Cortical Oxygenation during a Motor Task to Evaluate Recovery in Subacute Stroke Patients: A Study with Near-Infrared Spectroscopy
<p>Method of calculation of cortical oxygenation. TOP: mean track of the 24 channels for each hemisphere during the six reaching and grasping tasks (represented in green; red: affected hemisphere; blue: unaffected hemisphere). BOTTOM: Mean traces of the six reaching and grasping cycles. In grey are represented the number of reaching and grasping repetitions performed by the patient. Cortical oxygenation (AUC) was calculated as the area under the curve for both hemispheres. The CMC was obtained by dividing each AUC for the number of repetitions.</p> "> Figure 2
<p>Baseline comparison of values of TOT-<sub>AUC</sub> and TOT-<sub>CMC</sub> according to age, sex, distance from stroke onset (early or late) and FMA-UE score. Data are reported as mean (95% confidence interval).</p> "> Figure 3
<p>Rank correlation between AUC (<b>left</b>) or CMC (<b>right</b>) and FMA-UE score at baseline.</p> "> Figure 4
<p>Variations in CMC for the total and both affected and unaffected hemispheres according to access to rehabilitation. Legend: Early (<30 days) blue line; Late (>30 days) red line.</p> "> Figure 5
<p>Rank correlation between variations of CMC and variations of FMA-UE score following rehabilitation. Legend: red diamonds, conventional therapy; blue dots, robotic rehabilitation.</p> "> Figure 6
<p>Representation of mean cortical oxygenation during the motor task for the affected (<b>front</b>) and unaffected (<b>back</b>) hemispheres. Legend: scale of cortical oxygenation to be multiplied by 10 E5 units.</p> "> Figure 7
<p>Rank correlation between baseline TOT-<sub>CMC/days</sub> and variations in the FMA-UE score after rehabilitation. The vertical reference line corresponds to the minimal clinically important difference for FMA-UE.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcome Measures
2.1.1. Assessment of Cortical Oxygenation by Near-Infrared Spectroscopy
2.1.2. Upper Limb Motor Impairment
2.2. Statistical Analysis
3. Results
3.1. Comparison with Healthy Subjects
3.2. Correlation between Cortical Oxygenation and Residual Upper Arm Motor Function
3.3. Variations in Cortical Oxygenation following Rehabilitation
3.4. Relationship between Cortical Oxygenation and Hemiparetic Upper Arm Motor Improvement
3.5. Response of the CMC for Each Hemisphere following Rehabilitation
3.6. Baseline Cortical Oxygenation and Hemiparetic Upper Arm Motor Improvement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigin, V.L.; Norrving, B.; Mensah, G.A.; Fisher, M.; Iadecola, C.; Sacco, R. Stroke Compendium Global Burden of Stroke Effects of Neurologic Injury on Cardiovascular Function Vascular Cognitive Impairment. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Kuzawa, C.W.; Blair, C. A Hypothesis Linking the Energy Demand of the Brain to Obesity Risk. Proc. Natl. Acad. Sci. USA 2019, 116, 13266–13275. [Google Scholar] [CrossRef] [Green Version]
- Frahm, J.; Merboldt, K.D.; Hänicke, W. Functional MRI of Human Brain Activation at High Spatial Resolution. Magn. Reson. Med. 1993, 29, 139–144. [Google Scholar] [CrossRef]
- Leff, D.R.; Orihuela-Espina, F.; Elwell, C.E.; Athanasiou, T.; Delpy, D.T.; Darzi, A.W.; Yang, G.-Z. Assessment of the Cerebral Cortex during Motor Task Behaviours in Adults: A Systematic Review of Functional near Infrared Spectroscopy (FNIRS) Studies. Neuroimage 2011, 54, 2922–2936. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S. Non-Invasive NIR Spectroscopy of Human Brain Function during Exercise. Methods 2008, 45, 289–299. [Google Scholar] [CrossRef]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical Mapping of Gait in Humans: A near-Infrared Spectroscopic Topography Study. Neuroimage 2001, 14, 1186–1192. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological Investigation of the Basis of the FMRI Signal. Nature 2001, 412, 150–157. [Google Scholar] [CrossRef]
