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Abstract: This paper introduces a novel adaptive control method for suspension vehicle
systems in response to road disturbances. The considered model is based on an active sym-
metry quarter car (SQC) fractional order suspension system (FOSS). The word symmetry
in SQC refers to the symmetry of the suspension system in the front tires or the rear tires
of the car. The active suspension controller is generally driven by an external force like a
hydraulic or pneumatic actuator. The external force of the actuator is determined using
fractional dynamic sliding mode control (FDSMC) to counteract road disturbances and
eliminate the chattering caused by sliding mode control (SMC). In FDSMC, a fractional
integral acts as a low-pass filter before the system actuator to remove high-frequency chat-
tering, necessitating an additional state for FDSMC implementation assuming all FOSS
state variables are available but the parameters are unknown and uncertain. Hence, an
adaptive procedure is proposed to estimate these parameters. To enhance closed-loop
system performance, an adaptive proportional-integral (PI) procedure is also employed,
resulting in the FDSMC-PI approach. A comparison is made between two SQC suspen-
sion system models, the fractional order suspension system (FOSS) and the integer order
suspension system (IOSS). The IOSS controller is based on dynamic sliding mode control
(DSMC) and a PI procedure (DSMC-PI). The results show that FDSMC outperforms DSMC.

Keywords: fractional order suspension system (FOSS); fractional dynamic sliding mode
control (FDSMC); symmetry quarter car (SQC); proportional-integral (PI) procedure;
adaptive parameter

MSC: 93C10

1. Introduction
When designing a suspension system, it is crucial to balance passenger comfort and

vehicle handling [1,2]. For passenger comfort, the suspension should be soft to minimize
body displacement and acceleration. Conversely, for good vehicle handling, the suspension
needs to be stiff to ensure the tires maintain contact with the road in different conditions of
the terrain [2,3]. In other words, for good handling of the vehicle, the tire should stick to
the road [4]. In passive suspension systems, the mass–spring–damper parameters are fixed,
causing the vehicle body to oscillate with the road terrain [5]. This means vibrations are
transmitted from the wheels to the vehicle body [6]. However, an active symmetry quarter
car (SQC) suspension system can adapt to varying road conditions, reducing both body
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displacement and acceleration [7]. As we mentioned in the abstract, the word symmetry in
SQC refers to the symmetry of the suspension system in the front or rear tires of the car.

Active suspension systems typically include actuators that provide additional forces,
such as hydraulic [4] or pneumatic (air) [8], which are determined by feedback control [9].
Numerous studies have explored various control strategies for designing active suspension
systems [10–30], including H-infinity control [9], optimal control [10], fuzzy control [11,12],
neural network (NN) [13], linear quadratic regulator (LQR) or linear quadratic Gaussian
(LQG) control [14–16], model-free control [17], proportional-integral-derivative (PID) con-
trol [18,19], and sliding mode control (SMC) [26–30].

Intelligent approaches such as the fuzzy controller [12] or neural networks [13] can be
adaptive but commonly are not robust. In the anthers methods such as PID [19], coefficients
can be self-tuned or chosen using the Ziegler–Nichols approach [20]. Algorithms like parti-
cle swarm optimization (PSO) [21] and genetic algorithms (GA) [22] have been used to tune
PID parameters, improving the dynamic performance and stability of active suspension
systems. In [23], fractional order PID controllers were designed using an artificial bee
colony algorithm with objective functions such as integral absolute error, integral square
error and integral time absolute error. Moreover, [24] analyzed a fuzzy-based PID controller
for a half car active suspension system. In this analysis, the suspension’s working space is
the criterion under observation. In designing an LQR controller, the selection of weighting
matrices is a key issue that directly affects the control action. In [25], the authors presented
an approach to the optimal control problem where weighting matrices are not selected by
trial and error but are calculated for the time domain.

Despite these advancements, many SMC-based suspension controllers still experience
chattering, and in most of the proposed SMC suspension controller approaches, chatter-
ing occurs [26–30]. To address this, several methods were proposed [31], such as SMC-
based boundary layer (BL) [32], adaptive boundary layer (ABL) [33–35], higher-order SMC
(HOSMC) [36,37], and dynamic SMC (DSMC) [38,39]. While BL and ABL approaches may
lose the invariance property [31,32], HOSMC requires an observer to estimate higher-order
derivatives of the system model [40–43]. DSMC mitigates the discontinuous Signum func-
tion effect with a low-pass integrator filter, increasing the states that need to be estimated
by an observer [38,39], making it preferable.

