Three-Dimensional Time-Harmonic Electromagnetic Scattering Problems from Bianisotropic Materials and Metamaterials: Reference Solutions Provided by Converging Finite Element Approximations
<p>The plot indicates the maximum of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> guaranteeing that condition H7 is satisfied, for scattering problems involving different media considered in [<a href="#B1-electronics-09-01065" class="html-bibr">1</a>]. The curves are computed by assuming <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>∈</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>ε</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>5.0</mn> <mo>,</mo> <mo>−</mo> <mn>1.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mi>ε</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo>−</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The plots indicate the maximum <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> guaranteeing that condition H4 is satisfied, for scattering problems involving different media considered in [<a href="#B1-electronics-09-01065" class="html-bibr">1</a>]. The curves are computed by assuming <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>∈</mo> <mi mathvariant="double-struck">R</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>ε</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>5.0</mn> <mo>,</mo> <mo>−</mo> <mn>1.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mi>ε</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>(</mo> <mo>−</mo> <mn>0.5</mn> <mo>,</mo> <mo>−</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Stability of the solution for problem involving the medium in [<a href="#B1-electronics-09-01065" class="html-bibr">1</a>]. The magnitude of the <span class="html-italic">z</span> component of the electric field is plotted for four different meshes along a line parallel to the <span class="html-italic">y</span> axis and passing through the center of gravity of the domain.</p> "> Figure 4
<p>The magnitude of the <span class="html-italic">z</span> component of electric field along a line parallel to the <span class="html-italic">x</span> axis and passing through the center of gravity of the domain, for the problem involving the medium in [<a href="#B1-electronics-09-01065" class="html-bibr">1</a>]. The plot for the magnitude of the field <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mi>z</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> obtained in the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.41</mn> </mrow> </semantics></math> is shown along with the magnitude of the difference between the two solutions <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mi>z</mi> </msub> <mo>−</mo> <msub> <mi>E</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> is obtained using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The magnitude of the <span class="html-italic">z</span> component of electric field along a line parallel to the <span class="html-italic">z</span> axis and passing through the center of gravity of the domain, for the problem involving the medium in [<a href="#B1-electronics-09-01065" class="html-bibr">1</a>]. The plot for the magnitude of the field <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mi>z</mi> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> obtained in the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.41</mn> </mrow> </semantics></math> is shown along with the magnitude of the difference between the two solutions <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mi>z</mi> </msub> <mo>−</mo> <msub> <mi>E</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </semantics></math> is obtained using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Plot of <math display="inline"><semantics> <msub> <mi>K</mi> <mi>u</mi> </msub> </semantics></math> versus <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>c</mi> </msub> </semantics></math> for the bianisotropic medium described in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The plots are shown for various values of <math display="inline"><semantics> <msub> <mi>ε</mi> <mi>r</mi> </msub> </semantics></math>. The hypothesis H4 is satisfied for <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>u</mi> </msub> <mo><</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>The value of <math display="inline"><semantics> <msub> <mi>ξ</mi> <mi>c</mi> </msub> </semantics></math> below which the hypothesis H4 is satisfied is plotted against <math display="inline"><semantics> <msub> <mi>ε</mi> <mi>r</mi> </msub> </semantics></math>. The limit of <math display="inline"><semantics> <mrow> <mn>2.654</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> mho, arising from Equation (45) required to satisfy H7, is also shown.</p> "> Figure 8
<p>The geometry of a rectangular waveguide partially filled with the chiral media considered in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>].</p> "> Figure 9
<p>Stability of the solution for the problem involving the medium in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The magnitude of the <span class="html-italic">x</span> component of the electric field is plotted for three different meshes along a line parallel to the <span class="html-italic">y</span> axis and passing through the center of gravity of the domain.</p> "> Figure 10
<p>The magnitude and phase of the <span class="html-italic">x</span> component of the electric field along a line parallel to the <span class="html-italic">x</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>The magnitude and phase of the <span class="html-italic">x</span> component of the electric field along a line parallel to the <span class="html-italic">z</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>The magnitude and phase of the <span class="html-italic">y</span> component of the electric field along a line parallel to the <span class="html-italic">z</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>The magnitude and phase of the <span class="html-italic">z</span> component of the electric field along a line parallel to the <span class="html-italic">x</span> axis and passing though the center of gravity of the domain for problem involving the medium in [<a href="#B10-electronics-09-01065" class="html-bibr">10</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Stability of the solution for the problem involving the medium in [<a href="#B11-electronics-09-01065" class="html-bibr">11</a>]. The magnitude of the <span class="html-italic">x</span> component of the electric field is plotted for three different meshes along a line parallel to the <span class="html-italic">y</span> axis and passing through the center of gravity of the domain.</p> "> Figure 15
<p>The magnitude and phase of the <span class="html-italic">x</span> component of the electric field along a line parallel to the <span class="html-italic">x</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B11-electronics-09-01065" class="html-bibr">11</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.7</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 16
<p>The magnitude and phase of the <span class="html-italic">x</span> component of the electric field along a line parallel to the <span class="html-italic">y</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B11-electronics-09-01065" class="html-bibr">11</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.7</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 17
<p>The magnitude and phase of the <span class="html-italic">x</span> component of the electric field along a line parallel to the <span class="html-italic">z</span> axis and passing though the center of gravity of the domain for the problem involving the medium in [<a href="#B11-electronics-09-01065" class="html-bibr">11</a>]. The plot for the bianisotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.7</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> mho is compared with the solution obtained in the isotropic case using <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Description of the Problem
- : for all and ,
- : for all and .
