Is Composition of Brain Clot Retrieved by Mechanical Thrombectomy Associated with Stroke Aetiology and Clinical Outcomes in Acute Ischemic Stroke?—A Systematic Review and Meta-Analysis
"> Figure 1
<p>PRISMA Flowchart. Abbreviations: TICI: Thrombolysis in Cerebral Infarction scale, HMCAS: Hyperdense Middle Cerebral Artery Sign, N: Number of Studies, <span class="html-italic">n</span>: Number of Patients.</p> "> Figure 2
<p>Forest Plots of Meta-analyses on RBC Content and Aetiology. (<b>A</b>): Non-cardioembolic vs. Cardioembolic Stroke. (<b>B</b>): LAA vs. Cardioembolic Stroke. (<b>C</b>): Cryptogenic vs. Non-cardioembolic stroke. (<b>D</b>): Cryptogenic vs. LAA stroke. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, RBC: Red Blood Cell, LAA: Large Artery Atherosclerosis.</p> "> Figure 3
<p>Forest Plots of Meta-analyses on Fibrin Content and Aetiology. (<b>A</b>): Cardioembolic vs. Non-cardioembolic stroke. (<b>B</b>): Cardioembolic vs. LAA stroke. (<b>C</b>): Cryptogenic vs. non-cardioembolic stroke. (<b>D</b>): Cryptogenic vs. LAA Stroke. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, LAA: Large Artery Atherosclerosis.</p> "> Figure 4
<p>Forest Plots of Meta-analyses on Platelet Content and Aetiology. (<b>A</b>): Cardioembolic vs. LAA Stroke. (<b>B</b>): Cryptogenic vs. LAA Stroke. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, LAA: Large Artery Atherosclerosis.</p> "> Figure 5
<p>Forest Plots of Meta-analyses on WBC Content and Aetiology. (<b>A</b>): Cardioembolic vs. LAA Stroke. (<b>B</b>): Cryptogenic vs. LAA Stroke. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, WBC: white blood cell; LAA: Large Artery Atherosclerosis.</p> "> Figure 6
<p>Forest Plot of Meta-analysis on RBC Content and Successful Recanalisation. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, RBC: Red Blood Cell.</p> "> Figure 7
<p>Forest Plot of Meta-analysis on RBC Content and Positive HMCAS. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, RBC: Red Blood Cell, HMCAS: Hyperdence Middle Cerebral Artery Sign.</p> "> Figure 8
<p>Forest Plots of Meta-analyses on clot composition and bridging thrombolysis. (<b>A</b>): RBC content and bridging thrombolysis. (<b>B</b>) Fibrin content and bridging thrombolysis. Abbreviations: DL: DerSimonian and Laird method, SMD: Standarized Mean Difference, CI: Confidence Interval, RBC: Red Blood Cell.</p> ">
Abstract
:1. Introduction
- (1)
- Is clot composition associated with stroke aetiology?
- (2)
- Is clot composition associated with successful recanalisation?
- (3)
- Is clot composition associated with the pre-interventional HMCAS? and
- (4)
- Does bridging thrombolysis influence brain clot composition following EVT?
2. Methods
2.1. Literature Search: Identification and Selection of Studies
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment of Included Studies
2.5. Statistical Analysis
2.6. Investigations of Heterogeneity
3. Results
3.1. Results of the Search
3.2. Study Characteristics
3.3. Association between RBC Content and Aetiology
3.4. Association between Fibrin and Aetiology
3.5. Association between Platelet Content and Aetiology
3.6. Association between WBC Content and Aetiology
3.7. Association between RBC Content and Cryptogenic Stroke
3.8. Association between Fibrin Content and Cryptogenic Stroke
3.9. Association between Platelet Content and Cryptogenic Stroke
3.10. Association between WBC Content and Cryptogenic Stroke
3.11. Association between Clot Composition and Successful Recanalisation
3.12. Association between Clot Composition and Pre-interventional Imaging Signs
