Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis
<p>Friction versus speed changes as the robot warms up for each joint.</p> "> Figure 2
<p>One cycle of the test trajectory on all joints. The first section is reserved for the estimation of the inertial parameters. The second one is specially designed for friction estimation; the joints are moved individually one after the other to highlight the contribution of the friction component in the motor output. The last section takes care of heating the joints by performing a high-speed point-to-point movement for a few minutes.</p> "> Figure 3
<p>Position performed by each joint during the execution of the final excitation trajectory.</p> "> Figure 4
<p>Principle used for the simplified model of (<a href="#FD11-robotics-10-00049" class="html-disp-formula">11</a>) when just one joint is moved at each time and the others assume a predefined value (example of Joint 2) The robot in the figure is the 3D model of the manipulator used in this work.</p> "> Figure 5
<p>Experimental data. (<b>a</b>) The torque motor output of Joints 2 and 3 during the friction measure cycle. Data collected from one test on “Robot 1” (60% of the velocity). (<b>b</b>) The same data without the gravity effect.</p> "> Figure 6
<p>(<b>a</b>) Mean value of friction torque versus time for each test on “Robot 1”. Experimental data, Joint 3, and velocity at 60%. (<b>b</b>) Fitting of the data using (<a href="#FD16-robotics-10-00049" class="html-disp-formula">16</a>).</p> "> Figure 7
<p>Friction torque versus time for all joints in Tests 1–4 performed on “Robot 1”, with the velocity at 60%. The Mix curve is the results of the curve fitting by merging the data of each test. Joint 6 had a variation on Day 4, probably due to a measurement error, but the reason is under analysis.</p> "> Figure 8
<p>Scheme of the interconnections between the dynamic, the friction, and the thermal model and the possible use for advanced applications (predictive maintenance, virtual force sensor [<a href="#B46-robotics-10-00049" class="html-bibr">46</a>], and human–robot interaction). Symbols with the “hat” marks the estimated values, symbols without the “hat” are real values.</p> "> Figure 9
<p>Experimental data. (<b>a</b>) Evolution of the identified values <math display="inline"><semantics> <msub> <mi>P</mi> <mi>y</mi> </msub> </semantics></math> of Joint 3 for all the tests on “Robot 2”. (<b>b</b>) The evolution of the same parameter, but slightly widening the scale of the value. It is worth noting that the difference between the initial and final estimations is less than 5%.</p> "> Figure 10
<p>Velocity and torque versus time during a working cycle in cold and hot conditions: experimental data for all 6 Joints.</p> "> Figure 11
<p>Example of measured and predicted torque (dynamics plus friction) in cold and hot conditions on the same trajectory with variable velocity (Joint 5, Test 1).</p> "> Figure 12
<p>Evolution of the identified values <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>x</mi> <mi>x</mi> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mrow> <mi>I</mi> <mi>x</mi> <mi>y</mi> </mrow> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mrow> <mi>I</mi> <mi>x</mi> <mi>z</mi> </mrow> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mrow> <mi>I</mi> <mi>y</mi> <mi>z</mi> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>z</mi> <mi>z</mi> </mrow> </semantics></math> of Joint 2 for all the tests on “Robot 1” and “Robot 2”. The values of the parameters are repeatable and quite similar between the two robots.</p> "> Figure 13
<p>(<b>Top</b>) The friction torque versus time for “Robot 1” and “Robot 2”. During one of the tests on “Robot 2”, a mechanical problem occurred. It is possible to see the unexpected increase in torque on the left-side graph. The graph on the opposite side shows the ordinary behavior of “Robot 1” performing the same tests. (<b>Bottom</b>) The evolution of the friction parameters (Equation (<a href="#FD4-robotics-10-00049" class="html-disp-formula">4</a>)) during the tests performed on “Robot 2”. It is evident how the mechanical problem results in a change in the model values.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamic Model and Parameters
2.2. Excitation Trajectory
2.3. Temperature Effects
Algorithm 1:Evolution of the estimated temperature |
Input: velocity ; estimated temperature and at the steps and ; discretization period Output: estimated temperature at step k ; ; thermal model; |
2.4. Data Acquisition and Elaboration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beschi, M.; Villagrossi, E.; Pedrocchi, N.; Tosatti, L.M. A general analytical procedure for robot dynamic model reduction. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE: New York, NY, USA, 2015; pp. 4127–4132. [Google Scholar]
- Khosla, P.K.; Kanade, T. Real-time implementation and evaluation of the computed-torque scheme. IEEE Trans. Robot. Autom. 1989, 5, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Carabin, G.; Scalera, L. On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems. Robotics 2020, 9, 89. [Google Scholar] [CrossRef]
- Pasinetti, S.; Nuzzi, C.; Lancini, M.; Sansoni, G.; Docchio, F.; Fornaser, A. Development and characterization of a safety system for robotic cells based on multiple Time of Flight (TOF) cameras and point cloud analysis. In Proceedings of the 2018 Workshop on Metrology for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Matheson, E.; Minto, R.; Zampieri, E.G.; Faccio, M.; Rosati, G. Human–Robot Collaboration in Manufacturing Applications: A Review. Robotics 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Cannan, J.; Hu, H. Human-Machine Interaction (HMI): A Survey; University of Essex: Colchester, UK, 2011. [Google Scholar]