3. Results and Discussion
3.1. Scattering from Plasmonic Gratings Behaving as Bianisotropic Metamaterials
3.2. Scattering from Chiral Obstacles in a Waveguide
3.3. Reflection by a Short-Circuited Waveguide Half Filled with Bianisotropic Media
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kraft, M.; Braun, A.; Luo, Y.; Maier, S.A.; Pendry, J.B. Bianisotropy and magnetism in plasmonic gratings. ACS Photonics 2016, 3, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, M.; Albooyeh, M.; Alaee, R.; Asadchy, V.; Komjani, N.; Rockstuhl, C.; Simovski, C.R.; Tretyakov, S. A bianisotropic metasurface with resonant asymmetric absorption. IEEE Trans. Antennas Propag. 2015, 63, 3004–3015. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Borneman, J.D.; Ni, X.; Shalaev, V.M.; Drachev, V.P. Bianisotropic effective parameters of optical metamagnetics and negative-index materials. Proc. IEEE 2011, 99, 1691–1700. [Google Scholar] [CrossRef]
- Kriegler, C.E.; Rill, M.S.; Linden, S.; Wegener, M. Bianisotropic photonic metamaterials. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 367–375. [Google Scholar] [CrossRef]
- Fernandes, P.; Raffetto, M. Well-posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials. Math. Model. Methods Appl. Sci. 2009, 19, 2299–2335. [Google Scholar] [CrossRef]
- Brignone, M.; Raffetto, M. Well posedness and finite element approximability of two-dimensional time-harmonic electromagnetic problems involving non-conducting moving objects with stationary boundaries. ESAIM Math. Model. Numer. Anal. 2015, 49, 1157–1192. [Google Scholar] [CrossRef]
- Ioannidis, A.D.; Kristensson, G.; Stratis, I.G. On the well-posedness of the Maxwell system for linear bianisotropic media. SIAM J. Math. Anal. 2012, 44, 2459–2473. [Google Scholar] [CrossRef] [Green Version]
- Cocquet, P.; Mazet, P.; Mouysset, V. On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials. SIAM J. Math. Anal. 2012, 44, 3806–3833. [Google Scholar] [CrossRef]
- Kalarickel Ramakrishnan, P.; Raffetto, M. Well posedness and finite element approximability of three-dimensional time-harmonic electromagnetic problems involving rotating axisymmetric objects. Symmetry 2020, 12, 218. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.X.; Jaggard, D.L. A comprehensive study of discontinuities in chirowaveguides. IEEE Trans. Microw. Theory Tech. 2002, 50, 2320–2330. [Google Scholar] [CrossRef]
- Alotto, P.; Codecasa, L. A fit formulation of bianisotropic materials over polyhedral grids. IEEE Trans. Magn. 2014, 50, 349–352. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Oxford Science Publications: Oxford, UK, 2003. [Google Scholar]
- Fernandes, P.; Ottonello, M.; Raffetto, M. Regularity of time-harmonic electromagnetic fields in the interior of bianisotropic materials and metamaterials. IMA J. Appl. Math. 2014, 79, 54–93. [Google Scholar] [CrossRef]
- Ciarlet, P.G.; Lions, J.L. Handbook of Numerical Analysis; Finite Element Methods, Part 1; North-Holland: Amsterdam, The Netherlands, 1991; Volume II. [Google Scholar]
Type of Mesh | Maximum Diameter of the Mesh (h in nm) | Number of Nodes | Number of Elements | Number of Boundary Faces |
---|---|---|---|---|
Very coarse | 200 | 1331 | 6000 | 1200 |
Coarse | 100 | 9261 | 48,000 | 4800 |
Fine | 50 | 68,921 | 384,000 | 19,200 |
Very fine | 25 | 531,441 | 3,072,000 | 76,800 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalarickel Ramakrishnan, P.; Raffetto, M. Three-Dimensional Time-Harmonic Electromagnetic Scattering Problems from Bianisotropic Materials and Metamaterials: Reference Solutions Provided by Converging Finite Element Approximations. Electronics 2020, 9, 1065. https://doi.org/10.3390/electronics9071065
Kalarickel Ramakrishnan P, Raffetto M. Three-Dimensional Time-Harmonic Electromagnetic Scattering Problems from Bianisotropic Materials and Metamaterials: Reference Solutions Provided by Converging Finite Element Approximations. Electronics. 2020; 9(7):1065. https://doi.org/10.3390/electronics9071065
Chicago/Turabian StyleKalarickel Ramakrishnan, Praveen, and Mirco Raffetto. 2020. "Three-Dimensional Time-Harmonic Electromagnetic Scattering Problems from Bianisotropic Materials and Metamaterials: Reference Solutions Provided by Converging Finite Element Approximations" Electronics 9, no. 7: 1065. https://doi.org/10.3390/electronics9071065