Given the unknown and uncertain road terrain, a robust controller is necessary [4].
This paper proposes DSMC for suspension systems to handle model uncertainty, prevent
chattering and preserve invariance. The model is based on a fractional order suspension
system (FOSS) for a symmetry quarter car (SQC), controlled with FDSMC combined with
a PI approach (FDSMC-PI). Both FOSS and PI parameters are adaptively calculated. A
comparison with the integer order suspension system (IOSS), controlled by adaptive DSMC
and PI (DSMC-PI), shows that FDSMC performs better. Lyapunov’s theory is used to prove
the stability of the approaches.

Section 2 provides an overview of fractional derivatives and describes the IOSS
and FOSS models. Section 3 presents the background and problem to clarify the pro-
posed FDSMC and FDSMC-PI approaches. In this section, the proposed adaptive
structures are also explained. Sections 4 and 5 cover the simulation results and the
conclusions, respectively.

2. Preliminaries of Fractional Model Construction
In this section, we first explain a brief about the fractional derivative and then the

suspension system model of SQC is presented.
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2.1. Preliminaries of Fractional Calculus

Definition 1. Caputo q-order differentiation of function f(t) with respect to time t denoted
by [44,45]:

Dq
t0

f(t) =
1

Γ(1 − q)

∫ t

t0

f′(τ)
(t − τ)q dτ (1)

where t > t0, 0 < q < 1 and Γ(q) are the Gamma function defined as Γ(q) =
∫ ∞

0 τq−1e−τdτ.

Lemma 1. For any vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn×1 and any arbitrary matrix

M ∈ Rn×n with constant elements, we have [44]:

Dq
t0
(xTMx) ≤ (Dq

t0
x)

T
Mx + xTM(Dq

t0
x) (2)

A result of this lemma can be written as follows:

Dq
t0
(xTx) ≤ (Dq

t0
x)

T
x + xT(Dq

t0
x) (3)

Remark 1. From here and in the continuation of this paper, we suppose that the initial time of
fractional derivative is zero, i.e., t0 = 0. Moreover, for simplicity, the subscript t0 is also eliminated
and hence we write Dq instead of Dq

t0
.

2.2. Suspension Model Construction

The dynamic model of an SQC integer order suspension system (IOSS) is as follows [4]:

ms
..
zs = −bs(

.
zs −

.
zu)− ks(zs − zu) + fa (4)

mu
..
zu = +bs(

.
zs −

.
zu) + ks(zs − zu)− fa + bt(

.
zr −

.
zu) + kt(zr − zu) (5)

where zs, zu and zr are displacement of the body, wheel and road (terrain), respectively.
The first and second derivatives of zs and zu are velocity and acceleration. Moreover, ms,
mu, ks, kt, bs and bt are mass, stiffness and damping rate of the body (sprung) and wheel
(un-sprung), respectively. Moreover, zs − zu is the suspension deflection and zu − zr is the
tire (wheel) deflection. Variable fa is the output force of the hydraulic actuator which is
placed between the body and the wheel. When fa = 0, the suspension system acts passively
or we have the passive suspension system (PSS). The aim of an active suspension system
(ASS) is to determine a suitable (desired) value for fa such that the smallest possible values
for zs,

.
zs and

..
zs are achieved. We assumed that all the parameters are unavailable but the

variables are were measurable except zr and its derivative, which are considered as the
disturbance. The dynamics of this system are represented in Figure 1.
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Now, consider the following SQC fractional order suspension system (FOSS), which is
the fractional model of Equations (4) and (5) [46].

msD2qzs = −bs(Dqzs − Dqzu)− ks(zs − zu) + fa (6)

muD2qzu = +bs(Dqzs − Dqzu) + ks(zs − zu)− fa + bt(Dqzr − Dqzu) + kt(zr − zu) (7)

