Finite Element Modellingand Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification
<p>Schematic of hexahedral (LSPiezo) and tetrahedral (LTRPiezo) reference element for piezo-elastic coupling implemented in OOFEM.</p> "> Figure 2
<p>Single-layer beam. The poling direction of the beam is the <span class="html-italic">z</span>-axis. The length L, height H, and width D of the beam are 10 mm, 2 mm, and 5 mm, respectively.</p> "> Figure 3
<p>Single-layer beam under tensile and shear displacement.</p> "> Figure 4
<p>Bimorph beam with equally-thick piezoelectric layers.</p> "> Figure 5
<p>Comparison of FEM results with analytical data for the bimorph beam case: (<b>a</b>) deflection profile along the <span class="html-italic">x</span>-axis and (<b>b</b>) deflection error along the length of the bimorph beam with the increasing number of elements in the simulation.</p> "> Figure 6
<p>Three-layered beam with two smaller piezoelectric beams of the same width (shown as gray color) as the non-piezoelectric beam (shown as white color). Beam length <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math> mm; piezoelectric layer thickness <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> mm, and the thickness of the non-piezoelectric beam was <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> mm; and the applied voltage <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> V.</p> "> Figure 7
<p>Comparison of FEMwith analytical results for the three-layer beam case: (<b>a</b>) deflection profile along the beam span and (<b>b</b>) error of deflection for meshes with different numbers elements.</p> "> Figure 8
<p>Problem setup and computational domain of the composite piezoelectric actuator. Note that the computational domain is taken as a quarter of the disc with symmetric planes.</p> "> Figure 9
<p>Mesh convergence of FEM analysis for a unimorph piezoelectric actuator in comparison with the experiment and analytical results [<a href="#B18-computation-06-00060" class="html-bibr">18</a>]. The plots show the deflection profile with normalized radius along the bottom shim plate.</p> "> Figure 10
<p>Comparison of different experimental data and FEM results obtained from the present work on the same device APC 850 reported in [<a href="#B18-computation-06-00060" class="html-bibr">18</a>,<a href="#B19-computation-06-00060" class="html-bibr">19</a>]. Here, the experimental (circle symbols) and numerical data (dashed line with square symbols) are shown for two different setups of the same device.</p> "> Figure 11
<p>Prediction of maximum deflection at the center of the plate as a function of the radius ratio between the PZT layer and shim layer. The comparison between analytical and current FEM model for different thickness ratios <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>p</mi> </msub> <mo>/</mo> <msub> <mi>h</mi> <mi>s</mi> </msub> </mrow> </semantics></math> shows a consistent trend in the variation of maximum displacement with the radius ratio.</p> "> Figure 12
<p>Scatter plot of maximum deflection at the center of the disc with geometrical and material property parameters using the Latin hypercube sampling technique.</p> "> Figure 13
<p>Distribution of the maximum response with uncertainties and its numerical discretization error obtained from Richardson extrapolation. The displacement error is shown as error bars in the graph.</p> "> Figure 14
<p>Cumulative distribution function of the maximum deflection response obtained from different UQ approaches. The green line is the CDF of the experiment constructed from two data points. The shaded area is the area validation metric.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulations
2.1. Governing Equations for Piezoelectric Materials
2.2. Finite Element Discretization
2.3. Error and Uncertainty Quantification
3. Verification and Validation
3.1. Single-Layer Piezoelectric Beam
3.2. Bimorph Piezoelectric Beam
3.3. Three-Layer Actuator Beams
4. Uncertainty Quantification of the Piezoelectric Composite Plate Actuator’s Response
