Efficient Data-Driven Machine Learning Models for Water Quality Prediction
Abstract
:1. Introduction
- A data preprocessing step that exploits the SMOTE is performed. In this way, we create a balanced dataset and, thus, we can design efficient classification models unbiased to the safe or nonsafe classes.
- A features analysis is made, which includes: (i) a statistical description of the numeric features and (ii) order of importance evaluation by employing three different methods.
- A comparative evaluation of numerous ML classification models, namely probabilistic, distance-based, tree-based and Ensemble Learning is performed. For the purpose of this study, NB, LR, Artificial Neural Network (ANN), kNN, Rotation Forest (RotF), AdaBoostM1, Random Forest (RF), Stacking, Voting and Bagging are selected in order to develop the intended model with the highest accuracy and discrimination ability after SMOTE with 10-fold cross-validation.
- For the models’ evaluation, we considered the performance metrics Accuracy, Recall, Precision and AUC. Moreover, AUC ROC curves are also captured and presented.
- Finally, from various aspects, the performance analysis revealed that the Stacking classification model after SMOTE with 10-fold cross-validation outperforms the others, and thus it constitutes the proposition of this study.
2. Related Works
3. Materials and Methods
3.1. Dataset Description
- Aluminium (Al) [29]: This feature captures the amount of aluminium in one litre of water (mg/L).
- Ammonia (NH3) [30]: This feature denotes the amount of ammonia in one litre of water (mg/L).
- Arsenic (As) [31]: This feature stands for the amount of arsenic in one litre of water (µg/L).
- Barium (Ba) [32]: This feature captures the amount of barium in one litre of water (mg/L).
- Cadmium (Cd) [33]: This feature records the amount of cadmium in one litre of water (mg/L).
- Chloramine (NH2Cl) [34]: This feature captures the amount of chloramine in one litre of water (mg/L).
- Chromium (Cr) [35]: This feature shows the amount of chromium in one litre of water (mg/L).
- Copper (Cu) [36]: This feature records the amount of copper in one litre of water (mg/L).
- Fluoride (F) [37]: This feature captures the amount of fluoride in one litre of water (mg/L).
- Bacteria [38]: This feature shows the number of bacteria in one litre of water.
- Viruses [39]: This feature captures the number of viruses in one litre of water.
- Lead (Pb) [40]: This feature denotes the amount of lead in one litre of water (µg/L).
- Nitrates (NO3−) [41]: This feature captures the number of nitrates in one litre of water (mg/L).
- Nitrites (NO2−) [42]: This feature shows the number of nitrites in one litre of water (mg/L).
- Mercury (Hg) [43]: This feature captures the amount of mercury in one litre of water (mg/L).
- Perchlorate (ClO4−) [44]: This feature captures the amount of perchlorate in one litre of water (mg/L).
- Radium (Ra) [45]: This feature captures the amount of radium in one litre of water (pCi/L).
- Selenium (Se) [46]: This feature captures the amount of selenium in one litre of water (µg/L).
- Silver (Ag) [47]: This feature captures the amount of silver in one litre of water (µg/L).
- Uranium (U) [48]: This feature captures the amount of uranium in one litre of water (mcg/L).
- Safe: This feature captures whether the water is safe for consumption or not.
3.2. Proposed Methodology
3.2.1. Data Preprocessing
3.2.2. Features Analysis
3.3. Machine Learning Models
4. Results and Discussion
4.1. Experiments Setup
4.2. Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Water Day. Available online: https://www.worldwaterday.org/ (accessed on 9 December 2022).
