Understanding the Adoption of Autonomous Vehicles in China Based on TRI and TAM
Abstract
:1. Introduction
2. Theoretical Background
2.1. Technology Readiness Index
2.2. Technology Acceptance Model
3. Research Model and Hypotheses
3.1. Personality
3.1.1. Optimism
3.1.2. Innovativeness
3.1.3. Discomfort
3.1.4. Insecurity
3.2. Perception
3.2.1. Perceived Usefulness
3.2.2. Perceived Ease of Use
4. Methodology
4.1. Measurement Development
4.2. Data Collection
5. Data Analysis and Results
5.1. Common Method Bias
5.2. Reliability and Validity
5.3. Structural Model
5.4. Hypothesis Testing
6. Discussion and Implication
6.1. Discussion of Results
6.2. Implications
6.2.1. Theoretical Implications
6.2.2. Practical Implications
6.3. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Feng, Z.; Zhang, W.; Zhu, S. What Affects Drivers’ Satisfaction with Autonomous Vehicles in Different Road Scenarios? Transp. Res. Part D Transp. Environ. 2021, 100, 103048. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Z.; Wang, G.; Wang, R.; Li, T.; Liu, J.; Zhang, Y.; Liu, P. When the Automated Driving System Fails: Dynamics of Public Responses to Automated Vehicles. Transp. Res. Part C Emerg. Technol. 2021, 129, 103271. [Google Scholar] [CrossRef]
- Thierer, A.D.; Hagemann, R. Removing Roadblocks to Intelligent Vehicles and Driverless Cars. SSRN J. 2014, 5, 339–391. [Google Scholar] [CrossRef]
- Menon, N.; Pinjari, A.; Zhang, Y.; Zou, L. Consumer Perception and Intended Adoption of Autonomous-Vehicle Technology: Findings from a University Population Survey. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An Empirical Investigation on Consumers’ Intentions towards Autonomous Driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Farzin, I.; Mamdoohi, A.R.; Abbasi, M.; Baghestani, A.; Ciari, F. Determinants behind the Acceptance of Autonomous Vehicles in Mandatory and Optional Trips. Proc. Inst. Civ. Eng.—Eng. Sustain. 2023, 177, 174–184. [Google Scholar] [CrossRef]
- Asmussen, K.E.; Mondal, A.; Bhat, C.R. A Socio-Technical Model of Autonomous Vehicle Adoption Using Ranked Choice Stated Preference Data. Transp. Res. Part C Emerg. Technol. 2020, 121, 102835. [Google Scholar] [CrossRef]
- London, H. Personality: A New Look at Metatheories; Hemisphere Pub. Corp.: Washington, DC, USA, 1978; ISBN 978-0-470-26381-5. [Google Scholar]
- GFK Tech Trends. Frontier Consumers Will Be a Key Group in Self-Driving. Available online: https://www.gfk.com/zh/insights/dc12891 (accessed on 4 July 2024).
- Ding, W.; Wan, R.; Xu, M.; Huang, J.; Meng, Z.; Zheng, F.; Yao, Y. Discussion on the Future Development Strategies of Leather Luxury Goods Based on Chinese “Millennial” Consumer Group. Pigekexue Gongcheng 2021, 31, 76–80. [Google Scholar]
- Manfreda, A.; Ljubi, K.; Groznik, A. Autonomous Vehicles in the Smart City Era: An Empirical Study of Adoption Factors Important for Millennials. Int. J. Inf. Manag. 2021, 58, 102050. [Google Scholar] [CrossRef]
- Parasuraman, A.P. Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. J. Serv. Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Parasuraman, A.P.; Colby, C. An Updated and Streamlined Technology Readiness Index: TRI 2.0. J. Serv. Res. 2014, 18, 59–74. [Google Scholar] [CrossRef]