3.13. Influence of Bridging Thrombolysis on RBC Content
3.14. Influence of Bridging Thrombolysis on Fibrin Content
4. Discussion
Study ID | Study | Design | No. of Centres | Cohort Size | Age, Mean (SD) | Male, n (%) | Histological Staining Method(s) | Thrombectomy Device(s) | TICI 2b–3, n (%) | HMCAS +, n (%) | IVT, n (%) | RBC, Mean % (SD) | TOAST, n | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 5 | |||||||||||||
1 | Ahn et al. (2016) [16] | Retrospective Cohort | 1 | 36 | 69.3 (8.6) | 24 (67) | H&E, MSB, CD42b | Penumbra System | 28 (78) | 31/35 a (89) | 20 (56) | 37 (17) | 8 | 22 | 6 | |
2 | Boeckh-Behrens et al. (2016a) [35] | Prospective Cohort | 1 | 34 | 79 (18–90) b | 13 (38) | H&E, EVG | Solitaire 4–20, Solitaire 6–30, Trevo, Trevo pro 4, or Penumbra 4 | 34 (100) | 18/29 a (62) | 16 (47) | 32 (23) | 3 | 16 | 6 | 9 |
3 | Hashimoto et al. (2016) [36] | Retrospective Cohort | 1 | 83 | 75.1 (9.6) | 52 (63) | H&E, Masson’s Trichrome | Merci retriever, Penumbra system, Stent retrievers, ADAPT: Penumbra 5MAX ACE catheter | 58 (70) | 50 (60) | 53 (24) | 8 | 64 | 1 | 10 | |
4 | Maekawa et al. (2018) [17] | Retrospective Cohort | 1 | 43 | 76.6 (13.8) | 21 (49) | H&E | Solitaire stent, Trevo retriever | 42 (98) | 20 (47) | 33 (27) | 5 | 30 | 1 | 7 | |
5 | Boeckh-Behrens et al. (2016a) [20] | Retrospective Cohort | 1 | 137 c | 73 (18–92) b | 67 (49) | H&E | 85 (62) | 43 (23) | 22 | 67 | 11 | 36 | |||
6 | Duffy et al. (2019) [22] | Retrospective Cohort | 1 | 60 | Trevo (Stryker), Embotrap (Cerenovus), and Catch (Balt) | 54 (90) | 38 (63) | 48 (20) | 15 | 20 | 3 | 22 | ||||
7 | Fitzgerald et al. (2019b) [23] | Retrospective Cohort | >1 | 105 | 68 (25–93) b | H&E, MSB | 103 (98) | 51 (49) | 41.9 | 20 | 52 | 12 | 21 | |||
8 | Funatsu et al. (2019) [37] | Retrospective Cohort | 1 | 101 | 74.9 (11.1) | 54 (53) | H&E, Mas son’s Trichrome, EVG | ADAPT, Solitaire FR, XP ProVue Retriever, REVIVE SE, Solumbra catheter, Penumbra catheter | 86 (85) | 41 (41) | 11 | 79 | 11 | |||
9 | Goebel et al. (2020) [39] | Retrospective Cohort | 1 | 85 | 72 (12.9) | 37 (44) | H&E, Ladewig trichrome, EVG, Von kossa, naphthol AS-D, chloroacetate, Prussian blue, CD68, CD45 | 5F Sofia distal access catheter, 6F Sofia Plus aspiration catheter, Penumbra catheter, Solitaire Stent retriever | 77 (91) | 43 (51) | 52 (61) | 41.7 | 16 | 51 | 1 | 17 |
10 | Khismatullin et al. (2020) [32] | Retrospective Cohort | 1 | 41 | 72 (1.5) | 24 (59) | H&E, scanning electron microscope | pRESET thrombectomy device, Catch retriever, Solitaire stent retriever, Penumbra aspiration system | 30 (73) | 18 | 23 | |||||
11 | Kim et al. (2015) [25] | Prospective Cohort | 1 | 37 | 69 (40–91) b | 20 (54) | H&E, CD61 | Solitaire Stent, Penumbra catheter | 31 (84) | 23 (62) | 29 (29) | 8 | 22 | 7 | ||
12 | Shin et al. (2018) [26] | Retrospective Cohort | 1 | 37 | 69.5 (14) | 20 (54) | H&E | Solitaire Stent retriever, Penumbra system | 31 (84) | 13/36 a (36) | 16 (43) | 32 (18) | 7 | 22 | 8 | |
13 | Sporns et al. (2017a) [38] | Cohort | 1 | 180 | 71 (15) | 92 (51) | H&E, EVG, Prussian Blue, CD3, CD20, CD68/KiM1P | pREset stent retriever | 168 (93) | 120 (67) | 32 (29) | 34 | 74 | 11 | 60 | |
14 | Sporns et al. (2017b) [21] | Retrospective Cohort | 1 | 187 | 71 (16) | 98 (52) | H&E, EVG, Prussian Blue, CD3, CD20, CD68/KiM1P | pREset stent retriever | 175 (94) | 123 (66) | 32 (29) | 35 | 77 | 11 | 64 | |
15 | Ye et al. (2021) [40] | Retrospective Cohort | 1 | 53 | 76 (14) | 26 (49) | H&E, MSB, VWF | Solumbra | 49 (92) | 37 (70) | 15 (28) | 33 (22) | 12 | 34 | 7 | |
