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Abstract: Non-orthogonal multiple access (NOMA) enables the parallel offloading of multiuser tasks,
effectively enhancing throughput and reducing latency. Backscatter communication, which passively
reflects radio frequency (RF) signals, improves energy efficiency and extends the operational lifespan
of terminal devices. Both technologies are pivotal for the next generation of wireless networks.
However, there is little research focusing on optimizing the transmit power in backscatter-assisted
NOMA-MEC systems from a green IoT perspective. In this paper, we aim to minimize the transmit
energy consumption of a Hybrid Access Point (HAP) while ensuring task deadlines are met. We
consider the integration of Backscatter Communication (BackCom) and Active Transmission (AT), and
leverage NOMA technology and user cooperation to mitigate the double near–far effect. Specifically,
we formulate a transmit energy consumption minimization problem, accounting for task deadline
constraints, task offloading decisions, transmit power allocation, and energy constraints. To tackle
the non-convex optimization problem, we employ variable substitution and convex optimization
theory to transform the original non-convex problem into a convex one, which is then efficiently
solved. We deduce the semi-closed form expression of the optimal solution and propose an energy-
efficient algorithm to minimize the transmit power of the entire wireless powered MEC. The extensive
simulation results demonstrate that our proposed scheme significantly reduces the HAP transmit
power by around 8% compared to existing schemes, validating the effectiveness of our approach.
This study provides valuable insights for the design of green IoT systems by optimizing the transmit
power in NOMA-MEC networks.

Keywords: backscatter communication (Backcom); Lyapunov optimization; NOMA-MEC (Non-
Orthogonal Multiple Access-Mobile Edge Computing); transmit power; wireless power transfer (WPT)

1. Introduction

The rapid development of the Internet of Things (IoT) has driven an increasing de-
mand for efficient data processing and low-latency communication in mobile devices such
as autonomous vehicles, facial recognition systems, virtual reality (VR) devices, and elec-
tronic health monitors [1]. To address the limitations in computational power and battery
life of these devices, Mobile Edge Computing (MEC) technology offloads computationally
intensive tasks to servers deployed at the network’s edge, such as base stations, thereby
effectively enhancing the devices’ computational capacity and response speed [2,3]. Ad-
ditionally, Wireless Power Transmission (WPT) [4] technology collects energy remotely
through radio frequency (RF) signals, further extending the battery life of devices. Leverag-
ing the advantages of MEC and WPT networks, numerous studies have been conducted
to explore the potential of Wireless-Powered MEC (WPMEC) systems, and a multitude of
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efficient algorithms have been proposed to address the joint allocation of communication
and computational resources.

However, to address the challenges of serving the massive number of devices in future
wireless networks, relying solely on MEC may not suffice to meet service demands. Be-
yond computational and battery limitations, the double near–far effect can severely impact
network performance, especially for devices that are far from Hybrid Access Points (HAPs)
and often in poor channel conditions [5]. This effect leads to a significant difference in rates
between distant users and nearby users due to the dual impact of signal propagation loss.
It not only reduces the efficiency of energy harvesting but also affects the distance-based
path loss compensation in Wireless Information Transmission (WIT). To overcome these
challenges, researchers have proposed a collaborative computing model. By allowing
user devices to collaborate, near-end users can act as relays for far-end users. This co-
operation helps to strengthen the signal received by the far-end users and reduces the
interference caused by the proximity of near-end users to the HAP. The relaying of signals
from near-end to far-end users can overcome the path loss and interference, ensuring a
more balanced signal strength distribution among all users. This approach not only in-
creases the efficiency with which distant users offload tasks to access points but also makes
full use of idle computing resources in the network through Device-to-Device (D2D) [6,7]
communication and User Collaboration (UC) [8] mechanisms, optimizing resource allo-
cation, effectively improving energy efficiency, and addressing the challenges posed by
geographical disparities.

The integration of Non-Orthogonal Multiple Access (NOMA) technology into WP-
MEC systems has been identified as a means to enhance overall performance [9,10]. This
approach allows for the shared use of time-frequency resources among users, leveraging
power domain multiplexing and multiuser detection techniques such as Successive In-
terference Cancellation (SIC) [11]. The adoption of these techniques not only improves
spectral efficiency but also substantially increases system capacity and coverage, which is
particularly beneficial in frequency-constrained or densely populated urban scenarios.

