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Abstract: This paper aims to design a quadratic optimization model of an investment portfolio
based on value-at-risk (VaR) by entering risk-free assets and company liabilities. The designed
model develops Markowitz’s investment portfolio optimization model with risk aversion. Model
development was carried out using vector and matrix equations. The entry of risk-free assets
and liabilities is essential. Risk-free assets reduce the loss risk, while liabilities accommodate a
fundamental analysis of the company’s condition. The model can be applied in various sectors of
capital markets worldwide. This study applied the model to Indonesia’s mining and energy sector.
The application results show that risk aversion negatively correlates with the mean and VaR of
the return of investment portfolios. Assuming that risk aversion is in the 5.1% to 8.2% interval, the
maximum mean and VaR obtained for the next month are 0.0103316 and 0.0138270, respectively, while
the minimum mean and VaR are 0.0102964 and 0.0137975, respectively. The finding of this study is
that the vector equation for investment portfolio weights is obtained, which can facilitate calculating
investment portfolio weight optimization. This study is expected to help investors control the quality
of appropriate investment, especially in some stocks in Indonesia’s mining and energy sector.

Keywords: investment portfolio; Markowitz model; risk aversion; value-at-risk; risk-free assets;
liability

MSC: 91G10; 46N10; 91B05; 91G15

1. Introduction

The investing technique of buying several assets with different rates of loss, rates of
return, and performance in a portfolio can make fluctuations in returns and losses mutually
compensated between assets. It causes the fluctuations to be more controlled overall [1–4].
It is then called portfolio diversification. In portfolio diversification, allocating investment
funds for each asset is critical. The allocation of each asset must be calculated so that
the portfolio generates maximum returns and minimum losses [5–7]. The problem is
determining the allocation weight for each asset.

The problem of determining the weight of asset allocation in a general investment
portfolio is solved using the Markowitz asset allocation optimization model [8,9]. For ease
of mention, after this, the model is referred to as the Markowitz model. The Markowitz
model is based on two simple objective objectives in portfolio preparation: maximizing
the mean and minimizing the variance of portfolio returns in a single period. Then,
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the two objectives are integrated into one as an optimization model for maximizing the
subtraction between the mean and variance of portfolio returns in a single period. Because
of this, the Markowitz model is often referred to as the mean-variance model.

Previous studies have simulated the Markowitz model. Ivanova and Dospatliev [10]
applied the Markowitz model to determine the allocation of asset weights to investment
portfolios on stock data in Bulgaria from 2013 to 2016. Kulali [11] and Zavera [12] also
applied the same model to stock data in Turkey and Romania in 2015, respectively.

Over time, researchers began to develop the Markowitz model. Kashirina et al. [13]
developed a long-term Markowitz model. The long period is divided into several short
periods that are mutually exclusive. In more detail, the return earned at the end of each
short-term period is not withdrawn but is reinvested in the next period. Another devel-
opment of the model of Kashirina et al. [13] is that the variance of the portfolio returns in
the model is calculated based on the geometric mean. Steinbach [14] also developed the
Markowitz model to be multi-period by providing a quantitative treatment of the tradeoff
between returns and losses.

The previous developments of the Markowitz model still use the variance of the
portfolio return as a minimized objective [15]. The variance measure can be substituted
for the maximum possible loss. This measure is referred to as value-at-risk (VaR). The
use of the VaR measure has advantages over the use of the variance measure. Using VaR
measures can make the size of the maximum loss of an investment portfolio experienced
by investors more diverse. In other words, investors can set the maximum loss they may
experience [16]. This portfolio asset-allocation optimization model based on VaR is called
the mean-VaR model.

Banihashimi et al. [15] applied the mean-VaR model to stock data in Iran. The per-
formance of the weight allocation results obtained is then evaluated for non-parametric
efficiency using data envelopment analysis (DEA). Then, Sukono et al. [17] formulated the
mean-VaR model using vector and matrix forms. The formulation of the model was based
on stock data in Indonesia. They used an additional assumption, where the return of each
asset was assumed to have non-constant volatility. This non-constant volatility was ac-
commodated through the generalized autoregressive conditional heteroscedastic (GARCH)
model. Sukono et al. [17] used the Lagrangian multiplier method and the Kuhn–Tucker
theorem to obtain a solution from the model. Then, Pandiangan et al. [18] developed the
Sukono et al. [17] model by adding risk aversion and risk-free assets to its investment
portfolio. The analysis showed that the greater the risk aversion, the smaller the mean and
VaR of the investment portfolio return.

This paragraph briefly discusses the gaps in previous studies. The existing mean-
variance and mean-VaR models do not involve risk-free assets. Including risk-free assets
in investment portfolios reduces volatility and enhances stability. Financial reports show
that portfolios with risk-free assets, such as government bonds, have higher Sharpe ratios,
indicating better returns relative to the risk taken compared to risky assets. Examples
are Kashirina et al. [13], Steinbach [14], Banihashemi et al. [15], Miyangaskari et al. [16],
and Sukono et al. [17]. Only Pandiangan et al. [18] involved such risk-free assets. Then,
the existing mean-variance and mean-VaR models have not considered the assets-owning
companies’ liabilities. A liability analysis is crucial in investment portfolio preparation, as
it reveals credit risks and potential bankruptcy, which can impact investment performance.
Moody’s report indicates that companies with high debt-to-equity ratios are more likely to
default, which can negatively affect an investor’s portfolio value if not calculated carefully.
Examples of these researchers are Kashirina et al. [13], Steinbach [14], Banihashemi et al. [15],
Miyangaskari et al. [16], Sukono et al. [17], and Pandiangan et al. [18].

Based on the explanation of the brief gap, this study aims to formulate a value-
at-risk (VaR)-based investment portfolio optimization model involving risk-free assets
and company liabilities. The advantage of the model is that the maximum loss of the
portfolio can be reduced due to the involvement of risk-free assets, and the maximum
loss can be adjusted based on the size of the tolerable quantile. The optimization model
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designed has a quadratic programming form to accommodate the quadratic form of the
VaR measure. In more detail, the solution of the model is calculated using the Lagrange
multiplier method and the Khun–Tucker theorem, as calculated by Sukono et al. [17].
Formulating the portfolio optimization model is performed using vector and matrix
equations to simplify the form of the equation further. Finally, a numerical illustration is
conducted on this model using stock data from the mining and energy sectors as risky
assets and bank deposits as risk-free assets. This study is expected to help quality control
in forming investment portfolios, especially in the mining and energy sector stocks, for
investors both organizationally and individually.

2. Literature Review

This section discusses references in portfolio model development. It includes a brief
explanation of the general optimization model of the investment portfolio, the quadratic
optimization model of the mean-VaR investment portfolio, and the asset-liability model.