16 | Essig et al. (2020) [34] | Retrospective Cohort | 1 | 37 | 65 (16) | 18 (49) | H&E, CD66b, Neutrophil elastase, H3Cit | 26 (70) | 7 d | 21 | 9 | |||||
17 | Kim et al. (2020) [24] | Retrospective Cohort | 1 | 52 | 62 (44) | 20 (38) | MSB, CD61, CD31, CD34 | Solitaire SR, Trevo SR, Penumbra catheter | 42 (81) | 35 (67) | 17 (23) | 10 | 31 | 11 | ||
18 | Liao et al. (2020) [19] | Retrospective Cohort | 1 | 88 | 63 (16) | 59 (67) | H&E, CD31 | 23 (26) | 43 (14) | 25 | 46 | 6 | 11 | |||
19 | Niesten et al. (2014) [18] | Retrospective Cohort | 2 | 22 | 60 (13) | 11 (50) | H&E, Mallory’s phosphotungstic acid-hematoxylin | Merci retriever, Trevo retriever, Solitaire stent | 17 (77) | 38 (19) | 8 | 6 | 3 | 5 | ||
20 | Liebeskind et al. (2011) [33] | Retrospective Cohort | 1 | 50 | 66 (21) | 26 (52) | H&E | Merci Retriever | 10/20 (50) a | 7 (14) | 34 (21) | 66 | 21 | 26 | 33 | |
21 | Rossi et al. (2021) [60] | Prospective Cohort | 4 | 1000 | MSB | 893 (89) | 451 (45) | 44 (25) | 221 | 346 | 55 | 255 e |
RBC, Mean % (SD) | Fibrin, Mean % (SD) | Platelet, Mean % (SD) | Fibrin/Platelet, Mean % (SD) | WBC, Mean % (SD) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study ID | TOAST Study | 1 | 2 | 1 + 4 | 5 | 1 | 2 | 1 + 4 | 5 | 1 | 2 | 1 + 4 | 5 | 1 | 2 | 1 + 4 | 5 | 1 | 2 | 1 + 4 | 5 |
1 | Ahn et al. (2016) [16] | 60 (12) | 30 (12) | 30 (22) | 23 (7) | 40 (14) | 36 (14) | 17 (5) | 26 (13) | 29 (11) | 4 (3) | 5 (3) | 5 (3) | ||||||||
2 | Boeckh-Behrens et al. (2016a) [35] | 5 (1) | 10 (7) | 6 (2) | |||||||||||||||||
4 | Maekawa et al. (2018) [17] | 51 (21) | 30 (26) | 50 (26) | 58 (33) | 33 (39) | 66 (26) | 46 (26) | 39 (32) | 4 (3) | 4 (3) | 3 (5) | |||||||||
5 | Boeckh-Behrens et al. (2016a) [20] | 56 (30) | 38 (20) | 53 (25) | 42 (21) | 36 (26) | 53 (19) | 41 (23) | 51 (21) | 6 (5) | 7 (4) | 9 (6) | 7 (5) | ||||||||
6 | Duffy et al. (2019) [22] | 55 (19) | 49 (23) | 44 (17) | 41 (16) | 46 (22) | 51 (17) | 4 (3) | 5 (3) | 5 (3) | |||||||||||
7 | Fitzgerald et al. (2019b) [23] | 42 (23) | 41 (24) | 44 (23) | 40 (20) | 33 (22) | 42 (25) | 33 (19) | 37 (21) | 22 (19) | 14 (14) | 17 (15) | 3 (2) | 3 (2) | 3 (3) | 5 (5) | |||||
9 | Goebel et al. (2020) [39] | 11 (11) | 20 (9) | 14 (9) | |||||||||||||||||
10 | Khismatullin et al. (2020) [32] | 13 (7) | 23 (11) | ||||||||||||||||||
11 | Kim et al. (2015) [25] | 8 (12) | 38 (28) | 27 (34) | 52 (22) | 32 (18) | 44 (30) | 35 (18) | 27 (16) | 27 (8) | 5 (4) | 3 (4) | 2 (2) | ||||||||
12 | Shin et al. (2018) [26] | 18 (15) | 37 (17) | 30 (17) | 76 (14) | 65 (17) | 65 (17) | 6 (4) | 3 (1) | 5 (3) | |||||||||||
14 | Sporns et al. (2017b) [21] | 31 (32) | 45 (39) | 27 (25) | 60 (30) | 47 (38) | 62 (25) | 9 (6) | 6 (5) | 10 (7) | |||||||||||
16 | Essig et al. (2020) [34] | 46 (30) | 26 (12) | 47 (22) | |||||||||||||||||
17 | Kim et al. (2020) [24] | 22 (25) | 18 (23) | 16 (21) | |||||||||||||||||
18 | Liao et al. (2020) [19] | 45 (13) | 36 (15) | 43 (13) | 38 (14) | 30 (18) | 38 (17) | 29 (17) | 43 (15) | 25 (16) | 26 (13) | 16 (12) | |||||||||
19 | Niesten et al. (2014) [18] | 52 (17) | 29 (16) | 46 (17) | 21 (16) | 18 (9) | 33 (20) | 19 (10) | 24 (14) | 31 (12) | 37 (23) | 55 (25) |
Study ID | Study | RBC, Mean % (SD) | Fibrin, Mean % (SD) | Platelet, Mean % (SD) | Fibrin/Platelet, Mean % (SD) | WBC, Mean % (SD) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
TICI 0–2a | TICI 2b–c | TICI 0–2a | TICI 2b–c | TICI 0–2a | TICI 2b–c | TICI 0–2a | TICI 2b–c | TICI 0–2a | TICI 2b–c | ||
1 | Ahn et al. (2016) [16] | 34 (20) | 36 (17) | 41 (18) | 34 (14) | 20 (10) | 26 (12) | 5 (4) | 4 (2) | ||