- Gautier, M.; Khalil, W. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 1990, 6, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Gautier, M.; Khalil, W. Identification of the minimum inertial parameters of robots. In Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; IEEE: New York, NY, USA, 1989; pp. 1529–1530. [Google Scholar]
- Gautier, M. Numerical calculation of the base inertial parameters of robots. J. Robot. Syst. 1991, 8, 485–506. [Google Scholar] [CrossRef]
- Swevers, J.; Ganseman, C.; Tukel, D.B.; De Schutter, J.; Van Brussel, H. Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 1997, 13, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Villagrossi, E.; Legnani, G.; Pedrocchi, N.; Vicentini, F.; Tosatti, L.M.; Abbà, F.; Bottero, A. Robot dynamic model identification through excitation trajectories minimizing the correlation influence among essential parameters. In Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria, 1–3 September 2014; IEEE: New York, NY, USA, 2014; Volume 2, pp. 475–482. [Google Scholar]
- Swevers, J.; Ganseman, C.; De Schutter, J.; Van Brussel, H. Generation of periodic trajectories for optimal robot excitation. J. Manuf. Sci. Eng. 1997, 119, 611–615. [Google Scholar] [CrossRef]
- Márton, L.; van der Linden, F. Temperature dependent friction estimation: Application to lubricant health monitoring. Mechatronics 2012, 22, 1078–1084. [Google Scholar] [CrossRef]
- Andersson, S.; Söderberg, A.; Björklund, S. Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 2007, 40, 580–587. [Google Scholar] [CrossRef]
- Stribeck, R. Kugellager für beliebige belastungen (ball bearings for arbitrary loads). In Mitteilungen aus der Centralstelle für wissenschaftlichtechnische Untersuchungen; HS Hermann: Berlin, Germany, 1900. [Google Scholar]
- Stribeck, R. Die wesentlichen eigenschaften der gleit-und rollenlager. Z. Des Vereines Dtsch. Ingenieure 1902, 46, 1341–1348. [Google Scholar]
- Simoni, L.; Beschi, M.; Legnani, G.; Visioli, A. On the inclusion of temperature in the friction model of industrial robots. IFAC-PapersOnLine 2017, 50, 3482–3487. [Google Scholar] [CrossRef]
- Dahl, P.R. A Solid Friction Model; Technical Report; Aerospace Corp El Segundo Ca: El Segundo, CA, USA, 1968. [Google Scholar]
- Lampaert, V.; Al-Bender, F.; Swevers, J. A generalized Maxwell-slip friction model appropriate for control purposes. In Proceedings of the 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No. 03EX775), St. Petersburg, Russia, 20–22 August 2003; IEEE: New York, NY, USA, 2003; Volume 4, pp. 1170–1177. [Google Scholar]
- Ruderman, M. Presliding hysteresis damping of LuGre and Maxwell-slip friction models. Mechatronics 2015, 30, 225–230. [Google Scholar] [CrossRef]
- Ferretti, G.; Magnani, G.; Rocco, P. Single and multistate integral friction models. IEEE Trans. Autom. Control 2004, 49, 2292–2297. [Google Scholar] [CrossRef]
- Piatkowski, T. GMS friction model approximation. Mech. Mach. Theory 2014, 75, 1–11. [Google Scholar] [CrossRef]
- Freidovich, L.; Robertsson, A.; Shiriaev, A.; Johansson, R. LuGre-model-based friction compensation. IEEE Trans. Control Syst. Technol. 2009, 18, 194–200. [Google Scholar] [CrossRef]
- De Wit, C.C.; Olsson, H.; Astrom, K.J.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Johanastrom, K.; Canudas-De-Wit, C. Revisiting the LuGre friction model. IEEE Control Syst. Mag. 2008, 28, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Mallon, N.; van de Wouw, N.; Putra, D.; Nijmeijer, H. Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Trans. Control Syst. Technol. 2006, 14, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.Y.; Trumper, D.L. Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance. Mechatronics 2014, 24, 734–741. [Google Scholar] [CrossRef]
- Bittencourt, A.C.; Wernholt, E.; Sander-Tavallaey, S.; Brogårdh, T. An extended friction model to capture load and temperature effects in robot joints. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: New York, NY, USA, 2010; pp. 6161–6167. [Google Scholar]
- Bittencourt, A.C.; Axelsson, P. Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data. IEEE/ASME Trans. Mechatronics 2013, 19, 1694–1706. [Google Scholar] [CrossRef]
- Bittencourt, A.C.; Gunnarsson, S. Static friction in a robot joint—modeling and identification of load and temperature effects. J. Dyn. Syst. Meas. Control 2012, 134, 051013. [Google Scholar] [CrossRef]
- Pirro, D.M.; Webster, M.; Daschner, E. Lubrication Fundamentals, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Neubauer, M.; Gattringer, H.; Bremer, H. A persistent method for parameter identification of a seven-axes manipulator. Robotica 2015, 33, 1099. [Google Scholar] [CrossRef]
- Bhushan, B. Frictional heating and contact temperatures. In Modern Tribology Handbook, Two Volume Set; CRC Press: Boca Raton, FL, USA, 2000; pp. 257–294. [Google Scholar]
- Zhao, Z. The Study of Friction Variation with Temperature in a Harmonic Drive System: Modeling and Control. Ph.D. Thesis, Concordia University, Concordia, KS, USA, 2006. [Google Scholar]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed. Available online: https://www.pearson.com/us/higher-education/product/Craig-Introduction-to-Robotics-Mechanics-and-Control-3rd-Edition/9780201543612.html (accessed on 18 March 2021).
- Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots; Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- Liu, Y.; Li, J.; Zhang, Z.; Hu, X.; Zhang, W. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Simoni, L.; Beschi, M.; Legnani, G.; Visioli, A. Modelling the temperature in joint friction of industrial manipulators. Robotica 2019, 37, 906–927. [Google Scholar] [CrossRef] [Green Version]
- Armstrong-Helouvry, B. Stick slip and control in low-speed motion. IEEE Trans. Autom. Control 1993, 38, 1483–1496. [Google Scholar] [CrossRef]
- Grisetti, G.; Guadagnino, T.; Aloise, I.; Colosi, M.; Della Corte, B.; Schlegel, D. Least Squares Optimization: From Theory to Practice. arXiv 2020, arXiv:2002.11051. [Google Scholar] [CrossRef]
- Pagani, R.; Legnani, G.; Incerti, G.; Gheza, M. Evaluation and Modeling of the Friction in Robotic Joints Considering Thermal Effects. J. Mech. Robot. 2020, 12, 021108. [Google Scholar] [CrossRef]
- Legnani, G.; Simoni, L.; Beschi, M.; Visioli, A. A new friction model for mechanical transmissions considering joint temperature. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 50183, p. V006T09A020. [Google Scholar]
- Legnani, G.; Incerti, G.; Pagani, R.; Gheza, M. Modelling and Evaluation of the Friction in Robotic Joints Considering Thermal Effects. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 59230, p. V05AT07A062. [Google Scholar]
- Flores, P.; Ambrósio, J. On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 2010, 24, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Slamani, M.; Bonev, I.A. Characterization and experimental evaluation of gear transmission errors in an industrial robot. Ind. Robot Int. J. 2013, 40, 441–449. [Google Scholar] [CrossRef]
- Villagrossi, E.; Simoni, L.; Beschi, M.; Pedrocchi, N.; Marini, A.; Tosatti, L.M.; Visioli, A. A virtual force sensor for interaction tasks with conventional industrial robots. Mechatronics 2018, 50, 78–86. [Google Scholar] [CrossRef]
Time Constants [minutes] | Joint 1 | Joint 2 | Joint 3 | Joint 4 | Joint 5 | Joint 6 | |
---|---|---|---|---|---|---|---|
Test 1 | 2.7225 | 0.8660 | 0.5744 | 3.7650 | 0.2517 | 0.3447 | |
Test 2 | 2.5567 | 0.3759 | 0.3843 | 3.7030 | 0.2517 | 8.1392 | |
Test 3 | 1.6965 | 0.2764 | 1.7228 | 2.9969 | 2.0369 | 3.4120 | |
Test 4 | 2.6349 | 0.2411 | 1.6935 | 2.7938 | 0.3501 | 2.9116 | |
Mix | 2.4465 | 0.2949 | 0.9172 | 3.3109 | 0.3254 | 7.9114 | |
Test 1 | 35.2402 | 16.6674 | 22.7429 | 25.8915 | 20.2852 | 12.4031 | |
Test 2 | 38.9724 | 18.2785 | 24.5982 | 25.7891 | 20.2852 | 27.4701 | |
Test 3 | 35.1088 | 17.0822 | 24.1063 | 22.4337 | 21.1967 | 25.4714 | |
Test 4 | 33.0730 | 18.1980 | 23.3652 | 22.8253 | 21.9113 | 19.5745 | |
Mix | 35.4424 | 17.0107 | 23.7187 | 24.0566 | 20.6529 | 32.5835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Pagani, R.; Beschi, M.; Legnani, G. Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis. Robotics 2021, 10, 49. https://doi.org/10.3390/robotics10010049
Hao L, Pagani R, Beschi M, Legnani G. Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis. Robotics. 2021; 10(1):49. https://doi.org/10.3390/robotics10010049
Chicago/Turabian StyleHao, Lei, Roberto Pagani, Manuel Beschi, and Giovanni Legnani. 2021. "Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis" Robotics 10, no. 1: 49. https://doi.org/10.3390/robotics10010049
APA StyleHao, L., Pagani, R., Beschi, M., & Legnani, G. (2021). Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis. Robotics, 10(1), 49. https://doi.org/10.3390/robotics10010049