> <mo>}</mo> </mrow> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mrow> <mn>20</mn> </mrow> <mo>°</mo> </msup> </mrow> </semantics></math>. (<b>d</b>) Posture of the robot with <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mi>e</mi> <mo>}</mo> </mrow> </mrow> </semantics></math> r.f. positioned at <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.85</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> m.</p> "> Figure 8
<p>The lateral approach of the mobile platform to the table task space, represented with a gray rectangle. The posture of the robot is computed to reach the extreme point of the space.</p> "> Figure 9
<p>(<b>a</b>) Choice of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mrow> <mn>20</mn> </mrow> <mo>°</mo> </msup> </mrow> </semantics></math>. No geometric interferences with the table are noticed, and the projection O of the center of mass of the system is inside the support polygon of the structure. (<b>b</b>) Interference between the arm and the table with the choice of <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <msup> <mrow> <mn>30</mn> </mrow> <mo>°</mo> </msup> </mrow> </semantics></math>. O is slightly outside the support polygon, so static balance is not guaranteed.</p> "> Figure 10
<p>Level curves of force transmission ratio <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for two values of the mounting parameter <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. The forward orientation of the manipulator towards the table task space has the global beneficial effect of increasing the value of the <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mn>0</mn> </msub> </mrow> </semantics></math> ratio.</p> ">
Abstract
:1. Introduction
1.1. Description of Paquitop.arm Prototype
1.2. On the Inverse Kinematics Problem of the Kinova Gen3 Lite
1.3. Camera-Based System Description
2. Task-Oriented Approach for Analysis of Mounting Parameters
Workspace and Stability Analysis
3. Dexterity and Force Transmission Ratio Analysis
3.1. Dexterity Analysis
3.2. Transmission Ratio Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romero-Garcés, A.; Martínez-Cruz, J.; Inglés-Romero, J.F.; Vicente-Chicote, C.; Marfil, R.; Bandera, A. Measuring quality of service in a robotized comprehensive geriatric assessment scenario. Appl. Sci. 2020, 10, 6618. [Google Scholar] [CrossRef]
- Christoforou, E.G.; Avgousti, S.; Ramdani, N.; Novales, C.; Panayides, A.S. The upcoming role for nursing and assistive robotics: Opportunities and challenges ahead. Front. Digit. Health 2020, 2, 39. [Google Scholar] [CrossRef]
- Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; Sevastopoulos, C.; Nambiappan, H.R.; Chaitanya, K.K.; Babu, A.R.; Mathew, J.; Makedon, F. A survey of robots in healthcare. Technologies 2021, 9, 8. [Google Scholar] [CrossRef]
- Yang, G.Z.; Nelson, B.J.; Murphy, R.R.; Choset, H.; Christensen, H.; Collins, S.H.; McNutt, M. Combating COVID-19-The role of robotics in managing public health and infectious diseases. Sci. Robot. 2020, 5, eabb5589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campion, G.; Bastin, G.; Dandrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 1996, 12, 47–62. [Google Scholar] [CrossRef]
- Duy, V.H.; Dao, T.T.; Quang, N.T.; Le, N.B. Study on mechanical structure design for innovative multi-function assistive mobile robot. Recent Adv. Electr. Eng. Relat. Sci. 2016, 371, 645–654. [Google Scholar]
- Dragoicea, M.; Shivarov, N. Assistive mobile robot technology for real-time task implementation. In Proceedings of the RAAD, 18th International Workshop on Robotics in Alpe-Adria-Danube Region, Brasov, Romania, 25–27 May 2009; Volume 4. [Google Scholar]
- Canal, G.; Escalera, S.; Angulo, C. A real-time human-robot interaction system based on gestures for assistive scenarios. Comput. Vis. Image Understand. 2016, 149, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Chwa, D. Tracking control of differential-drive wheeled mobile robots using a backstepping-like feed-back linearization. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 1285–1295. [Google Scholar] [CrossRef]