3 | Hashimoto et al. (2016) [36] | 47 (24) | 57 (23) | 48 (24) | 42 (22) | ||||||
8 | Funatsu et al. (2019) [37] | 42 (25) | 58 (24) | ||||||||
12 | Shin et al. (2018) [26] | 24 (29) | 33 (15) | 71 (27) | 63 (14) | 5 (3) | 3 (2) | ||||
13 | Sporns et al. (2017a) [38] | 21 (27) | 33 (29) | 70 (34) | 51 (30) | 10 (7) | 8 (5) |
Study ID | Study | RBC, Mean % (SD) | Fibrin, Mean % (SD) | Platelet, Mean % (SD) | Fibrin/Platelet, Mean % (SD) | WBC, Mean % (SD) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
HMCAS+ | HMCAS− | HMCAS+ | HMCAS− | HMCAS+ | HMCAS- | HMCAS+ | HMCAS− | HMCAS+ | HMCAS− | ||
1 | Ahn et al. (2016) [16] | 37 (19) | 29 (12) | 35 (15) | 34 (7) | 24 (12) | 30 (8) | 5 (3) | 7 (4) | ||
2 | Boeckh-Behrens et al. (2016a) [35] | 31 (23) | 16 (18) | ||||||||
12 | Shin et al. (2018) [26] | 40 (10) | 26 (20) | 56 (9) | 69 (18) | 4 (2) | 4 (3) | ||||
15 | Ye et al. (2021) [40] | 40 (23) | 21 (19) | 34 (16) | 44 (18) | 21 (15) | 30 (26) | ||||
20 | Liebeskind et al. (2011) [33] | 47 (18) | 22 (23) |
Study ID | Study | RBC, Mean % (SD) | Fibrin, Mean % (SD) | Platelet, Mean % (SD) | WBC, Mean % (SD) | ||||
---|---|---|---|---|---|---|---|---|---|
IVT+ | IVT- | IVT+ | IVT− | IVT+ | IVT− | IVT+ | IVT− | ||
1 | Ahn et al. (2016) [16] | 37 (18) | 34 (18) | 37 (15) | 35 (15) | 23 (13) | 26 (11) | 4 (3) | 5 (3) |
6 | Duffy et al. (2019) [22] | 52 (18) | 41 (21) | 43 (17) | 54 (20) | 5 (3) | 5 (4) | ||
17 | Kim et al. (2020) [24] | 19 (22) | 14 (24) | 26 (16) | 30 (38) | 54 (14) | 50 (14) | ||
21 | Rossi et al. (2021) [60] | 44 (3) | 44 (27) | 30 (14) | 29 (17) | 19 (15) | 18 (14) |
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Acute Ischaemic Stroke |
IVT | Intravenous Thrombolysis |
EVT | Endovascular Thrombectomy |
RBC | Red Blood Cell |
LAA | Large Artery Atherosclerosis |
HMCAS | Hyperdense Middle Cerebral Artery Sign |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
TICI | Thrombolysis in Cerebral Infarction |
WBC | White Blood Cell |
SMD | Standard Mean Difference |
TOAST | Trial of Org 10,172 in Acute Stroke Treatment |
SVS | Susceptibility Vessel Sign |
r-tPA | Recombinant Tissue Plasminogen Activator |
H&E | Haematoxylin and Eosin |
MSB | Martius Scarlet Blue |
EVG | Elastica van Gieson |
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; De Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Staessens, S.; De Meyer, S.F. Thrombus heterogeneity in ischemic stroke. Platelets 2021, 32, 331–339. [Google Scholar] [CrossRef]
- Patil, S.; Darcourt, J.; Messina, P.; Bozsak, F.; Cognard, C.; Doyle, K. Characterising acute ischaemic stroke thrombi: Insights from histology, imaging and emerging impedance-based technologies. Stroke Vasc. Neurol. 2022, 7, 353–363. [Google Scholar] [CrossRef]
- Baskar, P.S.; Chowdhury, S.Z.; Bhaskar, S.M.M. In-hospital systems interventions in acute stroke reperfusion therapy: A meta-analysis. Acta Neurol. Scand. 2021, 144, 418–432. [Google Scholar] [CrossRef]
- Chowdhury, S.Z.; Baskar, P.S.; Bhaskar, S. Effect of prehospital workflow optimization on treatment delays and clinical outcomes in acute ischemic stroke: A systematic review and meta-analysis. Acad. Emerg. Med. 2021, 28, 781–801. [Google Scholar] [CrossRef]
- Santana Baskar, P.; Cordato, D.; Wardman, D.; Bhaskar, S. In-hospital acute stroke workflow in acute stroke—Systems-based approaches. Acta Neurol. Scand. 2021, 143, 111–120. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