As we mentioned, all variables are measurable except zr. Now, we define the following
available state variables:

x1 = zs, x2 = Dqzs, y1 = zu, y2 = Dqzu (8)

then:
Dqx1 = x2

Dqx2 = − bs
ms

x2 − ks
ms

x1 +
bs
ms

y2 +
ks
ms

y1 +
1

ms
fa

(9)

Dqy1 = y2
Dqy2 = + bs

mu
x2 +

ks
mu

x1 − bs
mu

y2 −
ks
mu

y1 −
1

mu
fa − bt

mu
y2 −

kt
mu

y1 + fdist
(10)

and fdis is considered an unknown disturbance.

fdist = +
bt

mu
Dqzr +

kt

mu
zr (11)

3. Proposed Adaptive FDSMC Design
Now, we define the following measurable extra variable:

x3 = Dqx2 (12)

Moreover, we define the following sliding variable:

sx = L1x1 + L2x2 + L3x3 (13)

where the fixed numbers L1, L2 and L3 are the coefficients of sliding variable. The selection
method of these parameters is explained in Remark 2.

Now, the sliding variable fractional derivative is as:

Dqsx = L1Dqx1 + L2Dqx2 + L3Dqx3 = L1x2 + L2x3 + L3Dqx3 (14)

then one can write:

Dqx3 = − bs

ms
x3 −

ks

ms
x2 +

bs

ms
Dqy2 +

ks

ms
y2 +

1
ms

Dqfa (15)

Using Equation (10) results in:

Dqx3 = − bs
ms

x3 − ks
ms

x2 +
ks
ms

y2 +
1

ms
Dqfa

+ bs
ms

(
+ bs

mu
x2 +

ks
mu

x1 − bs
mu

y2 −
ks
mu

y1 −
1

mu
fa − bt

mu
y2 −

kt
mu

y1 + fdist

)
=

(
− bs

ms

)
x3 +

(
− ks

ms
+ bs

ms
bs
mu

)
x2 +

(
+ bs

ms
ks
mu

)
x1 +

(
− bs

ms
bs
mu

− bs
ms

bt
mu

+ ks
ms

)
y2

+
(
− bs

ms
ks
mu

− bs
ms

kt
mu

)
y1 +

(
− bs

ms
1

mu

)
fa +

(
1

ms

)
Dqfa +

(
bs
ms

)
fdist

(16)

Equation (16) can be written as follows, with the corresponding coefficients:

Dqx3 = k3x3 + k2x2 + k1x1 + k5y2 + k4y1 + k6fa + kfD
qfa + kdfdist (17)
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In which k = [k1, k2, k3, k4, k5, k6] and also kd = −k3. Moreover, the vector of the
state variable is x = [x1, x2, x3, y1, y2, fa]

T, then we have:

Dqx3 = kx + kfD
qfa + kdfdist (18)

Then, the Equations (14) and (18) results are:

Dqsx = L1x2 + L2x3 + L3(kx + kfD
qfa + kdfdist) (19)

Suppose that the coefficient vector k and coefficient scalars kf and kd are unknown
and are estimated by k̂, k̂f and k̂d such that k̂ = [k̂1, k̂2, k̂3, k̂4, k̂5, k̂6]. Then, the estimation
of Equation (20) is as follows:

Dqŝx = L1x2 + L2x3 + L3(k̂x + k̂fD
qfa + k̂dfdist) (20)

Theorem 1. The following FDSMC control input causes the closed-loop system to be stable.

Dqfa = −L1x2 + L2x3 + L3k̂x + λ1sign(sx)

L3k̂f
(21)

If the parameters k̂ and k̂f are calculated from the following adaptive procedure:

Dqk̂ = γ1L3sxx
Dqk̂f = γ2L3sxDqfa

(22)

and also:
λ1 = L3kdFdist + η (23)

in which |fdist| ≤ Fdist and η is a positive number.