Backscatter Communication (BackCom) technology has emerged as a promising ap-
proach in mobile communication due to its low energy footprint [12–17]. This technology
facilitates the transmission of information through the passive reflection of radio frequency
signals, concurrently harvesting energy to power circuit operations. When compared to
the traditional active transmission (AT) model, which follows the Harvest-then-Transmit
(HTT) protocol, BackCom dramatically minimizes energy usage, typically requiring only
a few microwatts to hundreds of microwatts, despite offering comparatively lower trans-
mission rates. To optimize the trade-off between energy harvesting and data transmission,
and to concurrently enhance system throughput and energy efficiency (EE) [18], Back-
Com can be strategically combined with AT. This dual-mode approach capitalizes on the
complementary strengths of both communication methods.

Extensive research [19–23] has explored the use of BackCom and NOMA to improve
the efficiency of wireless spectrum utilization and wireless energy transfer. In NOMA
systems, near-end users with superior channel conditions receive lower power allocations
to decode signals for far-end users, who transmit at higher power to reduce interference.
Backscatter communication further conserves energy and enhances spectrum efficiency
through signal reflection. However, research on the synergy between backscatter com-
munication and NOMA in cooperative scenarios remains underexplored. Additionally,
the majority of existing work on energy optimization in WPMEC systems has focused on
energy consumption at the mobile device (MD) level. However, since the energy for MDs
is entirely harvested from the RF signals emitted by the HAP, the energy transmitted by the
HAP constitutes the total energy budget of the WPMEC system. Therefore, optimizing the
energy consumption of HAP transmissions is of significant practical importance.

In this paper, we consider a transmit energy minimization (TEM) problem within a
three-node wireless powered NOMA-MEC network, integrating BackCom and AT commu-
nication modes. In a three-node network, the far-end user faces poor channel conditions
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and significant double near–far effects due to the long distance from the HAP. We employ
NOMA technology to facilitate user cooperation, allowing the far-end user to delegate tasks
to the near-end user and AP. After receiving and processing the signals, the near-end user
computes some tasks locally and forwards the rest to the AP, thereby enhancing the com-
munication quality of the far-end user and mitigating the double near–far effect. We jointly
optimize the WPT time fraction, backscatter time fraction, task offloading time fraction,
transmit power allocation of the MD node, and backscatter reflection coefficients, aiming to
minimize the total transmit power of the HAP while meeting task latency constraints. We
formulate the mathematical model for the TEM problem, which is strongly non-convex.
Due to signal interference in NOMA communication, there is a coupling between transmis-
sion power allocation decisions, and the coupling between BackCom communication and
AC communication introduces additional coupling in the offloading of data, posing signifi-
cant challenges in solving the problem. To address this highly non-convex TEM problem,
we employ variable substitution techniques and convex optimization theory to convert it
into a convex problem, allowing for efficient solutions. Extensive numerical simulations
are conducted to verify the performance and effectiveness of our proposed scheme.

The primary contributions are summarized as follows:

• Proposing an innovative energy optimization model for a WPMEC system from a
green IoT perspective. We formulate a TEM problem for HAP under task delay
constraints, while leveraging the NOMA technique, integrating BackCom with AT
communication, and employing user cooperation to alleviate the impact of the double
near–far effect. Furthermore, our model focuses on the optimization of the overall
energy consumption in WPMEC networks, rather than solely considering the en-
ergy expenditure of mobile nodes. The model has practical application value for
reducing carbon emissions in WPMEC and promoting the development of green
IoT technologies.

• Applying variable substitution and convex optimization theory to convert the non-
convex TEM problem into a convex one. Through a meticulous analysis of the prob-
lem’s structure, we have developed a low-complexity algorithm to solve it and derived
a semi-closed-form expression for the optimal solution.

• Evaluating the performance of our scheme through extensive simulations. The experi-
mental results demonstrate that our proposed scheme surpasses the state-of-the-art
methods, with an approximate improvement of 8%.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the related works in the field. In Section 3, we details the model of the Backscatter-
Aided wireless powered NOMA-MEC system. In Section 4, formulates the transmit power
optimization problem, presenting the mathematical formulation. Section 5, we develop a
low-complexity algorithm designed to solve the optimization problem. Section 6 offers
a comprehensive evaluation of the proposed algorithm’s performance through extensive
simulations. In Section 7, we conclude the paper by summarizing the key findings and
contributions, and suggest potential directions for future research.