- Lin, C.-H.; Shih, H.-Y.; Sher, P.J. Integrating Technology Readiness into Technology Acceptance: The TRAM Model. Psychol. Mark. 2007, 24, 641–657. [Google Scholar] [CrossRef]
- Lam, S.Y.; Chiang, J.; Parasuraman, A. The Effects of the Dimensions of Technology Readiness on Technology Acceptance: An Empirical Analysis. J. Interact. Mark. 2008, 22, 19–39. [Google Scholar] [CrossRef]
- Lin, C.-H.; Shih, H.-Y.; Sher, P.; Wang, Y.-L. Consumer Adoption of E-Service: Integrating Technology Readiness with the Technology Acceptance Model; IEEE: Piscataway, NJ, USA, 2005; Volume 2005, pp. 483–488. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated Vehicle Acceptance in China: Social Influence and Initial Trust Are Key Determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Mulcahy, R.; Letheren, K.; McAndrew, R.; Glavas, C.; Russell-Bennett, R. Are Households Ready to Engage with Smart Home Technology? J. Mark. Manag. 2019, 35, 1370–1400. [Google Scholar] [CrossRef]
- Khan, W.A.; Chung, S.H.; Awan, M.U.; Wen, X. Machine Learning Facilitated Business Intelligence (Part I): Neural Networks Learning Algorithms and Applications. Ind. Manag. Data Syst. 2019, 120, 164–195. [Google Scholar] [CrossRef]
- Qasem, Z. The Effect of Positive TRI Traits on Centennials Adoption of Try-on Technology in the Context of E-Fashion Retailing. Int. J. Inf. Manag. 2021, 56, 102254. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Park, J.-W. The Effect of Airport Self-Service Characteristics on Passengers’ Perceived Value, Satisfaction, and Behavioral Intention: Based on the SOR Model. Sustainability 2019, 11, 5352. [Google Scholar] [CrossRef]
- Jeong, S.W.; Ha, S. Consumer Acceptance of Retail Service Robots. Res. J. Costume Cult. 2020, 28, 409–419. [Google Scholar] [CrossRef]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information Technology Adoption across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. MIS Q. 1999, 23, 183–213. [Google Scholar] [CrossRef]
- He, X.; Zhan, W.; Hu, Y. Consumer Purchase Intention of Electric Vehicles in China: The Roles of Perception and Personality. J. Clean. Prod. 2018, 204, 1060–1069. [Google Scholar] [CrossRef]
- Gökçearslan, Ş.; Yildiz- Durak, H.; Atman Uslu, N. Acceptance of Educational Use of the Internet of Things (IoT) in the Context of Individual Innovativeness and ICT Competency of Pre-Service Teachers. Interact. Learn. Environ. 2022, 32, 557–571. [Google Scholar] [CrossRef]
- Faqih, K.M.S. Factors Influencing the Behavioral Intention to Adopt a Technological Innovation from a Developing Country Context: The Case of Mobile Augmented Reality Games. Technol. Soc. 2022, 69, 101958. [Google Scholar] [CrossRef]
- Chen, M.-F.; Lin, N.-P. Incorporation of Health Consciousness into the Technology Readiness and Acceptance Model to Predict App Download and Usage Intentions. Internet Res. 2018, 28, 351–373. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Cugurullo, F. Capturing the Behavioural Determinants behind the Adoption of Autonomous Vehicles: Conceptual Frameworks and Measurement Models to Predict Public Transport, Sharing and Ownership Trends of Self-Driving Cars. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 349–375. [Google Scholar] [CrossRef]