4.1. Characterization and Comparison of Actuator Responses
4.2. Uncertainty Quantification of Actuator Responses
4.2.1. Sources of Uncertainties
4.2.2. Quantification of Numerical Errors
4.2.3. Propagation of Uncertainties through the Model
4.2.4. Model Uncertainty
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piefort, V. Finite Element Modelling of Piezoelectric Active Structures. Ph.D. Thesis, Active Structures Laboratory, Department of Mechanical Engineering and Robotics, Université libre de Bruxelles, Brussels, Belgium, 2001. [Google Scholar]
- Luna, M.E.S.; Fullam, S. Piezoelectric Heart Rate Sensing for Wearable Devices or Mobile Devices. U.S. Patent 13,672,398, 8 December 2012. [Google Scholar]
- Rastegar, J.S.; Spinelli, T. Piezoelectric-Based Toe-Heaters for Frostbite Protection. U.S. Patent 12,075,645, 13 March 2008. [Google Scholar]
- Burns, J.R. Ocean Wave Energy Conversion Using Piezoelectric Material Members. U.S. Patent 4,685,296, 11 August 1987. [Google Scholar]
- Żyszkowski, Z. Podstawy Elektroakustyki; WNT: Warszawa, Poland, 1984. [Google Scholar]
- Smits, J.G.; Dalke, S.I.; Cooney, T.K. The Constituent Equations of piezoelectric Bimorph. Sens. Actuators A Phys. 1991, 28, 41–61. [Google Scholar] [CrossRef]
- Dong, X.J.; Meng, G. Dynamic analysis of structures with piezoelectric actuators based on thermal analogy method. Int. J. Adv. Manuf. Technol. 2006, 27, 841–844. [Google Scholar] [CrossRef]
- Allik, H.; Hughes, T.J.R. Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 1970, 2, 151–157. [Google Scholar] [CrossRef]
- Kpeky, F.; Abed-Meraim, F.; Daya, E.M. New linear and quadratic prismatic piezoelectric solid–shell finite elements. Appl. Math. Comput. 2018, 319, 355–368. [Google Scholar] [CrossRef]
- Carrera, E.; Valvano, S.; Kulikov, G.M. Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics. Int. J. Smart Nano Mater. 2018, 9, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Benjeddou, A. Advances in Piezoelectric Finite Element Modeling of Adaptive Structural Elements: A Survey. Comput. Struct. 2000, 76, 347–363. [Google Scholar] [CrossRef]
- Patzák, B. OOFEM—An object-oriented simulation tool for advanced modeling of materials and structures. Acta Polytech. 2012, 52, 59–66. [Google Scholar]
- Roache, P.J. Verification of Codes and Calculations. AIAA J. 1998, 36, 696–702. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; DeLand, S.M.; Rutherford, B.M.; Diegert, K.V.; Alvin, K.F. Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 2002, 75, 333–357. [Google Scholar] [CrossRef]
- Helton, J.C.; Johnson, J.D.; Oberkampf, W.L. An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliab. Eng. Syst. Saf. 2004, 85, 39–71. [Google Scholar] [CrossRef]
- Mahadevan, S.; Liang, B. Error and Uncertainty Quantification and Sensitivity Analysis in Mechanics Computational Models. Int. J. Uncertain. Quantif. 2011, 1, 147–161. [Google Scholar] [CrossRef]
- Mieczkowski, G. The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry. J. Theor. Appl. Mech. 2017, 55, 69–86. [Google Scholar] [CrossRef]
- Prasad, S.; Sankar, B.; Cattafesta, L.; Horowitz, S.; Gallas, Q.; Sheplak, M. Two-Port Electroacoustic Model of a Piezoelectric Circular Composite Plate. In Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO, USA, 22–25 April 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Prasad, S.A.; Gallas, Q.; Horowitz, S.B.; Homeijer, B.D.; Sankar, B.V.; Cattafesta, L.N.; Sheplak, M. Analytical Electroacoustic Model of a Piezoelectric Composite Circular Plate. AIAA J. 2006, 44, 2311–2318. [Google Scholar] [CrossRef]
- APC International. Physical and Piezoelectric Properties of APC Materials; APC International: Mackeyville, PA, USA, 2013; pp. 841–842. [Google Scholar]
- Adams, B.M.; Ebeida, M.S.; Eldred, M.S.; Jakeman, J.D.; Swiler, L.P.; Eddy, J.P. Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 6.7 Theory Manual. Sandia Technical Report SAND2014-4633; 2014. Available online: https://dakota.sandia.gov/sites/default/files/docs/6.7/Theory-6.7.0.pdf (accessed on 20 November 2018).