2. Related Work

In order to increase the data computation capability and decrease the task processing
delay, the resource management in WPT assisted MEC network has been extensively
studied [24]. Zhang et al. [25] presented a mobility-aware hierarchical MEC framework for
IoT, employing a game theoretic approach to enhance energy efficiency and reduce latency
in computation offloading. Dinh et al. [26] introduced a semidefinite relaxation (SDR)-based
approach for task offloading from a mobile device to multiple edge devices, aiming to
minimize execution latency through joint task allocation and CPU frequency optimization
in both fixed and elastic CPU frequency scenarios. Moreover, energy consumption as a
determining factor of network performance has been widely explored in MEC networks.
Wang et al. [27] proposed a modified-cutting-plane (MCP) algorithm and a pivoting-and-
subgradient (PS) algorithm to minimize total energy consumption in a multicell MEC
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system. Mei et al. [28] explored a dynamic energy-efficient task offloading algorithm for a
multidevice single-MEC system, leveraging Lyapunov optimization to minimize energy
consumption while maintaining system stability. Chen et al. [29] introduced a polling
callback energy-saving offloading strategy for MEC systems to address asynchronous
data transmission and task processing times, and employs a game-learning algorithm
combining DDQN and distributed LSTM to optimize energy consumption. However, most
of the aforementioned research has focused on optimizing the energy consumption of
mobile nodes in MEC networks, without considering the optimization of the total energy
consumption of radio frequency (RF) from the HAP in WPT-MEC systems. Since the
mobile nodes in WPT-MEC network harvest their energy from the RF emitted by the HAP
base station, optimizing the total RF energy consumption of the HAP is of more practical
significance.

Researchers have extensively adopted user cooperation mechanism to mitigate the dou-
ble near–far effect and optimize resource utilization in MEC systems [30–32].
Sun et al. [30] introduced an iterative algorithm designed to minimize end-to-end la-
tency in IoT environment, jointly optimizing user association and resource allocation in
a three-phase operation protocol. Lyu et al. [31] considered user-cooperation schemes in
different communication modes, Backscatter and HTT, improving network communication
capability and energy efficiency by optimizing time and power allocation and energy beam-
forming. Li et al. [8] employed a multiuser cooperation scheme to enhance computation
performance in a WPMEC system, focusing on maximizing the weighted sum computation
rate by jointly optimizing collaboration, time, and data allocation among IoT devices and an
HAP. Huang et al. [32] introduced a NOMA-assisted cooperative computing scheme with
user cooperaration in a three-node MEC system to leverage idle mobile device resources,
optimizing energy consumption and offloading data through joint communication and
computation resource allocation. Our previous research [33] addressed the challenge of en-
ergy management in WPT-MEC networks with user cooperation by proposing a multistage
stochastic optimization approach, introducing Lyapunov optimization technique to ensure
sustainability and stability in the dynamic IoT environment. Although prior research has
effectively mitigated the impact of the near–far double effect on data transmission for
distant nodes through user collaboration communication, it has not adequately consider
the simultaneous utilization of NOMA and Backscatter, two advanced communication tech-
nologies in 5G and Beyond (B5G), to further enhance energy efficiency and communication
efficiency in WPT-MEC systems.