2.1. The Explanation of Mathematical Notations

The essential mathematical notations used in this study are as follows:

(a) t0 = 0 represents the time an investor starts investing.
(b) t1 = 1 represents the time an investor ends investing.
(c) There is one number of risk-free assets in the portfolio.
(d) N ≥ 1 with N ∈ Z represents many risky assets.
(e) Vt0 represents the total initial investment assets.
(f) E(Vt1) represents the expected total initial investment assets at time t1.
(g) h0 represents the amount of capital allocated to risk-free assets. We assume that the

value of h0 is determined in advance.
(h) hk with k = 1, 2, . . . , N represents the amount of capital allocated to the k-th risky asset.
(i) γk with k = 1, 2, . . . , N represents the company’s liability to the k-th risky asset.
(j) σk1,k2 with k1 = 1, 2, . . . , N and k2 = 1, 2, . . . , N represents the covariance between the

k1-th and k2-th risky assets.
(k) w0 represents the weight of capital allocation on risk-free assets. It can be formulated

mathematically as w0 = h0
Vt0

. Since h0 is assumed to be determined in advance, the
value of w0 is also known.

(l) wk, k = 1, 2, . . . , N represents the weight of the capital allocation on the k-th risky
asset. It can be formulated mathematically as wk =

hk
Vt0

.

(m) µ0 represents the return from the risk-free asset at time t1. We assume the value has
been determined in advance.

(n) rk represents the return from the k-th risky asset at t1, assumed to be distributed
normal random variables with a mean of E(rk) = µk and a variance of Var(rk) = σ2

k .
(o) R represents the total return of the investment portfolio at time t1.
(p) R represents the total return of the investment portfolio without the return of a

risk-free asset at time t1.
(q) Bti , i = 0, 2 represents the price of the risk-free asset at time ti.
(r) Sk

t0
, k = 1, 2, . . . , N represents the initial spot price of the k-th risk asset. The spot price

is the asset price when the buyer and seller carry out the transaction [19].
(s) E

(
Sk

t1

)
, k = 1, 2, . . . , N represents the expected spot price of the k-th asset at time t1.

(t) σk,L represents the covariance between the k-th risky asset and liability.

2.2. The General Optimization Model of the Investment Portfolio

The total assets at time t0 at time t1 from the portfolios are, respectively, as follows [20–22]:

Vt0 =
N

∑
j=0

hj. (1)
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Suppose that Vt0 = 1. Equation (1) can be formulated in the form of weights by substituting
hj = wjVt0 , j = 0, 1, 2, . . . , N. This substitution results in the following equations:

N

∑
j=0

wj = 1. (2)

Equation (2) shows that the total weight of the assets in the portfolio is 1. In this study, w0
has been determined first so that we are left with determining wk with k = 1, 2, . . . , N.
Therefore, the total amount of asset weights and returns from a portfolio without risk-free
assets is as follows:

N

∑
k=1

wk = 1 − w0. (3)

The mean return of the portfolio without risk-free assets is formulated as follows:

E(R) =
N

∑
k=1

wkE(rk) =
N

∑
k=1

wkµk. (4)

Meanwhile, the variance return of the portfolio without risk-free assets can be briefly stated
as follows [23,24]:

V(R) =
N

∑
k1=1

N

∑
k2=1

wk1 wk2 Cov
(
rk1 , rk2

)
=

N

∑
k1=1

N

∑
k2=1

wk1 wk2 σk1,k2 . (5)

The forms of Equations (3)–(5) can, respectively, be expressed in the form of the vector
and matrix multiplication as follows:

wTe = 1 − w0, E(R) = wTµ, and V(R) = wTΣw, (6)

where eT =
(
1 1 · · · 1

)
, wT =

(
w1 w2 · · · wN

)
, µT =

(
µ1 µ2 · · · µN

)
, and

Σ =
[
σk1,k2 ; k1, k2 = 1, 2, . . . , N

]
, which is a negative semi-definite matrix [25].

In the face of loss from the investment portfolio, investors have different risk aversion.
Risk aversion is investors’ tendency to establish certainty in investments. In other words, the
smaller the investor’s risk aversion, the more courageous the investor is to face uncertainty
and vice versa. Mathematically, risk aversion is expressed as a comparison between the
relative constant and twice the initial capital Vt0 = 1 as follows [4]:

ρ =
c

2Vt0

=
c
2

,

where ρ represents the risk aversion and c represents the relative constant [26].
The mean-variance model for asset allocation in the investment portfolio is mathemat-

ically expressed as follows:

max.E(R)− ρV(R) = wTµ− c
2 wTΣw,

s.t.wTe = 1 − w0.
(7)

The Lagrange multiplier method can determine the solution of the model in Equation (7).
This method results in the Lagrange function for Equation (7) expressed as follows [18]:

L(w, λ1) = wTµ− c
2

wTΣw + λ1

(
wTe − 1 + w0

)
, (8)

where λ1 represents the Lagrange multiplier. The solution w in Equation (7) is the one that
maximizes (8). Briefly, the solution is as follows [6]:

w* =
2
c

Σ−1(µ+ λ1e), (9)
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where

λ*
1 =

c
2 (1 − w0)− eTΣ−1µ

eTΣ−1e
.

The Hessian matrix of Equation (8) must satisfy Equation (10) as follows to guarantee the
solution w* in Equation (9) as a local maximum solution [27]:

∀x ∈ RN+1 − {0}, xTH
(

w*, λ∗
1

)
x < 0 (10)

where

H(w, λ1) =

 ∂2L(w,λ1)
∂w2

∂2L(w,λ1)
∂w∂λ1

∂2L(w,λ1)
∂λ1∂w

∂L(w,λ1)

∂λ2
1

.

2.3. Quadratic Optimization Model of the Mean-VaR Investment Portfolio

This section briefly describes the quadratic optimization model of the mean-VaR
investment portfolio. Value-at-risk (VaR) measures the maximum potential loss that may
occur from a portfolio at a certain level of confidence under normal market conditions [28].
Sukono et al. [29] stated that the VaR of the portfolio without risk-free assets is expressed
as follows:

VaRα(R) = wTµ+ zα

(
wTΣw

) 1
2 , (11)

where zα represents the (1 − α)-th percentile of the standard normal distribution. The value
of α can be adjusted according to the investor’s expectation. The greater the value of α,
the smaller the maximum loss from the investment portfolio desired by the investor and
vice versa.

The quadratic optimization model of the mean-VaR investment portfolio formulates
the objective function as a maximization problem of subtraction returns and multiplying
risk aversion with VaR. Mathematically, this is written as follows [22]:

max.E(R)− ρVaRα(R) = wTµ− c
2

[
wTµ+ zα

(
wTΣw

) 1
2

]
,

=
(
1 − c

2
)
wTµ− c

2 zα

(
wTΣw

) 1
2 ,

s.t.wTe = 1 − w0.