- Bhaskar, S.; Cordato, D.; Cappelen-Smith, C.; Cheung, A.; Ledingham, D.; Celermajer, D.; Levi, C. Clarion call for histopathological clot analysis in "cryptogenic" ischemic stroke: Implications for diagnosis and treatment. Ann. Clin. Transl. Neurol. 2017, 4, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Saab, J.; Cappelen-Smith, C.; Killingsworth, M.; Wu, X.J.; Cheung, A.; Manning, N.; Aouad, P.; McDougall, A.; Hodgkinson, S.; et al. Clot Histopathology in Ischemic Stroke with Infective Endocarditis. Can. J. Neurol. Sci. 2019, 46, 331–336. [Google Scholar] [CrossRef]
- Ahn, S.H.; Hong, R.; Choo, I.S.; Heo, J.H.; Nam, H.S.; Kang, H.G.; Kim, H.W.; Kim, J.H. Histologic features of acute thrombi retrieved from stroke patients during mechanical reperfusion therapy. Int. J. Stroke 2016, 11, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Shibata, M.; Nakajima, H.; Mizutani, A.; Kitano, Y.; Seguchi, M.; Yamasaki, M.; Kobayashi, K.; Sano, T.; Mori, G.; et al. Erythrocyte-Rich Thrombus Is Associated with Reduced Number of Maneuvers and Procedure Time in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Cerebrovasc. Dis. Extra. 2018, 8, 39–49. [Google Scholar] [CrossRef]
- Niesten, J.M.; van der Schaaf, I.C.; van Dam, L.; Vink, A.; Vos, J.A.; Schonewille, W.J.; de Bruin, P.C.; Mali, W.P.T.M.; Velthuis, B.K. Histopathologic Composition of Cerebral Thrombi of Acute Stroke Patients Is Correlated with Stroke Subtype and Thrombus Attenuation. PLoS ONE 2014, 9, e88882. [Google Scholar] [CrossRef]
- Liao, Y.; Guan, M.; Liang, D.; Shi, Y.; Liu, J.; Zeng, X.; Huang, S.; Xie, X.; Yuan, D.; Qiao, H. Differences in pathological composition among large artery occlusion cerebral thrombi, Valvular heart disease atrial thrombi and carotid Endarterectomy plaques. Front. Neurol. 2020, 11, 811. [Google Scholar] [CrossRef]
- Boeckh-Behrens, T.; Kleine, J.F.; Zimmer, C.; Neff, F.; Scheipl, F.; Pelisek, J.; Schirmer, L.; Nguyen, K.; Karatas, D.; Poppert, H. Thrombus Histology Suggests Cardioembolic Cause in Cryptogenic Stroke. Stroke 2016, 47, 1864–1871. [Google Scholar] [CrossRef] [Green Version]
- Sporns, P.B.; Hanning, U.; Schwindt, W.; Velasco, A.; Minnerup, J.; Zoubi, T.; Heindel, W.; Jeibmann, A.; Niederstadt, T.U. Ischemic Stroke: What Does the Histological Composition Tell Us About the Origin of the Thrombus? Stroke 2017, 48, 2206–2210. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; McCarthy, R.; Farrell, M.; Thomas, S.; Brennan, P.; Power, S.; O’Hare, A.; Morris, L.; Rainsford, E.; MacCarthy, E.; et al. Per-Pass Analysis of Thrombus Composition in Patients With Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Stroke 2019, 50, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.; Dai, D.; Wang, S.; Douglas, A.; Kadirvel, R.; Layton, K.F.; Thacker, I.C.; Gounis, M.J.; Chueh, J.-Y.; Puri, A.S.; et al. Platelet-Rich Emboli in Cerebral Large Vessel Occlusion Are Associated With a Large Artery Atherosclerosis Source. Stroke 2019, 50, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, Y.M.; Jin, S.-C.; Lee, J.-w.; Lee, B.I.; Kim, S.E.; Shin, K.J.; Park, J.; Park, K.M.; Kim, S.E. Development of a predictive scale for cardioembolic stroke using extracted thrombi and angiographic findings. J. Clin. Neurosci. 2020, 73, 224–230. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, W.; Kim, T.; Kim, H.; Heo, T.; Park, M. Histologic analysis of retrieved clots in acute ischemic stroke: Correlation with stroke etiology and gradient-echo MRI. Am. J. Neuroradiol. 2015, 36, 1756–1762. [Google Scholar] [CrossRef]