- Khikmatovna, H.S. Drinking water quality source of life. Web Sci. Int. Sci. Res. J. 2021, 2, 35–40. [Google Scholar]
- Fateeva, K.V.; Filimonova, N.G. THE WATER IS THE SOURCE OF LIFE. THE PROBLEMS OF POLLUTION OF WATER SOURCES. In Proceedings of the Experientia Est Optima Magistra, Belgorod, Russia, 11–12 April 2018; pp. 20–22. [Google Scholar]
- Westall, F.; Brack, A. The importance of water for life. Space Sci. Rev. 2018, 214, 1–23. [Google Scholar] [CrossRef]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tait, S.J. Water-loss dehydration and aging. Mech. Ageing Dev. 2014, 136, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Jayaswal, K.; Sahu, V.; Gurjar, B. Water pollution, human health and remediation. In Water Remediation; Springer: Singapore, 2018; pp. 11–27. [Google Scholar]
- Dickens, C.; McCartney, M. Water-Related Ecosystems. In Clean Water and Sanitation; Springer: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Hakimdavar, R.; Hubbard, A.; Policelli, F.; Pickens, A.; Hansen, M.; Fatoyinbo, T.; Lagomasino, D.; Pahlevan, N.; Unninayar, S.; Kavvada, A.; et al. Monitoring water-related ecosystems with earth observation data in support of Sustainable Development Goal (SDG) 6 reporting. Remote Sens. 2020, 12, 1634. [Google Scholar] [CrossRef]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Chaudhry, F.N.; Malik, M. Factors affecting water pollution: A review. J. Ecosyst. Ecography 2017, 7, 1–3. [Google Scholar]
- World Health Organization. A Global Overview of National Regulations and Standards for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Wen, X.; Chen, F.; Lin, Y.; Zhu, H.; Yuan, F.; Kuang, D.; Jia, Z.; Yuan, Z. Microbial indicators and their use for monitoring drinking water quality—A review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef] [Green Version]
- Mytton, D. Data centre water consumption. npj Clean Water 2021, 4, 1–6. [Google Scholar] [CrossRef]
- Canter, L.W. Ground Water Pollution Control; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Yan, T.; Shen, S.L.; Zhou, A. Indices and models of surface water quality assessment: Review and perspectives. Environ. Pollut. 2022, 308, 119611. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Braga, F.H.R.; Dutra, M.L.S.; Lima, N.S.; da Silva, G.M.; de Cássia Mendonça de Miranda, R.; da Cunha Araújo Firmo, W.; de Moura, A.R.L.; de Souza Monteiro, A.; da Silva, L.C.N.; da Silva, D.F.; et al. Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil. Water 2022, 14, 1546. [Google Scholar] [CrossRef]
- Ahmed, U.; Mumtaz, R.; Anwar, H.; Shah, A.A.; Irfan, R.; García-Nieto, J. Efficient water quality prediction using supervised machine learning. Water 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Tiefenbacher, J.; Nguyen, H.; Kazakis, N. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci. Total Environ. 2020, 721, 137612. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Imani, M.; Hasan, M.M.; Bittencourt, L.F.; McClymont, K.; Kapelan, Z. A novel machine learning application: Water quality resilience prediction Model. Sci. Total. Environ. 2021, 768, 144459. [Google Scholar] [CrossRef]
- Muharemi, F.; Logofătu, D.; Leon, F. Machine learning approaches for anomaly detection of water quality on a real-world data set. J. Inf. Telecommun. 2019, 3, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A. Water quality prediction using machine learning methods. Water Qual. Res. J. 2018, 53, 3–13. [Google Scholar] [CrossRef]
- Water Quality. Available online: https://www.kaggle.com/datasets/mssmartypants/water-quality (accessed on 9 December 2022).
