Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization
<p>Dynamic behavior of the system (<a href="#FD9-computation-12-00144" class="html-disp-formula">9</a>): <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 2
<p>Solutions of the system (<a href="#FD9-computation-12-00144" class="html-disp-formula">9</a>): <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mn>150</mn> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mn>150</mn> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 3
<p>Solutions of the errors system (<a href="#FD9-computation-12-00144" class="html-disp-formula">9</a>): <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">e</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mn>150</mn> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">e</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mn>150</mn> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 4
<p>Estimation of the Lyapunov function <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">L</mi> <mn>2</mn> </msub> <mfenced open="(" close=")"> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 5
<p>Dynamic behavior of the system (<a href="#FD9-computation-12-00144" class="html-disp-formula">9</a>): <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 6
<p>Dynamic behavior of the system (<a href="#FD24-computation-12-00144" class="html-disp-formula">24</a>): <math display="inline"><semantics> <mrow> <mover> <msub> <mi mathvariant="script">E</mi> <mn>1</mn> </msub> <mo stretchy="false">¯</mo> </mover> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover> <msub> <mi mathvariant="script">E</mi> <mn>2</mn> </msub> <mo stretchy="false">¯</mo> </mover> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 7
<p>Solutions of the master–slave systems (<a href="#FD9-computation-12-00144" class="html-disp-formula">9</a>), (<a href="#FD24-computation-12-00144" class="html-disp-formula">24</a>), and the error system (<a href="#FD30-computation-12-00144" class="html-disp-formula">30</a>) at <math display="inline"><semantics> <mrow> <mi mathvariant="fraktur">r</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Dynamic behavior of the error system (<a href="#FD30-computation-12-00144" class="html-disp-formula">30</a>): <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">e</mi> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="fraktur">e</mi> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mi mathvariant="fraktur">r</mi> <mo>,</mo> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>Estimation of the Lyapunov function <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">L</mi> <mn>3</mn> </msub> <mfenced open="(" close=")"> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mfenced open="(" close=")"> <mi mathvariant="fraktur">z</mi> </mfenced> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Basic Tools
- 1.
- , and for .
- 2.
- For every open neighborhood of 0, there is an open subset containing 0 in D, such that for and .
- 1.
- ,
- 2.
- ,
- 3.
- .
3. Description of the Models
4. Stability Analysis
5. Finite-Time Synchronization Scheme
6. Numerical Examples with Simulations
Variable | Value |
1 | |
1 | |
0.78 | |
0.01275 | |
0.75 | |
0.5774 | |
ℵ | 0.99 |
150 |
Parameter | Value |
0.1885 | |
0.1885 | |
3 | |
1.25 | |
1 | |
ℵ | 0.9 |
3.7 | |
0.6 | |
0.6 | |
50 |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mesdoui, F.; Ouannas, A.; Shawagfeh, N.; Grassi, G.; Pham, V.T. Synchronization methods for the Degn-Harrison reaction-diffusion systems. IEEE Access 2020, 8, 91829–91836. [Google Scholar] [CrossRef]
- Ouannas, A.; Abdelli, M.; Odibat, Z.; Wang, X.; Pham, V.T.; Grassi, G.; Alsaedi, A. Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system. Complexity 2019, 2019, 2832781. [Google Scholar] [CrossRef]
- Ambrosio, B.; Aziz-Alaoui, M.A. Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl. 2012, 64, 934–943. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Alofi, A.S. Liquid Vortex Formation in a Swirling Container Considering Fractional Time Derivative of Caputo. Fractal Fract. 2024, 8, 231. [Google Scholar] [CrossRef]
- Ouannas, A.; Wang, X.; Pham, V.T.; Grassi, G.; Huynh, V.V. Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach. Bound. Value Probl. 2019, 2019, 74. [Google Scholar] [CrossRef]
- Wang, B.; Ouannas, A.; Karaca, Y.; Xia, W.F.; Jahanshahi, H.; Alkhateeb, A.F.; Nour, M. A Hybrid Approach For Synchronizing Between Two Reaction Diffusion Systems of Integer-And Fractional-Order Applied On Certain Chemical Models. Fractals 2022, 30, 2240145. [Google Scholar] [CrossRef]