- Bonilauri, A.; Intra, F.S.; Pugnetti, L.; Baselli, G.; Baglio, F. Diagnostics A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics 2020, 10, 581. [Google Scholar] [CrossRef]
- Kato, H.; Izumiyama, M.; Koizumi, H.; Takahashi, A.; Itoyama, Y. Near-Infrared Spectroscopic Topography as a Tool to Monitor Motor Reorganization after Hemiparetic Stroke: A Comparison with Functional MRI. Stroke 2002, 33, 2032–2036. [Google Scholar] [CrossRef]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A Quantitative Comparison of Simultaneous BOLD FMRI and NIRS Recordings during Functional Brain Activation. Neuroimage 2002, 17, 719–731. [Google Scholar] [CrossRef]
- Irani, F.; Platek, S.M.; Bunce, S.; Ruocco, A.C.; Chute, D. Functional near Infrared Spectroscopy (FNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders. Clin. Neuropsychol. 2007, 21, 9–37. [Google Scholar] [CrossRef] [PubMed]
- Strangman, G.; Goldstein, R.; Rauch, S.L.; Stein, J. Near-Infrared Spectroscopy and Imaging for Investigating Stroke Rehabilitation: Test-Retest Reliability and Review of the Literature. Arch. Phys. Med. Rehabil. 2006, 87 (Suppl. 12), 12–19. [Google Scholar] [CrossRef]
- Mihara, M.; Yagura, H.; Hatakenaka, M.; Hattori, N.; Miyai, I. Clinical application of functional near-infrared spectroscopy in rehabilitation medicine. Brain Nerve 2010, 62, 125–132. [Google Scholar]
- Yang, M.; Yang, Z.; Yuan, T.; Feng, W.; Wang, P. A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. Front. Neurol. 2019, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, E.B.; Dodakian, L.; See, J.; McKenzie, A.; Stewart, J.C.; Cramer, S.C. Biomarkers of Rehabilitation Therapy Vary According to Stroke Severity. Neural Plast. 2018, 2018, 9867196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, R. Biomarkers and Surrogate Markers: An FDA Perspective. NeuroRx 2004, 1, 189–195. [Google Scholar] [CrossRef]
- Lamberti, N.; Manfredini, F.; Baroni, A.; Crepaldi, A.; Lavezzi, S.; Basaglia, N.; Straudi, S. Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional near-Infrared Spectroscopy. Diagnostics 2021, 11, 1068. [Google Scholar] [CrossRef]
- Manfredini, F.; Lamberti, N.; Ficarra, V.; Tsolaki, E.; Straudi, S.; Zamboni, P.; Basaglia, N.; Gasbarro, V. Biomarkers of Muscle Metabolism in Peripheral Artery Disease: A Dynamic NIRS-Assisted Study to Detect Adaptations Following Revascularization and Exercise Training. Diagnostics 2020, 10, 312. [Google Scholar] [CrossRef]
- Manfredini, F.; Lamberti, N.; Rossi, T.; Mascoli, F.; Basaglia, N.; Zamboni, P. A Toe Flexion NIRS Assisted Test for Rapid Assessment of Foot Perfusion in Peripheral Arterial Disease: Feasibility, Validity, and Diagnostic Accuracy. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 187–194. [Google Scholar] [CrossRef]
- Takeda, K.; Gomi, Y.; Imai, I.; Shimoda, N.; Hiwatari, M.; Kato, H. Shift of Motor Activation Areas during Recovery from Hemiparesis after Cerebral Infarction: A Longitudinal Study with near-Infrared Spectroscopy. Neurosci. Res. 2007, 59, 136–144. [Google Scholar] [CrossRef]
- Hara, Y.; Obayashi, S.; Tsujiuchi, K.; Muraoka, Y. The Effects of Electromyography-Controlled Functional Electrical Stimulation on Upper Extremity Function and Cortical Perfusion in Stroke Patients. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2013, 124, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Straudi, S.; Baroni, A.; Mele, S.; Craighero, L.; Manfredini, F.; Lamberti, N.; Maietti, E.; Basaglia, N. Effects of a Robot-Assisted Arm Training Plus Hand Functional Electrical Stimulation on Recovery After Stroke: A Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2020, 101, 309–316. [Google Scholar] [CrossRef]