- Kumar, D.; Muthukumar, K. An overview on activation of aluminium-water reaction for enhanced hydrogen production. J. Alloys Compd. 2020, 835, 155189. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, E.G.; Li, Y.; Liu, H.; Vidal-Dorsch, D.E.; Giesy, J.P. Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere 2018, 202, 136–144. [Google Scholar] [CrossRef]
- Ahmad, A.; Bhattacharya, P. Arsenic in drinking water: Is 10 μg/L a safe limit? Curr. Pollut. Rep. 2019, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Oskarsson, A. Barium. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–100. [Google Scholar]
- Mahajan, P.; Kaushal, J. Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol. 2018, 2018, 4864365. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Chow, C.W.; Cook, D.; Sawade, E.; Hewa, G.A. Review of chloramine decay models in drinking water system. Environ. Sci. Water Res. Technol. 2022, 8, 926–948. [Google Scholar] [CrossRef]
- World Health Organization. Chromium in Drinking-Water; Technical Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Najafpour, M.M.; Mehrabani, S.; Mousazade, Y.; Hołyńska, M. Water oxidation by a copper (II) complex: New findings, questions, challenges and a new hypothesis. Dalton Trans. 2018, 47, 9021–9029. [Google Scholar] [CrossRef]
- Kabir, H.; Gupta, A.K.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Li, L.; Song, B.; Zhou, C.; Zeng, G.; Zhang, Y.; Xiao, R. Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection. J. Clean. Prod. 2021, 315, 128188. [Google Scholar] [CrossRef]
- Pilevar, M.; Kim, K.T.; Lee, W.H. Recent advances in biosensors for detecting viruses in water and wastewater. J. Hazard. Mater. 2021, 410, 124656. [Google Scholar] [CrossRef]
- Levallois, P.; Barn, P.; Valcke, M.; Gauvin, D.; Kosatsky, T. Public health consequences of lead in drinking water. Curr. Environ. Health Rep. 2018, 5, 255–262. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Sato, Y.; Ishihara, M.; Fukuda, K.; Nakamura, S.; Murakami, K.; Fujita, M.; Yokoe, H. Behavior of nitrate-nitrogen and nitrite-nitrogen in drinking water. Biocontrol Sci. 2018, 23, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Kallithrakas-Kontos, N.; Foteinis, S. Recent advances in the analysis of mercury in water-review. Curr. Anal. Chem. 2016, 12, 22–36. [Google Scholar] [CrossRef]
- Lisco, G.; De Tullio, A.; Giagulli, V.A.; De Pergola, G.; Triggiani, V. Interference on iodine uptake and human thyroid function by perchlorate-contaminated water and food. Nutrients 2020, 12, 1669. [Google Scholar] [CrossRef]
- Chałupnik, S.; Wysocka, M.; Chmielewska, I.; Samolej, K. Modern technologies for radium removal from water–Polish mining industry case study. Water Resour. Ind. 2020, 23, 100125. [Google Scholar] [CrossRef]
- Golubkina, N.; Erdenetsogt, E.; Tarmaeva, I.; Brown, O.; Tsegmed, S. Selenium and drinking water quality indicators in Mongolia. Environ. Sci. Pollut. Res. 2018, 25, 28619–28627. [Google Scholar] [CrossRef]
- World Health Organization. Silver in Drinking Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; Technical Report; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bjørklund, G.; Semenova, Y.; Pivina, L.; Dadar, M.; Rahman, M.; Aaseth, J.; Chirumbolo, S. Uranium in drinking water: A public health threat. Arch. Toxicol. 2020, 94, 1551–1560. [Google Scholar] [CrossRef]
- Maldonado, S.; López, J.; Vairetti, C. An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 2019, 76, 380–389. [Google Scholar] [CrossRef]