NOMA and Backscatter, as advanced communication technologies in 5G and 6G, are
gradually being widely applied in WPT-MEC networks to enhance network communication
efficiency and improve the energy utilization of wireless radio frequency charging [34,35].
Toro et al. [36] provided a comprehensive survey on BackCom for green IoT, examining
its operating principles, applications in various domains, and addressing operational and
security challenges. Shi et al. [37] introduced a hybrid approach combining Harvest-Then-
Transmit (HTT) with Backscatter communication aimed at maximizing the weighted sum
of computation bits within a WPT-MEC network, taking into account a realistic non-linear
energy harvesting (EH) model. Additionally, Khan et al. [35] explored the integration of
6G communications, specifically NOMA and Backcom, to enhance energy efficiency and
data sharing in Automotive Industry 5.0, proposing a multicell optimization framework
for backscatter-enabled NOMA vehicular networks. Fang et al. [38] proposed an energy-
efficient optimization scheme for a multiuser NOMA-MEC network, employing a bilevel
programming method to derive optimal solutions for a one-user two-base station (BS)
scenario and extends it to a low-complexity algorithm for the multiuser and multi-BS
case. Shi et al. [39] presented a NOMA-based millimeter-wave (mmW) MEC mechanism
to minimize the average delay of MEC offloading by jointly optimizing beamwidth, user
equipment scheduling, and transmit power, employing alternative optimization and matrix
control algorithms to enhance accessing efficiency. However, the aforementioned research
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did not take into account the latency constraints of computational task processing and the
energy consumption optimization of the HAP.

Different from the above research, this paper aims to reduce carbon emissions in MEC
networks by investigating the minimization of HAP wireless radio frequency transmission
energy consumption in WPT-MEC networks under user collaboration communication,
while ensuring the latency of computational task processing, with the goal of achieving
green communication. We have also considered the hybrid communication mode of
Backscatter (e.g., BackCom and AC) and utilized the advanced communication technology
of NOMA to further enhance the communication efficiency of the nodes.

3. System Model
3.1. Communication Model

We consider a user-cooperative wireless-powered MEC system, comprising a user
node, a helper node, and a HAP, as illustrated in Figure 1. The HAP is equipped with
an RF energy transmitter and is directly connected to an edge server. The user node,
denoted as MD1, is located at a greater distance from the HAP, while the helper node, MD2,
is positioned closer to the HAP. Both MD1 and MD2 have individual computation tasks
that must be completed within a specified latency constraint. Additionally, both nodes
are equipped with a BackCom circuit and an AT circuit, allowing them to select between
backscatter communication and active communication modes.

HAP

L2

MD1(Helper)

l ac21l ac21 

L1
Wireless Power Transfer

Active Communication

BackScatter Communication

MD2

l b21l b21

lac1alac1a

lb1alb1a 

l ac2al ac2a

t0t0

HAP
MD1

MD2

Results 
download

WPT AT Communication

T

MD2 MD1 MD1 HAP MD1 HAPMD2
HAP
MD1

BackCom

t1t1 t2t2 t3t3 t4t4 tr ≈ 0tr ≈ 0
Local Computing

1

1

2

3

4

5
4

Figure 1. System model of a WPMEC network with a user-cooperative wireless-powered MEC
system.

In this three-node model, both MD1 and MD2 have their own data processing tasks
with data-size L1 and L2 that need to be completed within a specified time T. MD1 is
positioned between MD2 and the HAP, allowing it not only to process its own data but
also to assist MD2 in relaying data offloaded to the edge server. The system employs
a NOMA communication scheme, which allows MD2 to offload data simultaneously to
both MD1 and the HAP. We focus on a zero-power IoT system, where the energy for
mobile nodes MD1 and MD2 is entirely derived from wireless power transfer by the HAP.
By using wireless charging, MD1 and MD2 eliminate the additional costs associated with
battery replacement.
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The system adopts a partial offloading model, allowing computational tasks to be
fragmented and offloaded to the edge server. Here, we consider the allocation of time
slice resources within a time slot of length T, which includes six parts: t0 to t4 and tr.
The communication process of the system is as follows. (1) Initially, at time t0, MD1 and
MD2 receive wireless energy transmitted by the HAP’s RF equipment, which is used to
process their respective computational tasks, denoted as L1 and L2. (2) Since the system
employs a hybrid transmission mode combining BackCom and AC, data offloading begins
with BackCom. At time t1, MD2 partially offloads its data to MD1 using BackCom, with the
offloaded data size denoted as lb

21. (3) Subsequently, during the t2 time slot, MD1 offloads
its data to the HAP via BackCom, with the offloaded data size denoted as lb

1a. (4) Next,
task offloading proceeds using the AT mode. During the t3 time slot, MD2, utilizing
NOMA technique, simultaneously offloads data to both MD1 and the HAP, with data sizes
denoted as lac

21 and lac
2a, respectively. (5) In the t4 time slot, MD1 offloads its data to the

edge server connected to the HAP, with the offloaded data size denoted as lac
1a. (6) Finally,

during the tr time slot, the computation results are downloaded from the edge server.
Because the computation result data are typically small, the time required for this step can
be considered negligible.