- Walczuch, R.; Lemmink, J.; Streukens, S. The Effect of Service Employees’ Technology Readiness on Technology Acceptance. Inf. Manag. 2007, 44, 206–215. [Google Scholar] [CrossRef]
- Lee, W.L.; Lim, Z.J.; Tang, L.Y.; Yahya, N.A.; Varathan, K.D.; Ludin, S.M. Patients’ Technology Readiness and eHealth Literacy: Implications for Adoption and Deployment of eHealth in the COVID-19 Era and Beyond. Comput. Inform. Nurs. 2021, 40, 244–250. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.E.; Grandón, E.E.; Arenas-Gaitán, J. Assessing Differences in Customers’ Personal Disposition to e-Commerce. Ind. Manag. Data Syst. 2019, 119, 792–820. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Humbani, M.; Wiese, M. A Cashless Society for All: Determining Consumers’ Readiness to Adopt Mobile Payment Services. J. Afr. Bus. 2018, 19, 409–429. [Google Scholar] [CrossRef]
- Salari, N. Electric Vehicles Adoption Behaviour: Synthesising the Technology Readiness Index with Environmentalism Values and Instrumental Attributes. Transp. Res. Part A Policy Pract. 2022, 164, 60–81. [Google Scholar] [CrossRef]
- Dong, X.; Ye, Z.; Xu, N.; Wang, Y.; Guan, Q.; Chen, J. Tourists’ Intention to Book Freelance Tour Guide Online Based on Technology Acceptance Model and Technology Readiness Index. Tourism Tribune 2020, 35, 24–35. (In Chinese) [Google Scholar]
- Kamal, S.A.; Shafiq, M.; Kakria, P. Investigating Acceptance of Telemedicine Services through an Extended Technology Acceptance Model (TAM). Technol. Soc. 2020, 60, 101212. [Google Scholar] [CrossRef]
- Yousafzai, S.Y.; Foxall, G.R.; Pallister, J.G. Technology Acceptance: A Meta-analysis of the TAM: Part 1. J. Model. Manag. 2007, 2, 251–280. [Google Scholar] [CrossRef]
- Salloum, S.; Alhamad, A.Q.; Al-Emran, M.; Monem, A.; Shaalan, K. Exploring Students’ Acceptance of E-Learning Through the Development of a Comprehensive Technology Acceptance Model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Setiawan, M.; Yanita, C. The Influence of Perceived Ease of Use on the Intention to Use Mobile Payment. J. Account. Strateg. Financ. 2020, 3, 18–32. [Google Scholar] [CrossRef]
- Lee, Y.; Strong, D.; Kahn, B.; Wang, R. AIMQ: A Methodology for Information Quality Assessment. Inf. Manag. 2002, 40, 133–146. [Google Scholar] [CrossRef]
- Pradhan, M.K.; Oh, J.; Lee, H. Understanding Travelers’ Behavior for Sustainable Smart Tourism: A Technology Readiness Perspective. Sustainability 2018, 10, 4259. [Google Scholar] [CrossRef]
- Tang, D.; Wen, Z. Statistical Approaches for Testing Common Method Bias: Problems and Suggestions. J. Psychol. Science 2020, 43, 215–223. (In Chinese) [Google Scholar] [CrossRef]
- Hair, J.J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What Drives People to Use Automated Vehicles? A Meta-Analytic Review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.; Sivathanu, B.; Dwivedi, Y. Shopping Intention at AI-Powered Automated Retail Stores (AIPARS). J. Retail. Consum. Serv. 2020, 57, 102207. [Google Scholar] [CrossRef]
- Oh, J.C.; Yoon, S.J.; Chung, N. The Role of Technology Readiness in Consumers’ Adoption of Mobile Internet Services between South Korea and China. Int. J. Mob. Commun. 2014, 12, 229–248. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Arha, H. Understanding the Blockchain Technology Adoption in Supply Chains-Indian Context. Int. J. Prod. Res. 2019, 57, 2009–2033. [Google Scholar] [CrossRef]