Proof. Replacing Equation (21) into Equation (20) results in:

Dqŝx = −λ1sign(sx) + L3k̂dfdist (24)

or:
L1x2 + L2x3 + L3(k̂x + k̂fD

qfa + k̂dfdist) = −λ1sign(sx) + L3k̂dfdist (25)

or:
L1x2 + L2x3 + L3(kx + kfDqfa + kdfdist)− L3(kx + kfDqfa + kdfdist)

+L3(k̂x + k̂fDqfa) = −λ1sign(sx)
(26)

From Equations (19) and (26), the next equation is obtained:

Dqsx = L3(k − k̂)x + L3(kf − k̂f)D
qfa + L3kdfdist − λ1sign(sx) (27)

Defining k̃ = k − k̂ and k̃f = kf − k̂f results in:

Dqsx = −λ1sign(sx) + L3k̃x + L3k̃fD
qfa + L3kdfdist (28)

Now, consider the following Lyapunov function:

V(t) =
1
2

sx
2 +

1
2γ1

k̃k̃
T
+

1
2γ2

k̃
2
f (29)
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Based on Lemma 1, one can conclude that:

DqV(t) ≤ sxDqsx −
1
γ1

k̃Dqk̂ − 1
γ2

k̃fD
qk̂f (30)

Therefore:

DqV(t) ≤ sx

(
−λ1sign(sx) + L3k̃x + L3k̃fDqfa + L3kdfdist

)
− 1

γ1
k̃(γ1L3sxx)− 1

γ2
k̃f(γ2L3sxDqfa)

= −λ1sxsign(sx) + L3kdfdistsx ≤ −λ1|sx|+ L3kd|fdist| |sx|
≤ (−λ1 + L3kdFdist) |sx|

(31)

Using Equation (23) results in:
DqV(t) ≤ −η|sx| (32)

When using the Lyapunov stability theory, it is concluded that the closed-loop system is
stable and proof of the theorem is completed. □

Theorem 2. The following FDSMC-PI control input causes the closed-loop system to be stable.

Dqfa = −L1x2+L2x3+L3k̂x+λ1sign(sx)+uPI
L3k̂f

uPI = k̂Psx + k̂I
∫ t

0 sxdt
(33)

If the adaptive parameters are calculated from the following procedure:

Dqk̂ = γ1L3sxx
Dqk̂f = γ2L3sxDqfa

Dqk̂P = η1sx
2

Dqk̂I = η2sx
∫ t

0 sxdt

(34)

Also, as in the previous theorem:
λ1 = L3kdFdist + η (35)

in which |fdist| ≤ Fdist and η is a positive number.

Proof. Replacing Equation (33) into Equation (20) and as with Equation (24) to
Equation (28), one can conclude that:

Dqsx = −λ1sign(sx) + L3k̃x + L3k̃fD
qfa + L3kdfdist − uPI (36)

Now, consider the following Lyapunov function:

V(t) =
1
2

sx
2 +

1
2γ1

k̃k̃
T
+

1
2γ2

k̃
2
f +

1
2η1

k̂
2
P

1
2η2

k̂
2
I (37)

Based on Lemma 1, one can conclude that:

DqV(t) ≤ sxDqsx −
1
γ1

k̃Dqk̂ − 1
γ2

k̃fD
qk̂f +

1
η1

k̂PDqk̂P +
1
η2

k̂IDqk̂I (38)

Therefore:

DqV(t) ≤ sx

(
−λ1sign(sx) + L3k̃x + L3k̃fDqfa + k̂Psx − k̂I

∫ t
0 sxdt − L3kdfdist

)
− 1
γ1

k̃(γ1L3sxx)− 1
γ2

k̃f(γ2L3sxDqfa) +
1
η1

k̂P
(
η1sx

2)+ 1
η2

k̂I

(
η2sx

∫ t
0 sxdt

)
= −λ1sxsign(sx) + L3kdfdistsx ≤ −λ1|sx|+ L3kd|fdist| |sx| ≤ (−λ1 + L3kdFdist) |sx|

(39)
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Using the Equation (35) results:
DqV(t) ≤ −η|sx| (40)

When using the Lyapunov stability theory, it is concluded that the closed-loop system is
stable and proof of the theorem is completed. □

4. Simulation Presentation
In this section, two simulations are carried out, DSMC and FDSMC. The parameters

of the suspension system have been chosen as in Table 1 [4].

Table 1. The parameters of suspension system.