The primary symbols and definitions used are listed in Table 1.

Table 1. Key notations and definitions.

Notation Definition

T The time block
t0 The time for WPT
t1t2 The time for offloading by Backcom of MD2 and MD1
t3, t4 The time for offloading by AC of MD2 and MD1
Li the amount of computational tasks of MD1 and MD2
hi The WPT channel gain between MDi and HAP
g12,g2a The offloading channel gain between MD1 and MD2, MD2 and HAP
P0,P1,P21,P2a The transmit power by AC at HAP, MD1 and MD2
Pb

i The circuit power by Backcom at MDi
lloc
i The amount of tasks processed locally at MDi

lb
1a,lb

21 The amount of tasks offloaded by Backcom at MD1 and MD2
lac
1a, lac

2a, lac
21 The amount of tasks offloaded by AC at MD1 and MD2

eloc
i The energy consumed by processing tasks locally at MDi

eb
i The energy consumed by offloading tasks by Backcom at MDi

fi The local CPU frequency at MDi
ϕi The CPU cycles required to compute one bit task at MDi
βt

i The reflection coefficient of MDi at slot t
µ The energy conversion efficiency
κi The computing energy efficiency of MD1 and MD2
B The channel bandwidth
σ2 The additive white Gaussian noise

3.2. Wireless Powered Transfer Model

During both the WPT charging phase and the BackCom communication phase, the MD
can harvest RF energy from the HAP’s RF transmitter. This harvested energy is used for
both local computation and task offloading. Let P0 denote the RF transmit power of the
HAP, and µ(0 < µ < 1) represents the energy conversion efficiency. The amount of
harvested energy of MD2 is given by [17]:

E2 = µh2P0(t0 + t2) (1)
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where h2 represents the channel gain from the HAP to MD1, which remain constant within
the T time period. Similarly, the amount of harvested energy of MD1 is as follows:

E1 = µh1P0(t0 + t1) (2)

where h1 represents the channel gain from the HAP to MD1.

3.3. Computing Model

Upon the arrival of a task at a mobile node, a portion of the task may be offloaded
to the edge server, while the remaining part is processed locally. Let the CPU frequencies
of MD1 and MD2 be denoted as f1 and f2, respectively, and let the number of CPU cycles
required to process one bit of data be represented by ϕ1 and ϕ2. The amount of task
data processed locally at MD2 is (L2 − lb

21 − lac
2a − lac

21). Thus, the corresponding energy
consumption for local computing can be expressed as [17]:

eloc
2 = κ2(L2 − lb

21 − lac
2a − lac

21)ϕ2( f2)
2 (3)

where κ2 represents the computing energy efficiency parameter of MD2 [17].
The local computing latency constraint for MD2 is as follows:

(L2 − lb
21 − lac

2a − lac
21)ϕ2

f2
≤ T − t0 (4)

For MD1, which is responsible for forwarding MD2’s data to HAP without performing
local computation on MD2’s data. Therefore, we have the following data constraint:

lb
1a + lac

1a ≥ lb
21 + lac

21 (5)

Similarly, the amount of task data that is processed locally on MD1 is equal to L1 +
lb
21 + lac

21 − lb
1a − lac

1a, and the energy consumption for local computing at MD1 is as follows:

eloc
1 = κ1(L1 + lb

21 + lac
21 − lb

1a − lac
1a)ϕ1( f1)

2 (6)

where κ1 denotes the computing energy efficiency parameter of MD1 [17].
The local computing latency constraint for MD2 is as follows:

(L1 + lb
21 + lac

21 − lb
1a − lac

1a)ϕ1

f1
≤ T − t0 (7)

where κi denotes the computing energy efficiency parameter of MD1 [17].