- Shin, J.W.; Jeong, H.S.; Kwon, H.-J.; Song, K.S.; Kim, J. High red blood cell composition in clots is associated with successful recanalization during intra-arterial thrombectomy. PLoS ONE 2018, 13, e0197492. [Google Scholar] [CrossRef]
- Yaghi, S.; Bernstein, R.A.; Passman, R.; Okin, P.M.; Furie, K.L. Cryptogenic Stroke. Circ. Res. 2017, 120, 527–540. [Google Scholar] [CrossRef]
- Sinha, A.; Stanwell, P.; Beran, R.G.; Calic, Z.; Killingsworth, M.C.; Bhaskar, S.M.M. Stroke Aetiology and Collateral Status in Acute Ischemic Stroke Patients Receiving Reperfusion Therapy-A Meta-Analysis. Neurol. Int. 2021, 13, 608–621. [Google Scholar] [CrossRef]
- Benjamin, L.A.; Bryer, A.; Emsley, H.C.A.; Khoo, S.; Solomon, T.; Connor, M.D. HIV infection and stroke: Current perspectives and future directions. Lancet Neurol. 2012, 11, 878–890. [Google Scholar] [CrossRef]
- Wańkowicz, P.; Nowacki, P.; Gołąb-Janowska, M. Atrial fibrillation risk factors in patients with ischemic stroke. Arch. Med. Sci. 2021, 17, 19–24. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Khismatullin, R.R.; Nagaswami, C.; Shakirova, A.Z.; Vrtková, A.; Procházka, V.; Gumulec, J.; Mačák, J.; Litvinov, R.I.; Weisel, J.W. Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke. Stroke 2020, 51, 3640–3650. [Google Scholar] [CrossRef]
- Liebeskind, D.S.; Sanossian, N.; Yong, W.H.; Starkman, S.; Tsang, M.P.; Moya, A.L.; Zheng, D.D.; Abolian, A.M.; Kim, D.; Ali, L.K.; et al. CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke. Stroke 2011, 42, 1237–1243. [Google Scholar] [CrossRef]
- Essig, F.; Kollikowski, A.M.; Pham, M.; Solymosi, L.; Stoll, G.; Haeusler, K.G.; Kraft, P.; Schuhmann, M.K. Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke. Int. J. Mol. Sci. 2020, 21, 7387. [Google Scholar] [CrossRef]
- Boeckh-Behrens, T.; Schubert, M.; Förschler, A.; Prothmann, S.; Kreiser, K.; Zimmer, C.; Riegger, J.; Bauer, J.; Neff, F.; Kehl, V.; et al. The Impact of Histological Clot Composition in Embolic Stroke. Clin. Neuroradiol. 2016, 26, 189–197. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hayakawa, M.; Funatsu, N.; Yamagami, H.; Satow, T.; Takahashi, J.C.; Nagatsuka, K.; Ishibashi-Ueda, H.; Kira, J.I.; Toyoda, K. Histopathologic Analysis of Retrieved Thrombi Associated With Successful Reperfusion After Acute Stroke Thrombectomy. Stroke 2016, 47, 3035–3037. [Google Scholar] [CrossRef]
- Funatsu, N.; Hayakawa, M.; Hashimoto, T.; Yamagami, H.; Satow, T.; Takahashi, J.C.; Koga, M.; Nagatsuka, K.; Ishibashi-Ueda, H.; Iwama, T.; et al. Vascular wall components in thrombi obtained by acute stroke thrombectomy: Clinical significance and related factors. J. NeuroInterv. Surg. 2019, 11, 232. [Google Scholar] [CrossRef]
- Sporns, P.B.; Hanning, U.; Schwindt, W.; Velasco, A.; Buerke, B.; Cnyrim, C.; Minnerup, J.; Heindel, W.; Jeibmann, A.; Niederstadt, T. Ischemic Stroke: Histological Thrombus Composition and Pre-Interventional CT Attenuation Are Associated with Intervention Time and Rate of Secondary Embolism. Cerebrovasc. Dis. 2017, 44, 344–350. [Google Scholar] [CrossRef]
- Goebel, J.; Gaida, B.J.; Wanke, I.; Kleinschnitz, C.; Koehrmann, M.; Forsting, M.; Moenninghoff, C.; Radbruch, A.; Junker, A. Is Histologic Thrombus Composition in Acute Stroke Linked to Stroke Etiology or to Interventional Parameters? Am. J. Neuroradiol. 2020, 41, 650. [Google Scholar] [CrossRef]
- Ye, G.; Cao, R.; Lu, J.; Qi, P.; Hu, S.; Chen, K.; Tan, T.; Chen, J.; Wang, D. Histological composition behind CT-based thrombus density and perviousness in acute ischemic stroke. Clin. Neurol. Neurosurg. 2021, 207, 106804. [Google Scholar] [CrossRef]