- Dritsas, E.; Fazakis, N.; Kocsis, O.; Moustakas, K.; Fakotakis, N. Optimal Team Pairing of Elder Office Employees with Machine Learning on Synthetic Data. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018, 19, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangirala, S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [Google Scholar] [CrossRef]
- Gnanambal, S.; Thangaraj, M.; Meenatchi, V.; Gayathri, V. Classification algorithms with attribute selection: An evaluation study using WEKA. Int. J. Adv. Netw. Appl. 2018, 9, 3640–3644. [Google Scholar]
- Berrar, D. Bayes’ theorem and naive Bayes classifier. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2018; Volume 403. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble Learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- González, S.; García, S.; Del Ser, J.; Rokach, L.; Herrera, F. A practical tutorial on Bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Inf. Fusion 2020, 64, 205–237. [Google Scholar] [CrossRef]
- Shuaib, M.; Abdulhamid, S.M.; Adebayo, O.S.; Osho, O.; Idris, I.; Alhassan, J.K.; Rana, N. Whale optimization algorithm-based email spam feature selection method using rotation forest algorithm for classification. SN Appl. Sci. 2019, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Parmar, A.; Katariya, R.; Patel, V. A review on random forest: An ensemble classifier. In Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things; Springer: Cham, Switzerland, 2018; pp. 758–763. [Google Scholar]
- Polat, K.; Sentürk, U. A novel ML approach to prediction of breast cancer: Combining of mad normalization, KMC based feature weighting and AdaBoostM1 classifier. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Kumari, S.; Kumar, D.; Mittal, M. An ensemble approach for classification and prediction of diabetes mellitus using soft Voting classifier. Int. J. Cogn. Comput. Eng. 2021, 2, 40–46. [Google Scholar] [CrossRef]
- Pavlyshenko, B. Using Stacking approaches for machine learning models. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 255–258. [Google Scholar]
- Masih, N.; Naz, H.; Ahuja, S. Multilayer perceptron based deep neural network for early detection of coronary heart disease. Health Technol. 2021, 11, 127–138. [Google Scholar] [CrossRef]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers-A Tutorial. ACM Comput. Surv. (CSUR) 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Waikato Environment for Knowledge Analysis. Available online: https://www.weka.io/ (accessed on 9 December 2022).
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process. 2015, 5, 1. [Google Scholar]
Feature | Min | Max | Mean ± Stdv |
---|---|---|---|
aluminium | 0 | 5.05 | 1.162 ± 1.446 |
cadmium | 0 | 0.13 | 0.032 ± 0.034 |
chloramine | 0 | 8.68 | 2.749 ± 2.536 |
chromium | 0 | 0.9 | 0.304 ± 0.265 |
arsenic | 0 | 1.05 | 0.123 ± 0.214 |
viruses | 0 | 1 | 0.28 ± 0.346 |
silver | 0 | 0.5 | 0.166 ± 0.141 |
barium | 0 | 4.94 | 1.693 ± 1.156 |
uranium | 0 | 0.09 | 0.042 ± 0.025 |
perchlorate | 0 | 60.01 | 18.034 ± 16.397 |
nitrates | 0 | 19.83 | 9.32 ± 5.522 |
radium | 0 | 7.99 | 3.092 ± 2.233 |
nitrites | 0 | 2.93 | 1.355 ± 0.508 |
mercury | 0 | 0.01 | 0.005 ± 0.003 |
selenium | 0 | 0.1 | 0.049 ± 0.027 |
copper | 0 | 2 | 0.829 ± 0.607 |
bacteria | 0 | 1 | 0.309 ± 0.305 |
ammonia | 0 | 29.84 | 14.045 ± 8.717 |
lead | 0 | 0.2 | 0.099 ± 0.054 |
fluoride | 0 | 1.5 | 0.773 ± 0.403 |
Pearson Correlation Coefficient | Gain Ratio | Random Forest | |||