3.4. Task Offloading Model
3.4.1. Offloading Task by BackCom

During time slot t1, MD2 offloads tasks to MD1 by using Backscatter communication.
We denote the reflection coefficient of BackCom at MD2 as β1, 0 ≤ β2 ≤ 1, which plays
a crucial role for a balance between energy harvesting and communication performance.
Thus, there is β1 proportion of energy utilized as a carrier to transfer data, and (1 − β1)
proportion of incident power that is absorbed by MD2 [13]. According to Shannon’s
theorem [40], the amount of tasks offloaded from MD2 to MD1 is as follows:

lb
21 = t1B log2

(
1 +

ζβ2P0h2g21

σ2

)
(8)

where ζ represents the performance gap reflecting real modulation of BackCom [14], g21
denotes the channel gain from MD2 to MD1, and σ2 is the noise power.
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The corresponding energy consumption for task offloading by BackCom is as follows:

eb
2 = Pb

2 t1 (9)

where Pb
2 is the circuit power consumption of MD2 by BackCom, which is a constant value

depending on the circuit structure. In BackCom communication, a node can simultaneously
reflect the signal and harvest RF energy. The energy harvested by MD2 during the BackCom
communication at time t1 is expressed as follows:

Eb
2 = µh2P0t1(1 − β2) (10)

After receiving the tasks offloaded by MD2, MD1 will act as a relay and forward a
portion of these tasks to the HAP. Additionally, MD2 will offload its own tasks to the HAP.
At time t2, the task data transmitted by MD2 via BackCom are subject to the following
constraints:

lb
1a = t2B log2

(
1 +

ζβ1P0h1g1a

σ2

)
(11)

where β1 is the reflection coefficient of the BackCom at MD1 and g1a represents the channel
gain from MD1 to the HAP. The corresponding energy consumption for task offloading by
BackCom is as follows:

eb
1 = Pb

1 t2 (12)

where Pb
2 is the circuit power consumption of MD2 by BackCom. The energy harvested of

MD1 by Backcom during t2 is as follows:

Eb
1 = µh1P0t2(1 − β1) (13)

3.4.2. Offloading Task by NOMA-Aided AC Communication

In the AC transfer mode, we adopt the NOMA technique improve the task trans-
mission efficiency. In time slot t3, MD2 simultaneously offload task to MD1 and the HAP
with data size lac

21 ∈ R≥0 and lac
2a ∈ R≥0, respectively. In the NOMA transmission process,

the transmit allocation allocated for task offloading to MD1 and the HAP are denoted
as p21 ∈ R≥0 and p2a ∈ R≥0. MD2 transmits a linear superposition signal to MD1 and
the HAP. We suppose that the global channel state information (CSI) of network can be
obtained. After receiving the signal, MD1 first decodes the MD2’s signal and subtracts
it from the received signal by leveraging the successive interference cancellation (SIC)
technique. We convert the channel coefficients from MD2 to MD1 and the HAP as g21 and
g2a, respectively. Therefore, the task offloading rate from MD2 to MD1 and the HAP can be
expressed as follows:

Rac
21 = B log2(1 + h21 p21) (14)

Rac
2a = B log2

(
1 +

h2a p2a

1 + h2a p21

)
(15)

where h21 := |g21|2/σ2 and h2a := |g2a|2/σ2 represent the effective channel gain to the
noise power ratio (ECGNR) from MD2 to MD1 and the HAP, respectively.

During the time slot t3, the amount of offloaded task from MD2 offloading to MD1
and the HAP are define to be:

lac
21 = Rac

21t3 (16)

lac
2a = Rac

2at3 (17)

The energy consumption of task offloading from MD2 to MD1 and the HAP via NOMA
are obtained as p21t3 and p2at3.
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At the t4 time slot, MD1 offloads computation task to HAP by utilizing the AC mode,
which includes tasks offloaded from MD2 and task native to MD1. The amount of task
offloading from MD1 to the HAP is as follows:

lac
1a = t4B log2(1 + h1a p1) (18)

where 0 ≤ pt
1 ≤ Pmax

1 represents the transmit power allocated to AC at MD1 [17],
h1a := |g1a|2/σ2 represents ECGNR from MD1 to the HAP, and g1a represents the channel
coefficients from MD1 to the HAP.

The energy consumption for offloading task from MD1 to the HAP is P1t4.