- Yunardi, R.T.; Arifianto, D.; Bachtiar, F.; Prananingrum, J.I. Holonomic implementation of three wheels omnidirectional mobile robot using dc motors. J. Robot. Control 2021, 2, 65–71. [Google Scholar] [CrossRef]
- Carbonari, L.; Botta, A.; Cavallone, P.; Quaglia, G. Functional design of a novel over-actuated mobile robotic platform for assistive tasks. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Poitiers, France, 17–19 June 2020; Springer: Cham, Switzerland, 2020; pp. 380–389. [Google Scholar]
- Tagliavini, L.; Botta, A.; Carbonari, L.; Quaglia, G.; Gandini, D.; Chiaberge, M. Mechatronic design of a mobile robot for personal assistance. In Proceedings of the ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Online, 17–19 August 2021. [Google Scholar]
- Tagliavini, L.; Botta, A.; Cavallone, P.; Carbonari, L.; Quaglia, G. On the suspension design of paquitop, a novel service robot for home assistance applications. Machines 2021, 9, 52. [Google Scholar] [CrossRef]
- Carbonari, L.; Botta, A.; Cavallone, P.; Tagliavini, L.; Quaglia, G. Dynamics Characterization of Paquitop: A Novel Platform for Robotized Domestic Applications. In Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition, Dynamics, Vibration, and Control, Virtual (Online), 16–19 November 2020; Volume 7B. [Google Scholar]
- Carbonari, L.; Tagliavini, L.; Botta, A.; Cavallone, P.; Quaglia, G. Preliminary observations for functional design of a mobile robotic manipulator. Mech. Mach. Sci. 2021, 102, 39–46. [Google Scholar]
- Bostelman, R.; Hong, T.; Marvel, J. Performance measurement of mobile manipulators. In Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9498. [Google Scholar]
- El Dine, K.M.; Corrales Ramon, J.A.; Mezouar, Y.; Fauroux, J.C.A. Unified Mobile Manipulator Control for On-line Tip-over Avoidance Based on ZMP Disturbance Observer. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1437–1443. [Google Scholar]
- Primrose, E.J. On the input-output equation of the general 7R mechanism. Mech. Mach. Theory 1986, 21, 509–510. [Google Scholar] [CrossRef]
- Lee, H.Y.; Woernle, C.; Hiller, M. A complete solution for the inverse kinematic problem of the general 6r robot manipulator. J. Mech. Des. 1991, 113, 481–486. [Google Scholar] [CrossRef]
- Zohour, H.; Belzile, B.; St-Onge, D. Kinova Gen3-Lite manipulator inverse kinematics: Optimal polynomial solution. arXiv 2021, arXiv:2102.01217. [Google Scholar]
- Merlet, J.P. Jacobian, manipulability, condition number, and accuracy of parallel robots. J. Mech. Des. 2006, 128, 199–206. [Google Scholar] [CrossRef]
- Angeles, J. Fundamentals of Robotic Mechanical Systems, Theory, Methods and Algorithms, 2nd ed.; Springer: New York, NY, USA, 2003; pp. 180–188. [Google Scholar]
- Chiu, S.L. Task compatibility of manipulator postures. Int. J. Robot. Res. 1988, 7, 13–21. [Google Scholar] [CrossRef]
Joint | Inverse Kinematics Solutions | |||
---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colucci, G.; Tagliavini, L.; Carbonari, L.; Cavallone, P.; Botta, A.; Quaglia, G. Paquitop.arm, a Mobile Manipulator for Assessing Emerging Challenges in the COVID-19 Pandemic Scenario. Robotics 2021, 10, 102. https://doi.org/10.3390/robotics10030102
Colucci G, Tagliavini L, Carbonari L, Cavallone P, Botta A, Quaglia G. Paquitop.arm, a Mobile Manipulator for Assessing Emerging Challenges in the COVID-19 Pandemic Scenario. Robotics. 2021; 10(3):102. https://doi.org/10.3390/robotics10030102
Chicago/Turabian StyleColucci, Giovanni, Luigi Tagliavini, Luca Carbonari, Paride Cavallone, Andrea Botta, and Giuseppe Quaglia. 2021. "Paquitop.arm, a Mobile Manipulator for Assessing Emerging Challenges in the COVID-19 Pandemic Scenario" Robotics 10, no. 3: 102. https://doi.org/10.3390/robotics10030102
APA StyleColucci, G., Tagliavini, L., Carbonari, L., Cavallone, P., Botta, A., & Quaglia, G. (2021). Paquitop.arm, a Mobile Manipulator for Assessing Emerging Challenges in the COVID-19 Pandemic Scenario. Robotics, 10(3), 102. https://doi.org/10.3390/robotics10030102