- Roy, C.J.; Oberkampf, W.L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 2011, 200, 2131–2144. [Google Scholar] [CrossRef]
Mechanical | Electrical | |
---|---|---|
Natural Boundary Conditions | on | on |
Essential Boundary Conditions | on | on |
(kg/m) | |
---|---|
× 10 (Pa) | |
(Cb/m) |
Tensile | Shear | |||||
---|---|---|---|---|---|---|
Δ (mm) | || | |||||
Tet | 1 | 780 | 1.37 × 10 | 6.85 × 10 | 5.93 × 10 | 3.900 × 10 |
- | 0.2 | 49,960 | 1.37 × 10 | 6.85 × 10 | 5.93 × 10 | 3.900 × 10 |
Hex | 1 | 100 | 1.37 × 10 | 6.85 × 10 | 5.93 × 10 | 3.696 × 10 |
- | 0.2 | 10,000 | 1.37 × 10 | 6.85 × 10 | 5.93 × 10 | 3.696 × 10 |
Analytical | - | - | 1.37 × 10 | 6.85 × 10 | 5.93 × 10 | 3.695 × 10 |
× 10 | (m/V) |
Geometric Properties | ||
Outer radius | (mm) | 11.7 |
Radius of piezoelectric | (mm) | 10.0 |
Radius of silver | (mm) | 9.2 |
Thickness of shim | (mm) | 0.221 |
Thickness of piezoelectric | (mm) | 0.234 |
Thickness of silver | h (mm) | 0.015 |
Material Properties | ||
Elastic modulus of shim | (GPa) | 90 |
Poisson’s ratio of shim | (-) | 0.32 |
Density of shim | (kg/m) | 8700 |
Elastic modulus of piezoelectric | (GPa) | 63 |
Poisson’s ratio of piezoelectric | (-) | 0.31 |
Density of piezoelectric | (kg/m) | 7700 |
Electrical Properties | ||
Relative dielectric constant | (-) | 1750 |
Piezoelectric constant | (m/V) |
Grid | (m/V) | GCI (%) | |||
---|---|---|---|---|---|
G1 | 40 | 10 | 4 | 0.08809 | - |
G2 | 60 | 20 | 6 | 0.09167 | 2.89 |
G3 | 80 | 30 | 8 | 0.09653 | 6.03 |
G4 | 100 | 40 | 10 | 0.09918 | 4.44 |
Asymptotic | - | - | - | 0.10499 | - |
Parameter | Mean | Probability Distribution | LHS 200 | Corr | LHS300 | Corr |
---|---|---|---|---|---|---|
Partial | Simple | Partial | Simple | |||
(m) | 220.0 | normal, | −0.8808 | −0.4305 | −0.8628 | −0.4855 |
(m) | 230.0 | normal, | −0.9043 | −0.4933 | −0.8438 | −0.4610 |
(pC/m) | −175 | normal, | −0.9522 | −0.7250 | −0.9302 | −0.7209 |
(pC/m) | 395 | normal, | −0.16793 | −0.0376 | −0.0672 | 0.0272 |
Method | No. of Evaluations | Mean (m/V) | Std Dev (m/V) | Skewness | Kurtosis |
---|---|---|---|---|---|
LHS200 | 200 | 1.0755 × 10 | 1.2538× 10 | 1.1756 | 6.8497 |
LHS300 | 300 | 1.0543 × 10 | 1.1204 × 10 | 2.2445 × 10 | 6.9922 × 10 |
Polynomial chaos expansion | 135 | 1.0543 × 10 | 1.0590 × 10 | 1.5774× 10 | 6.8291 × 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.-T.; Kumar, P.; Leong, J.Y.C. Finite Element Modellingand Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification. Computation 2018, 6, 60. https://doi.org/10.3390/computation6040060
Nguyen V-T, Kumar P, Leong JYC. Finite Element Modellingand Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification. Computation. 2018; 6(4):60. https://doi.org/10.3390/computation6040060
Chicago/Turabian StyleNguyen, Vinh-Tan, Pankaj Kumar, and Jason Yu Chuan Leong. 2018. "Finite Element Modellingand Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification" Computation 6, no. 4: 60. https://doi.org/10.3390/computation6040060
APA StyleNguyen, V. -T., Kumar, P., & Leong, J. Y. C. (2018). Finite Element Modellingand Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification. Computation, 6(4), 60. https://doi.org/10.3390/computation6040060