4. Problem Formulation

In this paper, we consider a computation task offloading algorithm to minimize the
carbon footprint for a green IoT network with NOMA-Backscatter assisted under user
cooperation. We make joint decisions on time slot allocation t = [t0, t1, t2, t3, t4], power
allocation p = [p21, p2a, p1], Backscatter reflection coefficients β = [β1, β2], and the size
of offloading tasks l = [lb

21, lb
1a, lac

21, lac
2a, lac

1a] to minimize the total transmit power of HAP
subjected to common latency constraints. The HAP’s transmit power minimization (TPM)
problem can be defined as follows:

(P1) : min
t,p,β,l

P0(t0 + t1 + t2) (19)

s.t. t0 + t1 + t2 + t3 + t4 ≤ T, (20)

Pb
2 t1 + p21t3 + p2at3 + eloc

2 ≤ E2 + Eb
2, (21)

Pb
1 t2 + p1t4 + eloc

1 ≤ E1 + Eb
1, (22)

p21 + p2a < Pmax
2 , (23)

p1 ≤ Pmax
1 , (24)

lac
21 + lb

2a ≤ lb
1a + lac

1a, (25)

(L2 − lb
21 − lac

2a − lac
21)ϕ2

f2
≤ T − t0, (26)

(L1 + lb
21 + lac

21 − lb
1a − lac

1a)ϕ1

f1
≤ T − t0, (27)

p ∈ R≥0, β ∈ R≥0, l ∈ R≥0, t ∈ R≥0, (28)

where constraint (20) specifies the time slot allocation, constraints (21) and (22) set the
energy consumption limits for MD2 and MD1, respectively, constraints (23) and (24) govern
the transmit power allocation for MD2 and MD1, respectively, constraint (25) ensures that
the task offloaded from MD2 to MD1 is relayed to the HAP within the specified time T,
constraints (26) and (27) impose the task processing latency requirements for MD2 and
MD1, respectively, and constraint (28) defines the feasible domain for the decision variables.

Note that Problem (P1) is a non-convex optimization problem due to the nonconvex
objective function and nonconvex constraints (21) and (22). This characteristic precludes the
use of traditional convex optimization methods for its direct solution. Therefore, through
in-depth analysis of the problem’s structure and careful design, we employ the variable
substitutions to solve Problem P1.

5. Optimal Solution for the TPM Problem

Problem P1 is a non-convex optimization problem due to the non-convexity of con-
straints (21) and (22), and the presence of the coupling decision variables p and l. To address
this, we first rewrite p21 and p1a based on Equations (14) and (18) as follows:
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p21 =
1

h21
f
(

lac
21

Bt3

)
(29)

p1 =
1

h1a
f
(

lac
1a

Bt4

)
(30)

where the function f is define as f : R → R, x 7→ 2x − 1 for all x ∈ R.

Lemma 1. The sum of the transmit power p21 and p2a can be expressed as:

p21 + p2a =
1

h21
f
(

lac
21 + lac

2a
Bt3

)
+

(
1

h2a
− 1

h21

)
f
(

lac
2a

Bt3

)
(31)

Proof. See Appendix A.

To address the non-convexity of constraints (21) and (22), we introduce auxiliary
variable ψ1 and ψ2, where ψ1 = t2β1 ,ψ2 = t1β2 and lac

2 = lac
21 + lac

2a. Additionally, based
on Lemma 1, we replace the decision variables p with l and introduce decision variables
set ψ = {ψ1, ψ2}. We define l′ = [lb

21, lb
1a, lac

2 , lac
2a, lac

1a] as the amount of task processing
locally and offloading for both MD1 and MD2. Meanwhile, to simplify the mathematical
expression, we denote some constants C1 ,C2,C3. C1 =

(
1

h2a
− 1

h21

)
, C2 = κ2ϕ2( f2)

2 and

C3 = κ1ϕ1( f1)
2. Therefore, problem P1 can be transformed into problem P2, as follows:

(P2) : min
t,ψ,l′

P0(t0 + t1 + t2) (32)

s.t. t0 + t1 + t2 + t3 + t4 ≤ T (33)

Pb
2 t1 +

t3

h21
f
(

lac
2

Bt3

)
+ t3C1 f

(
lac
2a

Bt3

)
+ C2(L2 − lb

21 − lac
2 ) (34)

≤ µh2P0(t0 + t2 + t1 − ψ2)

Pb
1 t2 +

t4

h1a
f
(

lac
1a

Bt4

)
+ C3(L1 + lb

21 + lac
2 − lac

2a − lb
1a − lac

1a) (35)