(12)

The Lagrange multiplier method can determine the solution of the model in Equation (12).
This method results in the Lagrange function for Equation (12) expressed as follows [22]:

L(w, λ2) =
(

1 − c
2

)
wTµ− c

2
zα

(
wTΣw

) 1
2
+ λ2

(
wTe − 1 + w0

)
, (13)

where λ2 represents the Lagrange multiplier. The solution w of Equation (12) is the one
that maximizes (13). Briefly, the solution is as follows [22]:

w* =
(1 − w0)Σ

−1[(1 − c
2
)
µ+ λ2e

]
eTΣ−1[(1 − c

2
)
µ+ λ2e

] . (14)

In detail,

λ*
2 =

−b ±
√

b2 − 4ac
2a

,

where a = eTΣ−1e, b = 2
(
1 − c

2
)
µTΣ−1e, and c =

(
1 − c

2
)2
µTΣ−1µ−

( czα
2
)2. The Hessian

matrix of Equation (13) must satisfy Equation (15) as follows to guarantee the solution w*

in Equation (14) as a local maximum solution [22]:

∀x ∈ RN+1 − {0}, xTH
(

w*, λ∗
2

)
x < 0 (15)
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where

H(w, λ2) =

 ∂2L(w,λ2)
∂w2

∂2L(w,λ2)
∂w∂λ2

∂2L(w,λ2)
∂λ2∂w

∂L(w,λ2)

∂λ2
2

.

2.4. Asset Liability Model

Suppose that sk
ti

, i = 0, 1, represents the surplus of the k-th asset at time ti. It can be
mathematically expressed as follows:

sk
ti
= Sk

ti
− Lk

ti
= Sk

ti−1
(1 + µk)− Lk

ti−1

(
1 + µk

L

)
, (16)

where Lti represents the k-th liabilities and assets at time ti and µk
L represents the return

of the k-th liabilities. The return of the surplus from the k-th asset can be expressed in the
following equation [30–32]:

µk
S =

sk
ti
− sk

ti−1

Sk
ti−1

=
Sk

ti−1
µk − Lk

ti−1
µk

L

Sk
ti−1

= µk −
Lk

ti−1

Sk
ti−1

µk
L = µk − fti−1 µk

L, (17)

where fti is the ratio between liabilities and capital assets at time ti. Meanwhile, the variance
of return surplus is stated as follows:

σk
S

2
= σ2

k − 2
f0

σk,L +
1
f 2
0

σk
L

2
, (18)

where σk,L represents the covariance between the k-th return assets and the liability return

and σk
L

2
represents the variance of the liability return of k-th asset [33].

3. Materials and Methods

This section briefly describes the materials and methods, which contain the materials
and steps in this study.

3.1. Materials

This study had two activities: model development and numerical illustration. The
model development was carried out using the model of Pandiangan et al. [18], which
formulated an investment portfolio optimization model in the form of mean-VaR involving
risk-free assets. This development was in the form of adding the liability variable from
the asset owner company. In addition, the model development was carried out using
vector and matrix forms, as performed by Sukono et al. [17]. Then, the material for
numerical illustration was stock data in the mining and energy sectors, which are traded
on the Indonesian capital market through the Indonesia Stock Exchange (IDX). Note that
the model can not only be applied to IDX’s stock data but also to other capital markets
worldwide. The data are historical monthly return data from 11 stocks obtained through
the website http://finance.yahoo.com (accessed on 1 March 2024). The period considered
was 1 January 2017 to 1 December 2020. Of the mining and energy stocks, 11 selected stocks
had the best performance. In addition to data on 11 stocks, we sued data on risk-free assets
in deposits determined by the Central Bank of Indonesia. In this study, the company’s
liability data were also used. However, because the company’s liability data are not open,
the liability data used were simulation data [18,22].

3.2. Methods

The steps for developing numerical models and illustrations are described in this
section. The stages of model development were carried out by examining them in
depth, especially in the research of Pandiangan et al. [18]. This study was conducted
to develop a mean-VaR quadratic investment portfolio optimization model based on

http://finance.yahoo.com
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investor risk aversion considering the risk-free assets and liabilities of the company. The
formulation of the portfolio weight model here was carried out using a vector and matrix
equation approach.

The stages of numerical illustration were carried out to show the application of the
model. The data used were the return of 11 stock assets in the mining and energy sectors,
returns on company liabilities, and risk-free assets, as described in Section 3.1. The stages
of data analysis were broadly carried out in the following way:

(1) The descriptive analysis was carried out first on the 11 stock return data. The de-
scriptive statistics analyzed were stock code, mean value, variance, covariance, and
standard deviation. The mean of each asset was then used to form the vector of return
mean µ. Then, the variance and covariance values formed the Σ covariance matrix.

(2) Next was to generate monthly liability return data from the company via simulation.
The covariance between stock asset returns and liability returns was determined
first. The covariance value was then used to form the covariance vector of asset and
liability returns.

(3) Next was the stage of determining the optimum asset weight in the investment
portfolio based on the mean vector, covariance matrix, and covariance vector between
assets and liabilities obtained. In this stage, investors’ risk aversion values were
determined via simulation.

(4) Based on the results of the optimization of asset weights in the investment portfolio,
the formation of an efficient portfolio surface graph was carried out. This graph
illustrated the feasible points for a rational investor to invest accordingly.

4. Results and Discussions
4.1. Quadratic Optimization Modeling for Mean-VaR Investment Portfolio with Risk-Free Assets
and Liabilities

In this section, the development of a quadratic optimization model of the mean-VaR
investment portfolio, which includes risk-free assets and liabilities, is designed. The model
is inclusive for a single period, e.g., daily, monthly, quarterly, or yearly. Suppose that the
covariance vector between asset and liability returns is expressed as γT = (γ1, γ2, . . . , γN)
with γk =

1
f0

σk,L. The quadratic optimization model for the mean-VaR investment portfolio
without the risk-free asset, involving risk-free assets and liabilities, is expressed as follows:

max.wTµ+ wTγ− c
2

[
wTµ+ zα

(
wTΣw

) 1
2

]
,

=
(
1 − c

2
)
wTµ+ wTγ− c

2 zα

(
wTΣw

) 1
2 ,

s.t.wTe = 1 − w0.

(19)

The determination of the solution to the problem in Equation (19) is carried out using the
Lagrange multiplier method. The Lagrange function of the problem in Equation (19) is
expressed as follows:

L(w, λ3) =
(

1 − c
2

)
wTµ+ wTγ− c

2
zα

(
wTΣw

) 1
2
+ λ3

(
wTe − 1 + w0

)
, (20)

where λ3 represents the Lagrange multiplier. Based on the Khun–Tucker theorem, the
solution of Equation (20) is carried out based on necessary and sufficient conditions [18,33].
The necessary conditions for the solution to Equation (20) fulfill the following equation:

∂L(w, λ3)

∂w
=

(
1 − c

2

)
µ+ γ− c

2
zα

Σw

(wTΣw)
1
2
+ λ3e = 0,

∂L(w, λ3)

∂λ3
= wTe − 1 + w0 = 0.
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First, determine the vector w as follows:(
1 − c

2

)
µ+ γ− c

2
zα

Σw

(wTΣw)
1
2
+ λ3e = 0,

c
2

zα
Σw

(wTΣw)
1
2
=

(
1 − c

2

)
µ+ γ+ λ3e. (21)