- Srivastava, M.; Ansari, S.P.; Agrawal, S.K.; Das, S.; Leung, A.Y.T. Anti-synchronization between identical and non identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 2014, 76, 905–914. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Sajjadi, S.S.; Bekiros, S.; Aly, A.A. On the development of variable-order fractional hyper chaotic economic system with a nonlinear model predictive controller. Chaos Solitons Fractals 2021, 144, 110698. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Pham, V.T.; Thoai, V.P.; Ouannas, A.; Grassi, G.; Momani, S. From Lozi map to fractional memristive Lozi map. Eur. Phys. J. Spec. Top. 2023, 232, 2385–2393. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Boulaaras, S.; Pham, V.T.; Taher Azar, A. A fractional map with hidden attractors: Chaos and control. Eur. Phys. J. Spec. Top. 2020, 229, 1083–1093. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Wang, X.; Pham, V.T.; Boulaaras, S.; Momani, S. Bifurcation and chaos in the fractional form of Hénon-Lozi type map. Eur. Phys. J. Spec. Top. 2020, 229, 2261–2273. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, T. Finite-time synchronization of chaotic systems with time-varying delays and parameter mismatches. Nonlinear Dyn. 2024, 77, 729–736. [Google Scholar]
- Hu, J.; Wu, X. Finite-time synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 440–452. [Google Scholar]
- Hamadneh, T.; Hioual, A.; Saadeh, R.; Abdoon, M.A.; Almutairi, D.K.; Khalid, T.A.; Ouannas, A. General methods to synchronize fractional discrete reaction–diffusion systems applied to the glycolysis model. Fractal Fract. 2023, 7, 828. [Google Scholar] [CrossRef]
- Hamadneh, T.; Hioual, A.; Alsayyed, O.; Al-Khassawneh, Y.A.; Al-Husban, A.; Ouannas, A. The FitzHugh–Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms 2023, 12, 806. [Google Scholar] [CrossRef]
- Garvie, M.R. Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in M ATLAB. Bull. Math. Biol. 2007, 69, 931–956. [Google Scholar] [CrossRef]
- Houston, P.; Schwab, C.; Süli, E. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 2002, 39, 2133–2163. [Google Scholar] [CrossRef]
- Bueno-Orovio, A.; Kay, D.; Burrage, K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 2014, 54, 937–954. [Google Scholar] [CrossRef]
- Mesdoui, F.; Shawagfeh, N.; Ouannas, A. Global synchronization of fractional-order and integer-order N component reaction diffusion systems: Application to biochemical models. Math. Methods Appl. Sci. 2021, 44, 1003–1012. [Google Scholar] [CrossRef]
- Song, G.; Zhang, X.; Wang, Z.; Chen, Y.; Chen, P. The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation. Geophysics 2020, 85, T179–T189. [Google Scholar] [CrossRef]
- Al-Husban, A.; Djenina, N.; Saadeh, R.; Ouannas, A.; Grassi, G. A New Incommensurate Fractional-Order COVID 19: Modelling and Dynamical Analysis. Mathematics 2023, 11, 555. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Basel, Switzerland, 1993. [Google Scholar]
- Feng, Z.; Xiang, Z. Finite-time stability of fractional-order nonlinear systems. Chaos 2024, 34, 023105. [Google Scholar] [CrossRef] [PubMed]
- Ouannas, A.; Abdelmalek, S.; Bendoukha, S. Coexistence of Some Chaos Synchronization Types in Fractional-Order Differential Equations; Texas State University, Department of Mathematics: San Marcos, TX, USA, 2017. [Google Scholar]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Yaagoub, Z.; Danane, J.; Hammouch, Z.; Allali, K. Mathematical analysis of a fractional order two strain SEIR epidemic model. Results Nonlinear Anal. 2024, 7, 156–175. [Google Scholar]
- Jiang, J.; Li, H.; Zhao, K.; Cao, D.; Guirao, L.G. Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems. Adv. Differ. Equ. 2021, 2021, 127. [Google Scholar] [CrossRef]
- Fairén, V.; Velarde, M.G. Time-periodic oscillations in a model for the respiratory process of a bacterial culture. J. Math. Biol. 1979, 8, 147–157. [Google Scholar] [CrossRef]
- Lisena, B. Some global results for the Degn—Harrison system with diffusion. Medit. J. Math. 2017, 14, 91. [Google Scholar] [CrossRef]
- Abu Falahah, I.; Hioual, A.; Omar Al-Qadri, M.; AL-Khassawneh, Y.A.; Al-Husban, A.; Hamadneh, T.; Ouannas, A. Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms 2023, 12, 728. [Google Scholar] [CrossRef]
- Pan, J.; Liu, X.; Zhong, S. Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. Math. Comput. Model. 2010, 51, 1037–1050. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Liu, H.; Chen, X. Synchronization in Finite Time of Fractional-Order Complex-Valued Delayed Gene Regulatory Networks. Fractal Fract. 2023, 7, 347. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Shi, L. Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing 2016, 185, 242–253. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammad, M.A.; Bendib, I.; Alshanti, W.G.; Alshanty, A.; Ouannas, A.; Hioual, A.; Momani, S. Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization. Computation 2024, 12, 144. https://doi.org/10.3390/computation12070144
Hammad MA, Bendib I, Alshanti WG, Alshanty A, Ouannas A, Hioual A, Momani S. Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization. Computation. 2024; 12(7):144. https://doi.org/10.3390/computation12070144
Chicago/Turabian StyleHammad, Ma’mon Abu, Issam Bendib, Waseem Ghazi Alshanti, Ahmad Alshanty, Adel Ouannas, Amel Hioual, and Shaher Momani. 2024. "Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization" Computation 12, no. 7: 144. https://doi.org/10.3390/computation12070144
APA StyleHammad, M. A., Bendib, I., Alshanti, W. G., Alshanty, A., Ouannas, A., Hioual, A., & Momani, S. (2024). Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization. Computation, 12(7), 144. https://doi.org/10.3390/computation12070144