- Gong, L.; Zheng, X.; Feng, L.; Zhang, X.; Dong, Q.; Zhou, X.; Wang, H.; Zhang, X.; Shu, Z.; Zhao, Y.; et al. Bridging Therapy Versus Direct Mechanical Thrombectomy in Patients with Acute Ischemic Stroke due to Middle Cerebral Artery Occlusion: A Clinical- Histological Analysis of Retrieved Thrombi. Cell Transpl. 2019, 28, 684–690. [Google Scholar] [CrossRef]
- Simons, N.; Mitchell, P.; Dowling, R.; Gonzales, M.; Yan, B. Thrombus composition in acute ischemic stroke: A histopathological study of thrombus extracted by endovascular retrieval. J. Neuroradiol. 2015, 42, 86–92. [Google Scholar] [CrossRef]
- Douglas, A.; Fitzgerald, S.; Mereuta, O.M.; Rossi, R.; Leary, S.; Pandit, A.; McCarthy, R.; Gilvarry, M.; Holmegaard, L.; Abrahamsson, M.; et al. Platelet-rich emboli are associated with von Willebrand factor levels and have poorer revascularization outcomes. J. NeuroInterv. Surg. 2020, 12, 557. [Google Scholar] [CrossRef]
- Prochazka, V.; Jonszta, T.; Czerny, D.; Krajca, J.; Roubec, M.; Macak, J.; Kovar, P.; Kovarova, P.; Pulcer, M.; Zoubkova, R.; et al. The Role of von Willebrand Factor, ADAMTS13, and Cerebral Artery Thrombus Composition in Patient Outcome Following Mechanical Thrombectomy for Acute Ischemic Stroke. Med. Sci. Monit. 2018, 24, 3929–3945. [Google Scholar] [CrossRef]
- Singh, P.; Doostkam, S.; Reinhard, M.; Ivanovas, V.; Taschner, C.A. Immunohistochemical Analysis of Thrombi Retrieved During Treatment of Acute Ischemic Stroke. Stroke 2013, 44, 1720–1722. [Google Scholar] [CrossRef]
- Fitzgerald, S.T.; Wang, S.; Dai, D.; Douglas, A.; Kadirvel, R.; Gounis, M.J.; Chueh, J.; Puri, A.S.; Layton, K.F.; Thacker, I.C.; et al. Platelet-rich clots as identified by Martius Scarlet Blue staining are isodense on NCCT. J. NeuroInterv. Surg. 2019, 11, 1145. [Google Scholar] [CrossRef]
- Fitzgerald, S.; Wang, S.; Dai, D.; Murphree, D.H., Jr.; Pandit, A.; Douglas, A.; Rizvi, A.; Kadirvel, R.; Gilvarry, M.; McCarthy, R. Orbit image analysis machine learning software can be used for the histological quantification of acute ischemic stroke blood clots. PLoS ONE 2019, 14, e0225841. [Google Scholar] [CrossRef]
- Choi, M.H.; Park, G.H.; Lee, J.S.; Lee, S.E.; Lee, S.-J.; Kim, J.-H.; Hong, J.M. Erythrocyte Fraction Within Retrieved Thrombi Contributes to Thrombolytic Response in Acute Ischemic Stroke. Stroke 2018, 49, 652–659. [Google Scholar] [CrossRef]
- Horie, N.; Shobayashi, K.; Morofuji, Y.; Sadakata, E.; Iki, Y.; Matsunaga, Y.; Kanamoto, T.; Tateishi, Y.; Izumo, T.; Anda, T.; et al. Impact of Mechanical Thrombectomy Device on Thrombus Histology in Acute Embolic Stroke. World Neurosurg. 2019, 132, e418–e422. [Google Scholar] [CrossRef]
- Panel, J.P.M.; Albers, G.W.; Amarenco, P.; Babikian, V.L.; Biller, J.; Brey, R.L.; Coull, B.; Easton, J.D.; Gomez, C.R.; Helgason, C.M. Etiology of Stroke. Stroke 1997, 28, 1501–1506. [Google Scholar] [CrossRef]
- Brinjikji, W.; Nogueira, R.G.; Kvamme, P.; Layton, K.F.; Delgado Almandoz, J.E.; Hanel, R.A.; Mendes Pereira, V.; Almekhlafi, M.A.; Yoo, A.J.; Jahromi, B.S.; et al. Association between clot composition and stroke origin in mechanical thrombectomy patients: Analysis of the Stroke Thromboembolism Registry of Imaging and Pathology. J. NeuroInterv. Surg. 2021, 13, 594. [Google Scholar] [CrossRef]
- Staessens, S.; Denorme, F.; Francois, O.; Desender, L.; Dewaele, T.; Vanacker, P.; Deckmyn, H.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Structural analysis of ischemic stroke thrombi: Histological indications for therapy resistance. Haematologica 2020, 105, 498–507. [Google Scholar] [CrossRef]