Multiply both sides of Equation (21) by 2
czα

Σ−1 so that this results in the following equation:

w

(wTΣw)
1
2
=

2
czα

Σ−1
[(

1 − c
2

)
µ+ γ+ λ3e

]
, (22)

Then, multiply both sides of Equation (22) by eT so that this results in the following equation:

1 − w0

(wTΣw)
1
2
=

2
czα

eTΣ−1
[(

1 − c
2

)
µ+ γ+ λ3e

]
,

(
wTΣw

) 1
2
=

czα

2
1 − w0

eTΣ−1[(1 − c
2
)
µ+ γ+ λ3e

] . (23)

Substitute Equation (23) into Equation (22) so that this results in the following equation:

w

(wTΣw)
1
2
=

2
czα

Σ−1
[(

1 − c
2

)
µ+ γ+ λ3e

]
,

w =
(

wTΣw
) 1

2 2
czα

Σ−1
[(

1 − c
2

)
µ+ γ+ λ3e

]
,

w =
czα

2
1 − w0

eTΣ−1[(1 − c
2
)
µ+ γ+ λ3e

] 2
czα

Σ−1
[(

1 − c
2

)
µ+ γ+ λ3e

]
,

w* =
(1 − w0)Σ

−1[(1 − c
2
)
µ+ γ+ λ3e

]
eTΣ−1[(1 − c

2
)
µ+ γ+ λ3e

] . (24)

Next is the determination of the solution λ3. Multiply both sides of Equation (24) by
wTΣ so that this results in the following equation:

wTΣw =
(1 − w0)wT[(1 − c

2
)
µ+ γ+ λ3e

]
eTΣ−1[(1 − c

2
)
µ+ γ+ λ3e

] ,

or

wTΣw =
(1 − w0)

[(
1 − c

2
)
µT + γT + λ3eT]w

eTΣ−1[(1 − c
2
)
µ+ γ+ λ3e

] . (25)

From Equation (23), obtain the following equation:

1 − w0

eTΣ−1[(1 − c
2
)
µ+ γ+ λ3e

] =
(

wTΣw
) 1

2 2
czα

. (26)

Substitute Equation (26) into (25) to obtain the following equation:

wTΣw =
(

wTΣw
) 1

2 2
czα

[(
1 − c

2

)
µT + γT + λ3eT

]
w,

czα

2

(
wTΣw

) 1
2
=

[(
1 − c

2

)
µT + γT + λ3eT

]
w. (27)

Substitute Equations (23) and (24) into Equation (27) so that this results in the following equation:
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czα

2

{
czα

2
1 − w0

eTΣ−1[(1 − c
2
)
µ+ γ+ λ3e

]} =
[(

1 − c
2

)
µT + γT + λ3eT

] (1 − w0)Σ
−1[(1 − c

2
)
µ+ γ+ λ3e

]
eTΣ−1[(1 − c

2
)
µ+ γ+ λ3e

] ,

( czα

2

)2
=

[(
1 − c

2

)
µT + γT + λ3eT

]
Σ−1

[(
1 − c

2

)
µ+ γ+ λ3e

]
,

eTΣ−1eλ2
3 + 2

[(
1 − c

2

)
µT + γT

]
Σ−1eλ3 +

[(
1 − c

2

)
µT + γT

]
Σ−1

[(
1 − c

2

)
µ+ γ

]
−

( czα

2

)2
= 0. (28)

Equation (28) is a quadratic equation, so the possible values of λ3 > 0 are as follows:

λ3 =
−q ±

√
q2 − 4pr

2p
,

where p = eTΣ−1e, q = 2
[(

1− c
2
)
µT +γT]Σ−1e, and r =

[(
1− c

2
)
µT +γT]Σ−1[(1− c

2
)
µ+γ

]
−
( czα

2
)2.

After the weight allocation of funds from each asset is obtained, the next step is to
examine the terms of sufficient solutions as the maximum solution. It is calculated by
examining the Hessian matrix of the Lagrange function in Equation (20). Equation (19)
is converted into a minimization problem via the dual method. Then, the solution w* to
Equation (24) is called the global maximum solution of Equation (20) if the Hessian matrix
is positive definite. The Hessian matrix of Equation (20) is expressed as follows:

H(w, λ3) =

 ∂2L(w,λ3)
∂w2

∂2L(w,λ3)
∂w∂λ3

∂2L(w,λ3)
∂λ3∂w

∂L(w,λ3)

∂λ2
3

 =

 −czα

2(wTΣw)
1
2

[
Σ − (Σw)(wTΣ)

(wTΣw)

]
e

eT 0

.

The H(w, λ3) matrix is called positive definite if ∀x ∈ RN+1 − {0}, xTH(w, λ3)x > 0.
Since the values of c and zα are positive, it is evident that the problem in Equation (20) is
convex [34–36].

4.2. Numerical Illustration Results
4.2.1. Descriptive Statistics of Stock Data

This section analyzes descriptive statistics of the stock data used in the numerical
illustration. Table 1 gives the stock code, mean, variance, and standard deviation of the
11 stock data.

Table 1. Descriptive Statistics of Stock Data.

Stock Code Mean Variance Standard Deviation

BSSR 0.0199 0.0185 0.1362
BYAN 0.0314 0.0242 0.1556
CITA 0.0374 0.0288 0.1698

HRUM 0.0214 0.0283 0.1683
MBAP 0.0272 0.0199 0.1412
MDKA 0.0469 0.0141 0.1187
MEDC 0.0354 0.0487 0.2207
PSAB 0.0135 0.0270 0.1642
PTBA 0.0855 0.3504 0.5919
PTRO 0.0340 0.0239 0.1546
RUIS 0.0135 0.0184 0.1357

Table 1 shows that of the 11 stocks, the most significant mean is in PTBA, while the
most minor mean is obtained from RUIS. The values from Table 1 are then used for the
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mean vector, vector one, and the covariance matrix. The vector of the mean return of 11
stocks is expressed as follows:

µ =



0.0199
0.0314
0.0374
0.0214
0.0272
0.0469
0.0354
0.0135
0.0855
0.0340
0.0135


Furthermore, the covariance between 11 stock asset returns must first be determined

to form a covariance matrix. We formed it with the help of Microsoft Excel software,
and the results are given in Table A1 (See Appendix A). The next step is determining the
covariance vector between stock asset returns and company liability returns. Monthly
liability data are calculated with a simulation. To generate monthly liability data, we
assume that it is normally distributed based on the parameters of each stock asset liability
return. Furthermore, the covariance value between stock asset returns and liability returns
is determined, and the results are given as follows:

γ =



0.0016
−0.1449
−0.0009
0.0020
−0.0268
−0.1198
0.6424
−0.0024
−0.5944
0.0127
0.0025


In this study, risk-free assets are deposits with a monthly interest rate set by the Central

Bank of Indonesia, namely µ0 = 0.07 per year ≈ 0.07
12 per month. Then, the weight allocation

for risk-free assets w0 is assumed to be 0.5.