Parameter Value Unit

ms 243 kg

mu 40 kg

bs 370 N/(m/s)

bt 414 N/(m/s)

ks 14, 671 N/m

kt 124, 660 N/m

In addition, the parameters of the controllers have been selected as:

L1 = 4, L2 = 0.4, L3 = 0.01, λ1 = 2 (41)

Remark 2. The sliding surface coefficients L1, L2 and L3 are selected such that the internal
dynamics of the sliding surface (13) are considered to be zero, i.e., in the case of sx = 0, all the state
variables x1, x2 and x3 converge to zero. Also, we selected γ1 = γ2 = η1 = η2 = 1 in Equation (34)
to have a moderate convergence and to reduce drift of adaptive parameters and moreover, for a good
approximate of function kx in Equation (18).

Moreover, based on the previous discussion, the structure of the proposed controller
is shown and depicted in Figure 2.

Computation 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

Remark 2. The sliding surface coefficients 1L , 2L  and 3L  are selected such that the internal 
dynamics of the sliding surface (13) are considered to be zero, i.e., in the case of 0=xs , all the 
state variables 1x  , 2x   and 3x   converge to zero. Also, we selected 12121 =η=η=γ=γ   in 
Equation (34) to have a moderate convergence and to reduce drift of adaptive parameters and more-
over, for a good approximate of function kx  in Equation (18). 

Moreover, based on the previous discussion, the structure of the proposed controller 
is shown and depicted in Figure 2. 

 
Figure 2. Block diagram of the proposed FDSMC-PI. 

As this figure shows, before the input control of the suspension system (FOSS), a 
fractional integrator is placed to suppress the chattering produced by the SMC in Equation 
(33). Moreover, the unknown parameters of the system are calculated using the adaptive 
parameters of Equation (34). To provide these adaptive parameters, a new fractional inte-
grator is needed. 

However, the advantages of this approach (like the chattering elimination) are prom-
ising for practical applications because it is clear that the low-pass integrator removes all 
the high frequency produced due to chattering. 

The road terrain in Figure 3 is obtained using the following equation, which consists 
of two triangular-like functions. Considerations such as this terrain are common in the 
literature [4,6]. 



 ≤≤

=
Otherwise:0

7t6:)tsin(1.0
zr  (42) 

The simulation was conducted using MATLAB with a fixed step time of 0.0001 for 
both the fractional dynamic sliding mode control (FDSMC-PI) and the dynamic sliding 
mode control (DSMC-PI). In FDSMC-PI, the fractional order is chosen as 8.0q = , while 
in DSMC-PI, it is 1q =  in all equations. The simulation results are depicted in Figures 4–
12. Note that in all figures, the horizontal axis scaling depends on the car’s velocity V  
according to the equation Vtd = , where d  is displacement. 

Figures 4 and 5 show that tire displacement and velocity exhibit vibrations in DSMC-
PI but are smoother in FDSMC-PI. Additionally, body displacement and velocity are very 
similar in both cases, as seen in Figures 6 and 7. Figure 8 illustrates the softer suspension 
between the body and the tire in FDSMC-PI. Passenger comfort, shown in Figure 6, is 
similar in both controllers, but vehicle handling is better in FDSMC-PI, as indicated in 
Figures 4 and 9.  

Comparing road terrain in Figure 3 with tire displacement in Figure 4, it is evident 
that the tire adheres to the road in FDSMC-PI, unlike in DSMC-PI. Figure 9 highlights the 
stiff suspension between the tire and the road in FDSMC-PI. Figure 11 displays the input 

Figure 2. Block diagram of the proposed FDSMC-PI.

As this figure shows, before the input control of the suspension system (FOSS), a frac-
tional integrator is placed to suppress the chattering produced by the SMC in Equation (33).
Moreover, the unknown parameters of the system are calculated using the adaptive param-
eters of Equation (34). To provide these adaptive parameters, a new fractional integrator
is needed.
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However, the advantages of this approach (like the chattering elimination) are promis-
ing for practical applications because it is clear that the low-pass integrator removes all the
high frequency produced due to chattering.