- Raman, P.; Aashish, K. Gym Users: An Enabler in Creating an Acceptance of Sports and Fitness Wearable Devices in India. Int. J. Sports Mark. Spons. 2021, 23, 707–726. [Google Scholar] [CrossRef]
- Park, J.; Hong, E.; Le, H.T. Adopting Autonomous Vehicles: The Moderating Effects of Demographic Variables. J. Retail. Consum. Serv. 2021, 63, 102687. [Google Scholar] [CrossRef]
- Buckley, L.; Kaye, S.-A.; Pradhan, A.K. Psychosocial Factors Associated with Intended Use of Automated Vehicles: A Simulated Driving Study. Accid. Anal. Prev. 2018, 115, 202–208. [Google Scholar] [CrossRef]
Variables | Category | Frequency | Percentage | Variables | Category | Frequency | Percentage |
---|---|---|---|---|---|---|---|
Gender | Male | 144 | 46.5% | Profession | Students | 36 | 11.6% |
Female | 166 | 53.5% | Employees | 238 | 76.8% | ||
Age | ≤18 | 1 | 0.3% | Teachers | 17 | 5.5% | |
18–25 | 62 | 20.0% | Others | 19 | 6.1% | ||
26–30 | 111 | 35.8% | Monthly income (CNY) | <3000 | 37 | 11.9% | |
31–40 | 108 | 34.8% | 3000–6000 | 57 | 18.4% | ||
41–50 | 21 | 6.8% | 6000–9000 | 93 | 30.0% | ||
51–60 | 6 | 1.9% | 9000–12,000 | 71 | 22.9% | ||
≥60 | 1 | 0.3% | >12,000 | 52 | 16.8% | ||
Education Background | High school or below | 15 | 4.8% | Vehicles owned | 0 | 15 | 4.8% |
Associate degree | 33 | 10.6% | 1 | 254 | 81.9% | ||
Bachelor’s degree | 212 | 68.4% | 2 | 38 | 12.3% | ||
Master’s degree or above | 50 | 16.1% | ≥3 | 3 | 1.0% |
Construct | Item | Standardized Factor Loading (R1) | R12 | Common Method Factor Loading (R2) | R22 |
---|---|---|---|---|---|
AV adoption intention (AI) | AI1 | 0.896 *** | 0.803 | −0.064 | 0.004 |
AI2 | 0.874 *** | 0.764 | 0.037 | 0.001 | |
AI3 | 0.886 *** | 0.785 | 0.027 | 0.001 | |
Optimism (OPT) | OPT1 | 0.757 *** | 0.573 | 0.182 * | 0.033 |
OPT2 | 0.851 *** | 0.724 | −0.019 | 0.000 | |
OPT3 | 0.855 *** | 0.731 | −0.027 | 0.001 | |
OPT4 | 0.823 *** | 0.677 | −0.113 * | 0.013 | |
Innovativeness (INN) | INN1 | 0.833 *** | 0.694 | −0.020 | 0.000 |
INN2 | 0.874 *** | 0.764 | 0.004 | 0.000 | |
INN3 | 0.801 *** | 0.642 | −0.071 | 0.005 | |
INN4 | 0.803 *** | 0.645 | 0.085 | 0.007 | |
Discomfort (DIS) | DIS1 | 0.786 *** | 0.618 | 0.053 | 0.003 |
DIS2 | 0.868 *** | 0.753 | −0.023 | 0.001 | |
DIS3 | 0.881 *** | 0.776 | −0.052 | 0.003 | |
DIS4 | 0.764 *** | 0.584 | 0.022 | 0.000 | |
Insecurity (INS) | INS1 | 0.725 *** | 0.526 | 0.036 | 0.001 |
INS2 | 0.728 *** | 0.530 | 0.008 | 0.000 | |
INS3 | 0.735 *** | 0.540 | −0.021 | 0.000 | |
INS4 | 0.715 *** | 0.511 | −0.024 | 0.001 | |
Perceived usefulness (PU) | PU1 | 0.840 *** | 0.706 | 0.003 | 0.000 |
PU2 | 0.877 *** | 0.769 | 0.038 | 0.001 | |
PU3 | 0.801 *** | 0.642 | −0.033 | 0.001 | |
PU4 | 0.870 *** | 0.757 | −0.012 | 0.000 | |
Perceived ease of use (PEOU) | PEOU1 | 0.758 *** | 0.575 | −0.010 | 0.000 |
PEOU2 | 0.765 *** | 0.585 | 0.043 | 0.002 | |
PEOU3 | 0.745 *** | 0.555 | 0.096 | 0.009 | |
PEOU4 | 0.720 *** | 0.518 | −0.139 * | 0.019 | |
Average value | 0.809 | 0.657 | 0.000 | 0.004 |
Construct | Item | Factor Loading | Cronbach’s α | CR | AVE |
---|---|---|---|---|---|
Optimism (OPT) | OPT1 | 0.745 | 0.700 | 0.816 | 0.526 |
OPT2 | 0.720 | ||||
OPT3 | 0.729 | ||||
OPT4 | 0.707 | ||||