4.2.2. Determination of Optimum Weight Allocation

In this section, the determination of the optimum weight allocation for the investment
portfolio uses Equation (24). Risk aversion is determined with a simulation [37,38] whose
value is 5.1 < c ≤ 8.2 with an increase of ∆c = 0.05. In other words, c is in the set of
{5.1, 5.15, . . . , 8.15, 8.2}. This interval is chosen because the weight allocation of each
stock obtained is positive. Calculations are carried out using the Matlab version 2007a and
the Microsoft Excel version 2403. The optimum weighting results for each of these shares
are given in Table A2 (See Appendix B).

Table A2 shows that with the value of c = 5.1, there is a weight of w9 = −0.0000004. It
shows the existence of short sales. This analysis assumes that the capital market authority
does not permit short sales, so this is not analyzed further. Table A2 shows that the greater
the value of risk aversion, the smaller the mean and VaR of the portfolio return. Using
the mean and VaR of the portfolio returns in Table A2, the efficient surface graph given in
Figure 1 is presented.
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Figure 1. Efficient Portfolio Surface Graph.

Figure 1 informs investors that investments in 11 stocks worth making are at points
along the efficient surface line. In this study, an efficient portfolio surface graph is formed
for the constant level of investor risk aversion in the interval 5.1 < c ≤ 8.2. In that interval,
the minimum values of VaR and mean of the portfolio returns are 0.013797 and 0.0102941,
respectively. The VaR and the mean return are obtained when the risk aversion investor is
c = 8.2. Meanwhile, the maximum values of VaR and the mean of the portfolio return are
0.013827 and 0.0103316, respectively. The VaR and mean values are obtained when the risk
aversion investor is c = 5.2.

4.3. Discussion
4.3.1. Relationship Analyses

The relationship between risk aversion and mean of the portfolio return is the first
thing to be analyzed in this section. Using the values of risk aversion and mean of the
portfolio return in Table A2 (see Appendix B), the relationship between the two can be
visualized in a Cartesian diagram. The visualization of the relationship between risk
aversion and mean of the portfolio return is presented in Figure 2.

Figure 2 shows that risk aversion and mean of the portfolio return have a negative
relationship. It means that the greater the risk aversion of the investor, the smaller the
mean of the portfolio return becomes and vice versa. It is logical because if investors avoid
uncertainty (this means they have high-risk aversion), the mean of the portfolio return that
may be obtained is also very small [39,40].

Next, the relationship between risk aversion and the VaR of the portfolio is analyzed.
Using the values of risk aversion and VaR portfolio in Table A2 (see Appendix B), the
relationship between the two can be visualized in a Cartesian diagram. The visualization
of the relationship between risk aversion and portfolio VaR is presented in Figure 3.



Computation 2024, 12, 120 12 of 18
Computation 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 2. The Relationship between Risk Aversion and Mean of the Portfolio Return. 

Figure 2 shows that risk aversion and mean of the portfolio return have a negative 

relationship. It means that the greater the risk aversion of the investor, the smaller the 

mean of the portfolio return becomes and vice versa. It is logical because if investors avoid 

uncertainty (this means they have high-risk aversion), the mean of the portfolio return 

that may be obtained is also very small [39,40]. 

Next, the relationship between risk aversion and the VaR of the portfolio is analyzed. 

Using the values of risk aversion and VaR portfolio in Table A2 (see Appendix B), the re-

lationship between the two can be visualized in a Cartesian diagram. The visualization of 

the relationship between risk aversion and portfolio VaR is presented in Figure 3. 

 

Figure 3. The Relationship between Risk Aversion and the VaR of the Portfolio Return. 

Figure 3 also shows that risk aversion has a relationship that is not in line with the 

VaR of the portfolio. In other words, this is similar to the relationship between risk aver-

sion and mean of the portfolio return, where the greater the risk aversion of the investor, 

the smaller the VaR of the portfolio return and vice versa. Practically speaking, if investors 

are highly uncertainty averse (this means the risk aversion is large), their VaR of portfolio 

returns will also be small. 

Figure 2. The Relationship between Risk Aversion and Mean of the Portfolio Return.

Computation 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 2. The Relationship between Risk Aversion and Mean of the Portfolio Return. 

Figure 2 shows that risk aversion and mean of the portfolio return have a negative 

relationship. It means that the greater the risk aversion of the investor, the smaller the 

mean of the portfolio return becomes and vice versa. It is logical because if investors avoid 

uncertainty (this means they have high-risk aversion), the mean of the portfolio return 

that may be obtained is also very small [39,40]. 

Next, the relationship between risk aversion and the VaR of the portfolio is analyzed. 

Using the values of risk aversion and VaR portfolio in Table A2 (see Appendix B), the re-

lationship between the two can be visualized in a Cartesian diagram. The visualization of 

the relationship between risk aversion and portfolio VaR is presented in Figure 3. 

 

Figure 3. The Relationship between Risk Aversion and the VaR of the Portfolio Return. 

Figure 3 also shows that risk aversion has a relationship that is not in line with the 

VaR of the portfolio. In other words, this is similar to the relationship between risk aver-

sion and mean of the portfolio return, where the greater the risk aversion of the investor, 

the smaller the VaR of the portfolio return and vice versa. Practically speaking, if investors 

are highly uncertainty averse (this means the risk aversion is large), their VaR of portfolio 

returns will also be small. 

Figure 3. The Relationship between Risk Aversion and the VaR of the Portfolio Return.

Figure 3 also shows that risk aversion has a relationship that is not in line with the
VaR of the portfolio. In other words, this is similar to the relationship between risk aversion
and mean of the portfolio return, where the greater the risk aversion of the investor, the
smaller the VaR of the portfolio return and vice versa. Practically speaking, if investors
are highly uncertainty averse (this means the risk aversion is large), their VaR of portfolio
returns will also be small.

Next is a discussion on choosing the optimum portfolio. Optimum portfolio selection
can be reviewed by comparing the largest comparison of return and VaR. After this, the
comparison is referred to as the ratio. The smallest ratio value indicates that the portfolio
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has the lowest efficiency level, while the largest ratio value indicates that the portfolio
has a high efficiency level (most optimum). To further illustrate this point, we present a
visualization of the relationship between portfolio VaR and its ratio in Figure 4.

Figure 4 shows that the smallest ratio value is 0.7448. This ratio is obtained from the
mean and VaR of portfolio returns 0.0102964 and 0.0137975, respectively. The portfolio
is then said to be the portfolio with the lowest efficiency level. Then, the largest ratio
value is 0.7486182. This ratio is obtained from the mean and VaR of the portfolio returns
0.0103316 and 0.0138270, respectively. This portfolio is then said to be the optimum portfolio.
Coincidentally, this optimum portfolio occurs at the maximum portfolio for the value of
investors’ risk aversion in the interval 5.1 < c ≤ 8.2.

Based on the discussion in the previous sections, a summary of the risk aversion
intervals, minimum portfolio, maximum portfolio, optimum portfolio, and composition of
weights on the optimum portfolio are given in Table 2.