- Di Meglio, L.; Desilles, J.-P.; Ollivier, V.; Nomenjanahary, M.S.; Di Meglio, S.; Deschildre, C.; Loyau, S.; Olivot, J.-M.; Blanc, R.; Piotin, M.; et al. Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology 2019, 93, e1686–e1698. [Google Scholar] [CrossRef]
- Krajíčková, D.; Krajina, A.; Šteiner, I.; Vyšata, O.; Herzig, R.; Lojík, M.; Chovanec, V.; Raupach, J.; Renc, O.; Waishaupt, J.; et al. Fibrin Clot Architecture in Acute Ischemic Stroke Treated With Mechanical Thrombectomy With Stent-Retrievers—Cohort Study. Circ. J. 2018, 82, 866–873. [Google Scholar] [CrossRef]
- Nouh, A.; Hussain, M.; Mehta, T.; Yaghi, S. Embolic Strokes of Unknown Source and Cryptogenic Stroke: Implications in Clinical Practice. Front. Neurol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Ibeh, C.; Elkind, M.S.V. Stroke Prevention After Cryptogenic Stroke. Curr. Cardiol. Rep. 2021, 23, 174. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.G.; Ariëns, R.A.S. Insights into the composition of stroke thrombi: Heterogeneity and distinct clot areas impact treatment. Haematologica 2020, 105, 257–259. [Google Scholar] [CrossRef]
- Sporns, P.B.; Krähling, H.; Psychogios, M.N.; Jeibmann, A.; Minnerup, J.; Broocks, G.; Meyer, L.; Brehm, A.; Wildgruber, M.; Fiehler, J.; et al. Small thrombus size, thrombus composition, and poor collaterals predict pre-interventional thrombus migration. J. NeuroInterv. Surg. 2021, 13, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Bhambri, A.; Adapa, A.R.; Liu, Y.; Boeckh-Behrens, T.; Procházka, V.; Hernández-Fernández, F.; Barbella-Aponte, R.A.; Hashimoto, T.; Savastano, L.E.; Gemmete, J.J.; et al. Thrombus Histology as It Relates to Mechanical Thrombectomy: A Meta-Analysis and Systematic Review. Neurosurgery 2021, 89, 1122–1131. [Google Scholar] [CrossRef]
- Rossi, R.; Molina, S.; Mereuta, O.M.; Douglas, A.; Fitzgerald, S.; Tierney, C.; Pandit, A.; Brennan, P.; Power, S.; O’Hare, A.; et al. Does prior administration of rtPA influence acute ischemic stroke clot composition? Findings from the analysis of clots retrieved with mechanical thrombectomy from the RESTORE registry. J. Neurol. 2022, 269, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, M.K.; Gunreben, I.; Kleinschnitz, C.; Kraft, P. Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke. Int. J. Mol. Sci 2016, 17, 298. [Google Scholar] [CrossRef]
- Tutino, V.M.; Fricano, S.; Frauens, K.; Patel, T.R.; Monteiro, A.; Rai, H.H.; Waqas, M.; Chaves, L.; Poppenberg, K.E.; Siddiqui, A.H. Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy. Genes 2021, 12, 1617. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Killingsworth, M.C.; Bhaskar, S.M.M. Is Composition of Brain Clot Retrieved by Mechanical Thrombectomy Associated with Stroke Aetiology and Clinical Outcomes in Acute Ischemic Stroke?—A Systematic Review and Meta-Analysis. Neurol. Int. 2022, 14, 748-770. https://doi.org/10.3390/neurolint14040063
Huang J, Killingsworth MC, Bhaskar SMM. Is Composition of Brain Clot Retrieved by Mechanical Thrombectomy Associated with Stroke Aetiology and Clinical Outcomes in Acute Ischemic Stroke?—A Systematic Review and Meta-Analysis. Neurology International. 2022; 14(4):748-770. https://doi.org/10.3390/neurolint14040063
Chicago/Turabian StyleHuang, Joanna, Murray C. Killingsworth, and Sonu M. M. Bhaskar. 2022. "Is Composition of Brain Clot Retrieved by Mechanical Thrombectomy Associated with Stroke Aetiology and Clinical Outcomes in Acute Ischemic Stroke?—A Systematic Review and Meta-Analysis" Neurology International 14, no. 4: 748-770. https://doi.org/10.3390/neurolint14040063