Innovativeness (INN) | INN1 | 0.832 | 0.847 | 0.897 | 0.686 |
INN2 | 0.873 | ||||
INN3 | 0.793 | ||||
INN4 | 0.812 | ||||
Discomfort (DIS) | DIS1 | 0.704 | 0.840 | 0.891 | 0.672 |
DIS2 | 0.851 | ||||
DIS3 | 0.862 | ||||
DIS4 | 0.852 | ||||
Insecurity (INS) | INS1 | 0.763 | 0.844 | 0.895 | 0.682 |
INS2 | 0.867 | ||||
INS3 | 0.876 | ||||
INS4 | 0.790 | ||||
Perceived usefulness (PU) | PU1 | 0.761 | 0.736 | 0.834 | 0.558 |
PU2 | 0.772 | ||||
PU3 | 0.746 | ||||
PU4 | 0.706 | ||||
Perceived ease of use (PEOU) | PEOU1 | 0.841 | 0.869 | 0.911 | 0.718 |
PEOU2 | 0.878 | ||||
PEOU3 | 0.801 | ||||
PEOU4 | 0.869 | ||||
AV adoption intention (AI) | AI1 | 0.891 | 0.862 | 0.916 | 0.784 |
AI2 | 0.875 | ||||
AI3 | 0.890 |
AI | DIS | INN | INS | OPT | PEOU | PU | |
---|---|---|---|---|---|---|---|
AI | 0.885 | ||||||
DIS | −0.343 | 0.820 | |||||
INN | 0.480 | −0.306 | 0.828 | ||||
INS | −0.334 | 0.551 | −0.314 | 0.826 | |||
OPT | 0.439 | −0.222 | 0.306 | −0.160 | 0.725 | ||
PEOU | 0.517 | −0.367 | 0.539 | −0.344 | 0.374 | 0.848 | |
PU | 0.628 | −0.332 | 0.457 | −0.339 | 0.496 | 0.674 | 0.747 |
Variable | Coefficient of Determination (R²) | Predictive Relevance (Q²) | SRMR |
---|---|---|---|
Optimism | - | - | 0.056 |
Innovativeness | - | - | |
Discomfort | - | - | |
Insecurity | - | - | |
Perceived usefulness | 0.530 | 0.282 | |
Perceived ease of use | 0.372 | 0.266 | |
AV adoption intention | 0.469 | 0.357 |
Hypothesis | Path Relationships | Path Coefficients | T-Statistics | p-Values | Results |
---|---|---|---|---|---|
H1a | OPT -> AI | 0.138 * | 2.061 | 0.039 | Supported |
H1b | OPT -> PU | 0.269 *** | 4.754 | 0.000 | Supported |
H1c | OPT -> PEOU | 0.203 *** | 3.835 | 0.000 | Supported |
H2a | INN -> AI | 0.162 * | 2.297 | 0.022 | Supported |
H2b | INN -> PU | 0.073 | 1.066 | 0.286 | Not Supported |
H2c | INN -> PEOU | 0.400 *** | 6.281 | 0.000 | Supported |
H3a | DIS -> AI | −0.069 | 1.345 | 0.179 | Not Supported |
H3b | DIS -> PU | −0.017 | 0.358 | 0.720 | Not Supported |
H3c | DIS -> PEOU | −0.138 * | 2.091 | 0.037 | Supported |
H4a | INS -> AI | −0.050 | 0.806 | 0.420 | Not Supported |
H4b | INS -> PU | −0.094 | 1.444 | 0.149 | Not Supported |
H4c | INS -> PEOU | −0.110 | 1.487 | 0.137 | Not Supported |
H5 | PU -> AI | 0.401 *** | 3.932 | 0.000 | Supported |
H6 | PEOU -> AI | 0.041 | 0.47 | 0.638 | Not Supported |
H7 | PEOU -> PU | 0.495 *** | 6.823 | 0.000 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Zhang, H.; Guo, J.; Wang, Y. Understanding the Adoption of Autonomous Vehicles in China Based on TRI and TAM. World Electr. Veh. J. 2025, 16, 23. https://doi.org/10.3390/wevj16010023
He X, Zhang H, Guo J, Wang Y. Understanding the Adoption of Autonomous Vehicles in China Based on TRI and TAM. World Electric Vehicle Journal. 2025; 16(1):23. https://doi.org/10.3390/wevj16010023
Chicago/Turabian StyleHe, Xiuhong, Heng Zhang, Ju Guo, and Yingchun Wang. 2025. "Understanding the Adoption of Autonomous Vehicles in China Based on TRI and TAM" World Electric Vehicle Journal 16, no. 1: 23. https://doi.org/10.3390/wevj16010023
APA StyleHe, X., Zhang, H., Guo, J., & Wang, Y. (2025). Understanding the Adoption of Autonomous Vehicles in China Based on TRI and TAM. World Electric Vehicle Journal, 16(1), 23. https://doi.org/10.3390/wevj16010023