Computation 2024, 12, x FOR PEER REVIEW 13 of 18 
 

 

Next is a discussion on choosing the optimum portfolio. Optimum portfolio selection 

can be reviewed by comparing the largest comparison of return and VaR. After this, the 

comparison is referred to as the ratio. The smallest ratio value indicates that the portfolio 

has the lowest efficiency level, while the largest ratio value indicates that the portfolio has 

a high efficiency level (most optimum). To further illustrate this point, we present a visu-

alization of the relationship between portfolio VaR and its ratio in Figure 4.  

 

Figure 4. The Relationship between the VaR of the Portfolio Return and the Ratio. 

Figure 4 shows that the smallest ratio value is 0.7448. This ratio is obtained from the 

mean and VaR of portfolio returns 0.0102964 and 0.0137975, respectively. The portfolio is 

then said to be the portfolio with the lowest efficiency level. Then, the largest ratio value 

is 0.7486182. This ratio is obtained from the mean and VaR of the portfolio returns 

0.0103316 and 0.0138270, respectively. This portfolio is then said to be the optimum port-

folio. Coincidentally, this optimum portfolio occurs at the maximum portfolio for the 

value of investors’ risk aversion in the interval 5.1 < 𝑐 ≤ 8.2.  

Based on the discussion in the previous sections, a summary of the risk aversion in-

tervals, minimum portfolio, maximum portfolio, optimum portfolio, and composition of 

weights on the optimum portfolio are given in Table 2. 

Table 2. Summary of Stock Weight Optimization Results on Investment Portfolios. 

Variable Value(s) 

Risk Aversion 5.1 < 𝑐 ≤ 8.2; ∆𝑐 = 0.05 

Minimum Portfolio 𝐸(ℛ) = 0.0102964 ; 𝑉𝑎𝑅0.05(ℛ) = 0.0137975  

Maximum Portfolio 𝐸(ℛ) = 0.0103316 ; 𝑉𝑎𝑅0.05(ℛ) = 0.0138270 

Optimum Portfolio 𝐸(ℛ) = 0.0103316 ; 𝑉𝑎𝑅0.05(ℛ) =  0.0138270 

Optimum Capital Weight Allocation of Each Stocks 

𝑤1 =  0.0497 
𝑤2 = 0.0545 
𝑤3 =  0.0510 
𝑤4 =  0.0333 
𝑤5 =  0.0239 
𝑤6 =  0.1275 
𝑤7 =  0.0027 
𝑤8 =  0.0248 
𝑤9 =  0.0085 
𝑤10 =  0.0294 
𝑤11 =  0.0947 

Figure 4. The Relationship between the VaR of the Portfolio Return and the Ratio.

Table 2. Summary of Stock Weight Optimization Results on Investment Portfolios.

Variable Value(s)

Risk Aversion 5.1 < c ≤ 8.2; ∆c = 0.05
Minimum Portfolio E(R) = 0.0102964; VaR0.05(R) = 0.0137975
Maximum Portfolio E(R) = 0.0103316; VaR0.05(R) = 0.0138270
Optimum Portfolio E(R) = 0.0103316; VaR0.05(R) = 0.0138270

Optimum Capital Weight Allocation of Each Stocks

w1 = 0.0497
w2 = 0.0545
w3 = 0.0510
w4 = 0.0333
w5 = 0.0239
w6 = 0.1275
w7 = 0.0027
w8 = 0.0248
w9 = 0.0085
w10 = 0.0294
w11 = 0.0947
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The summary in Table 2 is expected to be a reference for investors, individuals, and
organizations in making investment decisions, especially in the 11 mining and energy sector
stocks, including risk-free assets and company liabilities in forming investment portfolios.

4.3.2. Comparation with Other Models

This subsection compares the accuracy of the mean of the optimum portfolio returns of
the introduced model (we call it model I) and previous models. The previous models were
explained in Section 2.2 (we call it model II) and 2.3 (we call it model III). To measure this
accuracy, we first conducted repeated calculations of the mean of the portfolio return from
each model for different observation periods. The initial observation period is 1 January
2017 to 1 December 2020, and the subsequent observation period was an additional one
month from the previous one. The number of observation periods is thirteen. Then, we
determine the optimum portfolio for each observation period. Each mean of the return
from the optimum portfolio is used as a forecast of the mean of the portfolio return from
the portfolio one month ahead. After that, we compare each forecast with the actual return
from each model. We then measure the accuracy of the forecast using the absolute error.
The accuracy measurement results show that model I tends to have a smaller absolute error
than models II and III in each observation period. It is also shown by the mean absolute
error (MAE) of thirteen predictions from the three models, where the MAE from model I is
smaller than models II and III. Although this is not analytical evidence, it can show that
the model introduced in this study is reliable practically. In summary, the results of the
accuracy comparison can be seen in Table 3.

Table 3. Accuracy comparison between the mean of the optimum portfolio returns from models I, II,
and III.

Observation Period Forecasting Date
Absolute Error of Portfolio Return Mean

Model I Model II Model III

1 January 2017 to 1 December 2020 1 January 2021 0.0756 0.0134 0.0535
1 January 2017 to 1 January 2021 1 February 2021 0.0301 0.0281 0.0277

1 January 2017 to 1 February 2021 1 March 2021 0.0382 0.1150 0.0653
1 January 2017 to 1 March 2021 1 April 2021 0.0051 0.0799 0.0161
1 January 2017 to 1 April 2021 1 May 2021 0.0030 0.0390 0.0141
1 January 2017 to 1 May 2021 1 June 2021 0.0190 0.0149 0.0105
1 January 2017 to 1 June 2021 1 July 2021 0.0038 0.0128 0.0114
1 January 2017 to 1 July 2021 1 August 2021 0.0204 0.0207 0.0218

1 January 2017 to 1 August 2021 1 September 2021 0.0560 0.1102 0.0750
1 January 2017 to 1 September 2021 1 October 2021 0.0063 0.0394 0.0275

1 January 2017 to 1 October 2021 1 November 2021 0.0140 0.0715 0.0389
1 January 2017 to 1 November 2021 1 December 2021 0.0177 0.0089 0.0147
1 January 2017 to 1 December 2021 1 January 2022 0.0507 0.0270 0.0407

Mean Absolute Error (MAE) 0.0261 0.0447 0.0321

The smallest absolute error for each forecasting date and the smallest MAE are boldface.

5. Conclusions

This study designs the development of a quadratic optimization model for the mean-
VaR investment portfolio, which involves risk-free assets and liabilities. The model can
determine the combination of capital allocation weights on each stock asset in forming an
investment portfolio. The optimum portfolio weight determination model is expressed
using vector and matrix equations, which can simplify and speed up computing with
specific software, i.e., the Matlab version 2007a and the Microsoft Excel version 2403.