---|---|---|---|---|---|
Feature | Rank | Feature | Rank | Feature | Rank |
aluminium | 0.44842 | aluminium | 0.14809 | cadmium | 0.46 |
cadmium | 0.42867 | cadmium | 0.13597 | chromium | 0.439 |
chloramine | 0.29334 | uranium | 0.12884 | aluminium | 0.433 |
chromium | 0.28024 | selenium | 0.12718 | arsenic | 0.421 |
arsenic | 0.23094 | mercury | 0.12579 | nitrites | 0.417 |
viruses | 0.17795 | arsenic | 0.11269 | fluoride | 0.417 |
silver | 0.16577 | viruses | 0.1003 | lead | 0.414 |
barium | 0.14402 | silver | 0.09952 | viruses | 0.414 |
uranium | 0.13252 | chromium | 0.09493 | copper | 0.414 |
perchlorate | 0.12497 | chloramine | 0.08406 | silver | 0.408 |
nitrates | 0.11617 | nitrites | 0.0744 | barium | 0.401 |
radium | 0.10245 | bacteria | 0.07052 | uranium | 0.396 |
nitrites | 0.06979 | copper | 0.06093 | selenium | 0.388 |
mercury | 0.06801 | perchlorate | 0.0483 | bacteria | 0.384 |
selenium | 0.05586 | fluoride | 0.0426 | mercury | 0.382 |
copper | 0.0485 | lead | 0.03587 | chloramine | 0.382 |
bacteria | 0.04449 | barium | 0.03404 | radium | 0.372 |
ammonia | 0.03705 | radium | 0.02803 | nitrates | 0.249 |
lead | 0.00842 | nitrates | 0.01322 | perchlorate | 0.227 |
fluoride | 0.00494 | ammonia | 0.00413 | ammonia | 0.181 |
Models | Parameters | Models | Parameters |
---|---|---|---|
NB | use kernel estimator: False use supervised discretization: True | RotF | classifier: RF number of groups: True projection filter: PrincipalComponents |
LR | ridge = use conjugate gradient descent: True | AdaBoostM1 | classifier: RF resume: True use resampling: True |
MLP | learning rate = 0.1 momentum = 0.2 training time = 200 | Stacking | classifiers: RF and NB meta classifier: LR |
kNN | k = 3 search algorithm: LinearNNSearch with Euclidean cross-validate = True | Voting | classifiers: RF and NB combination rule: average of probabilities |
RF | break ties radomly: True numIterations = 500 store out of bag predictions: True | Bagging | classifiers: RF print classifiers: True store out of bag predictions: True |
Accuracy | Precision | Recall | AUC | |||||
---|---|---|---|---|---|---|---|---|
NO SMOTE | SMOTE | NO SMOTE | SMOTE | NO SMOTE | SMOTE | NO SMOTE | SMOTE | |
NB | 0.819 | 0.927 | 0.358 | 1 | 0.745 | 0.854 | 0.838 | 0.978 |
LR | 0.907 | 0.798 | 0.692 | 0.805 | 0.335 | 0.787 | 0.861 | 0.879 |
MLP | 0.944 | 0.924 | 0.807 | 0.914 | 0.669 | 0.937 | 0.882 | 0.972 |
3NN | 0.893 | 0.886 | 0.553 | 0.822 | 0.334 | 0.978 | 0.767 | 0.937 |
RF | 0.965 | 0.970 | 0.920 | 0.963 | 0.757 | 0.978 | 0.986 | 0.996 |
RotF | 0.938 | 0.953 | 0.891 | 0.943 | 0.520 | 0.964 | 0.966 | 0.992 |
AdaBoostM1 | 0.965 | 0.970 | 0.925 | 0.963 | 0.751 | 0.977 | 0.985 | 0.996 |
Stacking | 0.967 | 0.981 | 0.886 | 1 | 0.816 | 0.981 | 0.979 | 0.999 |
Bagging | 0.962 | 0.968 | 0.932 | 0.962 | 0.723 | 0.974 | 0.986 | 0.996 |
Voting | 0.919 | 0.929 | 0.624 | 1 | 0.736 | 0.861 | 0.948 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation 2023, 11, 16. https://doi.org/10.3390/computation11020016
Dritsas E, Trigka M. Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation. 2023; 11(2):16. https://doi.org/10.3390/computation11020016
Chicago/Turabian StyleDritsas, Elias, and Maria Trigka. 2023. "Efficient Data-Driven Machine Learning Models for Water Quality Prediction" Computation 11, no. 2: 16. https://doi.org/10.3390/computation11020016
APA StyleDritsas, E., & Trigka, M. (2023). Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation, 11(2), 16. https://doi.org/10.3390/computation11020016