The road terrain in Figure 3 is obtained using the following equation, which consists
of two triangular-like functions. Considerations such as this terrain are common in the
literature [4,6].

zr =

{
0.1 sin(t) : 6 ≤ t ≤ 7
0 : Otherwise

(42)
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Figure 3. Disturbance road terrain.

The simulation was conducted using MATLAB with a fixed step time of 0.0001 for
both the fractional dynamic sliding mode control (FDSMC-PI) and the dynamic sliding
mode control (DSMC-PI). In FDSMC-PI, the fractional order is chosen as q = 0.8, while in
DSMC-PI, it is q = 1 in all equations. The simulation results are depicted in Figures 4–12.
Note that in all figures, the horizontal axis scaling depends on the car’s velocity V according
to the equation d = Vt, where d is displacement.
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Figures 4 and 5 show that tire displacement and velocity exhibit vibrations in DSMC-PI
but are smoother in FDSMC-PI. Additionally, body displacement and velocity are very
similar in both cases, as seen in Figures 6 and 7. Figure 8 illustrates the softer suspension
between the body and the tire in FDSMC-PI. Passenger comfort, shown in Figure 6, is
similar in both controllers, but vehicle handling is better in FDSMC-PI, as indicated in
Figures 4 and 9.

Comparing road terrain in Figure 3 with tire displacement in Figure 4, it is evident that
the tire adheres to the road in FDSMC-PI, unlike in DSMC-PI. Figure 9 highlights the stiff
suspension between the tire and the road in FDSMC-PI. Figure 11 displays the input force
for both cases, which can be supplied by a pneumatic or hydraulic system. The sliding
surface and function error estimation are shown in Figures 10 and 12, respectively. The
absence of chattering in both DSMC-PI and FDSMC-PI is evident from all these figures.

The statistical comparisons of the suspension system for FDSMC-PI and DSMC-PI
are provided in Table 2. These comparisons are based on the minimum (Min), maximum
(Max) and root mean square (RMS) of the variables depicted in Figures 3–12. As is clear
from this table, all of the statistical variables in FDSMC-PI are better than those in DSMC-PI
except for zs,

.
zs and sx. This means that, generally, fractional controllers are better than

integer controllers.
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Table 2. The statistical comparison of suspension system.

Methods FDSMC-PI DSMC-PI

Parameter Min Max RMS Min Max RMS

zr −0.0279 0.0675 0.0089 −0.0279 0.0657 0.0089

zu −0.0343 0.0643 0.0088 −0.0437 0.0641 0.0096
.
zu −2.4921 0.5105 0.0780 −2.8705 2.1772 0.2208

zs −3.3888 × 10−4 0.0452 0.0038 −1.9490 × 10−5 0.0268 0.026
.
zs −0.2328 0.2109 0.0227 −0.1940 0.1908 0.0215

zs − zu −0.0459 0.0588 0.0078 −0.0505 0.0620 0.0092

zu − zr −0.0137 0.0643 0.0014 −0.0352 0.0641 0.0040

ss −0.0143 0.2559 0.0190 −3.2425 × 10−4 0.1661 0.0126

fa −1.0661 × 103 1.2461 × 103 115.5866 −1.6658 × 103 1.3065 × 103 152.4935

kx − k̂x −340.9504 169.3054 45.1721 −365.1951 227.6984 49.4476

5. Conclusions
The symmetry quarter car (SQC) model under consideration utilizes a fractional order

suspension system (FOSS) controlled by an external force. To ensure a smooth forced signal
and manage road terrain disturbances, fractional dynamic sliding mode control (FDSMC)
is employed. In FDSMC, a fractional integral acts as a low-pass filter before the actuator
to reduce chattering produced by sliding mode control (SMC). To enhance performance,
an adaptive proportional-integral (PI) method is incorporated, resulting in the adaptive
FDSMC-PI approach. For comparison, an integer order suspension system (IOSS) with
dynamic sliding mode control (DSMC) and a PI method is also implemented (DSMC-PI).
Assuming all parameters in both FOSS and IOSS are unknown, an adaptive procedure
is used to identify the system parameters. It is demonstrated that chattering is removed
in both the DSMC and the FDSMC methods. Additionally, while both approaches offer
similar passenger comfort, FDSMC provides better vehicle handling due to improved
tire–road adhesion.
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