The numerical illustration is completed to illustrate the use of the model. Note that the
model can be illustrated in various capital markets worldwide. In this study, the illustration
is based on data on 11 stock assets of Indonesia’s mining and energy sectors. Then, risk-free
assets are time deposits whose interest rates are adjusted to Bank Indonesia’s policy. Then,
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the company’s liabilities are used as simulation data. The numerical illustration shows that
risk aversion and the mean of the portfolio return have a negative relationship. Therefore,
it means that the greater the risk aversion of the investor, the smaller the mean of the
portfolio return becomes and vice versa. This relationship is similar to the relationship
between risk aversion and the VaR of the portfolio return. It is logical because if investors
avoid uncertainty (this means that their risk aversion is significant), their mean and VaR
of portfolio returns will be small and vice versa. We also compare the accuracy of the
mean of the optimum portfolio returns of the introduced model and previous models. This
comparation shows that the mean of the return from the model introduced in this study
has the best accuracy based on its MAPE. Therefore, the model introduced in this study is
reliable practically.

This study has its shortcomings. The weaknesses include the fact that the model
development is carried out for only a single period, so it cannot accommodate the wishes
of investors who invest for multiple periods. Therefore, future research needs further
development for models with multi-period time indices. In addition, weaknesses occur in
the analysis of numerical illustrations, where the monthly liability data used are the result
of a simulation.
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Appendix A

Table A1. Covariance matrix of 11 Stocks.

BSSR BYAN CITA HRUM MBAP MDKA MEDC PSAB PTBA PTRO RUIS

BSSR 0.0186 0.0028 −0.0003 0.0068 0.0031 −0.0003 0.0114 −0.0055 0.0037 0.0030 0.0011
BYAN 0.0028 0.0242 0.0056 0.0034 0.0130 0.0001 0.0018 −0.0005 0.0032 0.0032 −0.0017
CITA −0.0003 0.0056 0.0288 −0.0069 0.0000 0.0101 −0.0075 0.0002 0.0016 −0.0061 −0.0035

HRUM 0.0068 0.0034 −0.0069 0.0283 0.0066 −0.0013 0.0146 0.0053 −0.0022 0.0098 0.0055
MBAP 0.0031 0.0130 0.0000 0.0066 0.0199 0.0002 0.0046 −0.0015 −0.0077 0.0060 0.0022
MDKA −0.0003 0.0001 0.0101 −0.0013 0.0002 0.0141 0.0044 0.0053 −0.0003 0.0032 −0.0012
MEDC 0.0114 0.0018 −0.0075 0.0146 0.0046 0.0044 0.0487 0.0032 0.0251 0.0162 0.0053
PSAB −0.0055 −0.0005 0.0002 0.0053 −0.0015 0.0053 0.0032 0.0270 −0.0035 0.0105 −0.0007
PTBA 0.0037 0.0032 0.0016 −0.0022 −0.0077 −0.0003 0.0251 −0.0035 0.3504 0.0341 −0.0004
PTRO 0.0030 0.0032 −0.0061 0.0098 0.0060 0.0032 0.0162 0.0105 0.0341 0.0239 0.0003
RUIS 0.0011 −0.0017 −0.0035 0.0055 0.0022 −0.0012 0.0053 −0.0007 −0.0004 0.0003 0.0184
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Appendix B

Table A2. Optimization Process with Risk-Free Assets (w0 = 0.5) and Liabilities.

c w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 wTe E(R) VaR0.05(R) Ratio