- Quaresima, V.; Sacco, S.; Totaro, R.; Ferrari, M. Noninvasive Measurement of Cerebral Hemoglobin Oxygen Saturation Using Two near Infrared Spectroscopy Approaches. J. Biomed. Opt. 2000, 5, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Tsunashima, H.; Yanagisawa, K.; Iwadate, M. Measurement of Brain Function Using Near-Infrared Spectroscopy (NIRS). In Neuroimaging; Bright, P., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, K.J.; Tilson, J.K.; Cen, S.Y.; Rose, D.K.; Hershberg, J.; Correa, A.; Gallichio, J.; McLeod, M.; Moore, C.; Wu, S.S.; et al. Fugl-Meyer Assessment of Sensorimotor Function After Stroke Standardized Training Procedure for Clinical Practice and Clinical Trials. Stroke 2011, 42, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, P.W.; Goldstein, L.B.; Horner, R.D.; Landsman, P.B.; Samsa, G.P.; Matchar, D.B. Similar Motor Recovery of Upper and Lower Extremities After Stroke. Stroke 1994, 25, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiragami, S.; Inoue, Y. Minimal Clinically Important Difference for the Fugl-Meyer Assessment of the Upper Extremity in Convalescent Stroke Patients with Moderate to Severe Hemiparesis. J. Phys. Ther. Sci. 2019, 31, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Zandvliet, S.B.; van Wegen, E.E.H.; Campfens, S.F.; van der Kooij, H.; Kwakkel, G.; Meskers, C.G.M. Position-Cortical Coherence as a Marker of Afferent Pathway Integrity Early Poststroke: A Prospective Cohort Study. Neurorehabil. Neural Repair 2020, 34, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Kovács, R.; Papageorgiou, I.; Heinemann, U. Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc. Psychiatry Neurol. 2011, 2011, 646958. [Google Scholar] [CrossRef] [Green Version]
- Prager, O.; Kamintsky, L.; Hasam-Henderson, L.A.; Schoknecht, K.; Wuntke, V.; Papageorgiou, I.; Swolinsky, J.; Muoio, V.; Bar-Klein, G.; Vazana, U.; et al. Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia 2019, 60, 322–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017, 4, 041403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guhathakurta, D.; Dutta, A. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke. Front. Neurosci. 2016, 10, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zama, T.; Shimada, S. Simultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation. Sci. Rep. 2015, 5, 16438. [Google Scholar] [CrossRef] [Green Version]
Stroke Patients Analyzed (n = 23) | |
---|---|
Age, years | 68 (58–73) |
Males, n (%) | 14 (61) |
Time since stroke, days | 46 ± 20 |
Left affected hemisphere, n (%) | 16 (70) |
Sensory impairment, n (%) | 6 (25) |
Stroke (n = 23) | Healthy (n = 6) | p | |
---|---|---|---|
TOT-AUC | 4.3 ± 2.1 | 0.6 ± 0.1 | <0.001 |
AFF-AUC | 2.3 ± 1.7 | 0.5 ± 0.1 | <0.001 |
UN-AUC | 1.9 ± 1.1 | 0.1 ± 0.03 | <0.001 |
TOT-CMC | 2.7 ± 2.4 | 0.5 ± 0.1 | <0.001 |
AF-CMC | 1.6 ± 1.8 | 0.4 ± 0.01 | <0.001 |
UN-CMC | 1.2 ± 1.0 | 0.1 ± 0.04 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamberti, N.; Manfredini, F.; Nardi, F.; Baroni, A.; Piva, G.; Crepaldi, A.; Basaglia, N.; Casetta, I.; Straudi, S. Cortical Oxygenation during a Motor Task to Evaluate Recovery in Subacute Stroke Patients: A Study with Near-Infrared Spectroscopy. Neurol. Int. 2022, 14, 322-335. https://doi.org/10.3390/neurolint14020026
Lamberti N, Manfredini F, Nardi F, Baroni A, Piva G, Crepaldi A, Basaglia N, Casetta I, Straudi S. Cortical Oxygenation during a Motor Task to Evaluate Recovery in Subacute Stroke Patients: A Study with Near-Infrared Spectroscopy. Neurology International. 2022; 14(2):322-335. https://doi.org/10.3390/neurolint14020026
Chicago/Turabian StyleLamberti, Nicola, Fabio Manfredini, Francesca Nardi, Andrea Baroni, Giovanni Piva, Anna Crepaldi, Nino Basaglia, Ilaria Casetta, and Sofia Straudi. 2022. "Cortical Oxygenation during a Motor Task to Evaluate Recovery in Subacute Stroke Patients: A Study with Near-Infrared Spectroscopy" Neurology International 14, no. 2: 322-335. https://doi.org/10.3390/neurolint14020026