5.10 0.0060 0.0006 0.0552 0.1620 0.0049 0.0028 0.0002 0.0108 0.0000 0.0369 0.2206 0.5 0.0103 0.0138 0.7486
5.15 0.0060 0.0006 0.0552 0.1621 0.0048 0.0027 0.0002 0.0108 0.0000 0.0370 0.2206 0.5 0.0103 0.0138 0.7485
5.20 0.0060 0.0006 0.0551 0.1621 0.0048 0.0027 0.0002 0.0108 0.0000 0.0370 0.2206 0.5 0.0103 0.0138 0.7484
5.25 0.0061 0.0006 0.0550 0.1622 0.0047 0.0027 0.0002 0.0108 0.0000 0.0371 0.2206 0.5 0.0103 0.0138 0.7483
5.30 0.0061 0.0006 0.0550 0.1622 0.0047 0.0027 0.0002 0.0108 0.0000 0.0371 0.2206 0.5 0.0103 0.0138 0.7483
5.35 0.0061 0.0006 0.0549 0.1623 0.0047 0.0027 0.0002 0.0108 0.0000 0.0371 0.2206 0.5 0.0103 0.0138 0.7481
5.40 0.0061 0.0006 0.0548 0.1623 0.0046 0.0027 0.0002 0.0108 0.0000 0.0372 0.2206 0.5 0.0103 0.0138 0.7481
5.45 0.0061 0.0006 0.0548 0.1624 0.0046 0.0027 0.0002 0.0108 0.0000 0.0372 0.2207 0.5 0.0103 0.0138 0.7480
5.50 0.0061 0.0006 0.0547 0.1624 0.0046 0.0027 0.0002 0.0108 0.0000 0.0372 0.2207 0.5 0.0103 0.0138 0.7479
5.55 0.0061 0.0006 0.0546 0.1625 0.0045 0.0027 0.0002 0.0108 0.0000 0.0372 0.2207 0.5 0.0103 0.0138 0.7477
5.60 0.0061 0.0006 0.0546 0.1625 0.0045 0.0027 0.0002 0.0108 0.0000 0.0373 0.2207 0.5 0.0103 0.0138 0.7477
5.65 0.0062 0.0006 0.0545 0.1626 0.0045 0.0027 0.0002 0.0108 0.0000 0.0373 0.2207 0.5 0.0103 0.0138 0.7476
5.70 0.0062 0.0006 0.0545 0.1626 0.0044 0.0027 0.0002 0.0108 0.0000 0.0373 0.2207 0.5 0.0103 0.0138 0.7476
5.75 0.0062 0.0006 0.0544 0.1627 0.0044 0.0027 0.0002 0.0108 0.0000 0.0374 0.2207 0.5 0.0103 0.0138 0.7475
5.80 0.0062 0.0006 0.0544 0.1627 0.0044 0.0027 0.0002 0.0108 0.0000 0.0374 0.2207 0.5 0.0103 0.0138 0.7475
5.85 0.0062 0.0006 0.0543 0.1628 0.0043 0.0027 0.0002 0.0107 0.0000 0.0374 0.2208 0.5 0.0103 0.0138 0.7473
5.90 0.0062 0.0005 0.0543 0.1628 0.0043 0.0027 0.0002 0.0107 0.0000 0.0374 0.2208 0.5 0.0103 0.0138 0.7472
5.95 0.0062 0.0005 0.0542 0.1628 0.0043 0.0027 0.0002 0.0107 0.0000 0.0375 0.2208 0.5 0.0103 0.0138 0.7472
6.00 0.0062 0.0005 0.0542 0.1629 0.0043 0.0027 0.0002 0.0107 0.0000 0.0375 0.2208 0.5 0.0103 0.0138 0.7471
6.05 0.0062 0.0005 0.0541 0.1629 0.0042 0.0027 0.0002 0.0107 0.0001 0.0375 0.2208 0.5 0.0103 0.0138 0.7470
6.10 0.0062 0.0005 0.0541 0.1630 0.0042 0.0027 0.0002 0.0107 0.0001 0.0375 0.2208 0.5 0.0103 0.0138 0.7469
6.15 0.0063 0.0005 0.0540 0.1630 0.0042 0.0027 0.0002 0.0107 0.0001 0.0376 0.2208 0.5 0.0103 0.0138 0.7469
6.20 0.0063 0.0005 0.0540 0.1630 0.0041 0.0027 0.0002 0.0107 0.0001 0.0376 0.2208 0.5 0.0103 0.0138 0.7469
6.25 0.0063 0.0005 0.0539 0.1631 0.0041 0.0027 0.0002 0.0107 0.0001 0.0376 0.2208 0.5 0.0103 0.0138 0.7467
6.30 0.0063 0.0005 0.0539 0.1631 0.0041 0.0027 0.0002 0.0107 0.0001 0.0376 0.2209 0.5 0.0103 0.0138 0.7467
6.35 0.0063 0.0005 0.0538 0.1631 0.0041 0.0027 0.0002 0.0107 0.0001 0.0377 0.2209 0.5 0.0103 0.0138 0.7466
6.40 0.0063 0.0005 0.0538 0.1632 0.0040 0.0027 0.0002 0.0107 0.0001 0.0377 0.2209 0.5 0.0103 0.0138 0.7465
6.45 0.0063 0.0005 0.0537 0.1632 0.0040 0.0027 0.0002 0.0107 0.0001 0.0377 0.2209 0.5 0.0103 0.0138 0.7465
6.50 0.0063 0.0005 0.0537 0.1633 0.0040 0.0027 0.0002 0.0107 0.0001 0.0377 0.2209 0.5 0.0103 0.0138 0.7464
6.55 0.0063 0.0005 0.0537 0.1633 0.0040 0.0027 0.0002 0.0107 0.0001 0.0377 0.2209 0.5 0.0103 0.0138 0.7464
6.60 0.0063 0.0005 0.0536 0.1633 0.0040 0.0027 0.0002 0.0107 0.0001 0.0378 0.2209 0.5 0.0103 0.0138 0.7464
6.65 0.0063 0.0005 0.0536 0.1634 0.0039 0.0026 0.0002 0.0107 0.0001 0.0378 0.2209 0.5 0.0103 0.0138 0.7462
6.70 0.0063 0.0005 0.0535 0.1634 0.0039 0.0026 0.0002 0.0107 0.0001 0.0378 0.2209 0.5 0.0103 0.0138 0.7461
6.75 0.0064 0.0005 0.0535 0.1634 0.0039 0.0026 0.0002 0.0107 0.0001 0.0378 0.2209 0.5 0.0103 0.0138 0.7461
6.80 0.0064 0.0005 0.0535 0.1635 0.0039 0.0026 0.0002 0.0107 0.0001 0.0378 0.2209 0.5 0.0103 0.0138 0.7461
6.85 0.0064 0.0005 0.0534 0.1635 0.0038 0.0026 0.0002 0.0107 0.0001 0.0379 0.2210 0.5 0.0103 0.0138 0.7459
6.90 0.0064 0.0005 0.0534 0.1635 0.0038 0.0026 0.0002 0.0106 0.0001 0.0379 0.2210 0.5 0.0103 0.0138 0.7459
6.95 0.0064 0.0005 0.0534 0.1635 0.0038 0.0026 0.0002 0.0106 0.0001 0.0379 0.2210 0.5 0.0103 0.0138 0.7459
7.00 0.0064 0.0005 0.0533 0.1636 0.0038 0.0026 0.0002 0.0106 0.0001 0.0379 0.2210 0.5 0.0103 0.0138 0.7458
7.05 0.0064 0.0005 0.0533 0.1636 0.0038 0.0026 0.0002 0.0106 0.0001 0.0379 0.2210 0.5 0.0103 0.0138 0.7458
7.10 0.0064 0.0005 0.0532 0.1636 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7457
7.15 0.0064 0.0005 0.0532 0.1637 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7457
7.20 0.0064 0.0005 0.0532 0.1637 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7457
7.25 0.0064 0.0005 0.0531 0.1637 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7456
7.30 0.0064 0.0005 0.0531 0.1637 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7456
7.35 0.0064 0.0005 0.0531 0.1638 0.0037 0.0026 0.0002 0.0106 0.0001 0.0380 0.2210 0.5 0.0103 0.0138 0.7455
7.40 0.0064 0.0005 0.0530 0.1638 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2210 0.5 0.0103 0.0138 0.7454
7.45 0.0064 0.0005 0.0530 0.1638 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2210 0.5 0.0103 0.0138 0.7454
7.50 0.0065 0.0005 0.0530 0.1638 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2211 0.5 0.0103 0.0138 0.7454
7.55 0.0065 0.0005 0.0530 0.1639 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2211 0.5 0.0103 0.0138 0.7453
7.60 0.0065 0.0005 0.0529 0.1639 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2211 0.5 0.0103 0.0138 0.7453
7.65 0.0065 0.0005 0.0529 0.1639 0.0036 0.0026 0.0002 0.0106 0.0001 0.0381 0.2211 0.5 0.0103 0.0138 0.7453
7.70 0.0065 0.0005 0.0529 0.1639 0.0035 0.0026 0.0002 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7453
7.75 0.0065 0.0005 0.0528 0.1640 0.0035 0.0026 0.0002 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7451
7.80 0.0065 0.0005 0.0528 0.1640 0.0035 0.0026 0.0002 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7451
7.85 0.0065 0.0005 0.0528 0.1640 0.0035 0.0026 0.0002 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7451
7.90 0.0065 0.0005 0.0528 0.1640 0.0035 0.0026 0.0001 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7451
7.95 0.0065 0.0005 0.0527 0.1641 0.0035 0.0026 0.0001 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7450
8.00 0.0065 0.0005 0.0527 0.1641 0.0034 0.0026 0.0001 0.0106 0.0001 0.0382 0.2211 0.5 0.0103 0.0138 0.7450
8.05 0.0065 0.0005 0.0527 0.1641 0.0034 0.0026 0.0001 0.0106 0.0001 0.0383 0.2211 0.5 0.0103 0.0138 0.7450
8.10 0.0065 0.0005 0.0526 0.1641 0.0034 0.0026 0.0001 0.0106 0.0001 0.0383 0.2211 0.5 0.0103 0.0138 0.7449
8.15 0.0065 0.0005 0.0526 0.1641 0.0034 0.0026 0.0001 0.0106 0.0001 0.0383 0.2211 0.5 0.0103 0.0138 0.7449
8.20 0.0065 0.0005 0.0526 0.1642 0.0034 0.0026 0.0001 0.0106 0.0001 0.0383 0.2211 0.5 0.0103 0.0138 0.7448
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