≤ µh1P0(t0 + t2 + t1 − ψ1)

1
h21

f
(

lac
2

Bt3

)
+ C1 f

(
lac
2a

Bt3

)
≤ Pmax

2 (36)

1
h1a

f
(

lac
1a

Bt4

)
≤ Pmax

1 (37)

lac
21 + lb

2a ≤ lb
1a + lac

1a (38)

(L2 − lb
21 − lac

2 )ϕ2

f2
≤ T − t0 (39)

(L1 + lb
21 + lac

2 − lac
2a − lb

1a − lac
1a)ϕ1

f1
≤ T − t0 (40)

0 ≤ ψ1 ≤ t2, 0 ≤ ψ2 ≤ t1 and (28) (41)

Problem P2 can be proven to be a convex optimization problem according to the following
Lemma.

Lemma 2. Problem P2 is convex and can be efficiently solved using optimization tools such as
CVX.

Proof. See Appendix B.

In summary, the process of convexifying Problem P1 is shown in Figure 2. By solving
the convex optimization problem P2, we can obtain the global optimal solution to the
original problem.
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Figure 2. Flowchart for convexification of Problem P1.

Besides, by using the Lagrange multiplier technique, we derive valuable insights into
the characteristics of the optimal solution with the following theorem.

Theorem 1. Given non-negative Lagrange multipliers λi, i = 1, 2, . . . , 10, the optimal power
allocation l =

[
lac
2 , lac

2a, łac
1a
]

must fulfill certain conditions:

lac,∗
2 =


0, if t3 = 0[

Bt3 log2

(
−λ7

ϕ2
f2

Bt3−λ2C2+λ3C3−λ8
ϕ1
f1

Bt3

λ2
t3

h21
+λ4

1
h21

ln 2

)]+
, others

(42)

lac,∗
2a =


0, if t3 = 0[

Bt3 log2

(
−λ3C3−λ8

ϕ1
f1

Bt3

λ2C1
t3

h21
+λ4C1

1
h21

ln 2

)]+
, others

(43)

łac,∗
1a =


0, if t4 = 0[

Bt4 log2

(
−λ3C3−λ8

ϕ1
f1

Bt4

λ3
t4

h1a
+λ5

1
h1a

ln 2

)]+
, others

(44)

Proof. See Appendix C.

According to this theorem, we can deduce that in the process of wireless radio fre-
quency energy transfer, increasing the value of B will motivate MD2 and MD1 entities to
offload data more, which correspondingly reduces the computational tasks they perform lo-
cally. Specifically, when −λ7

ϕ2
f2

Bt3 − λ2C2 + λ3C3 − λ8
ϕ1
f1

Bt3 > λ2
t3

h21
+ λ4

1
h21

ln 2, the MD2

is more inclined to offload tasks through the AT mode. For the MD1, a similar conclusion
can be drawn.

The process of solving the original TEP problem, denoted as (P1), is encapsulated
within Algorithm 1.
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Algorithm 1: User-Assisted Dynamic Resource Allocation Algorithm.
Input: the task arrical Li; the channel gain {hi, g12, g2a}.

1 Variable substitution is conducted based on (29), (30), (A3);
2 Calculate C1, C2, C3 based on P1.1.1;
3 cvx_begin
4 Minimize P2
5 Subject to (33)–(41)
6 cvx_end
7 Calculate β∗ based on ψ1 = t2β1 ,ψ2 = t1β2;
8 Calculate p∗ based on (29), (30), (A3);

Output: Obtain the optimal resource allocation {t∗, p∗, β∗, l∗};

Algorithm Complexity Analysis

After transformation, the non-convex problem P1 is converted into a convex optimiza-
tion problem P2, which involves a total of 12 variables. P2 can be solved using existing
mature convex optimization algorithms, such as the interior-point method, with a time
complexity of O(n3.5 log(1/ϵ)), where n is the number of decision variables. For P2, due
to its small scale of variables, it can be solved quickly. Here, we use the open-source CVX
toolbox for solving it.

In practical applications, our algorithm can be implemented using a master–slave
architecture. The MEC server periodically gathers data regarding the computational tasks’
size from the MD nodes and the wireless network’s channel status, which are used as
inputs for problem P2. CVX is then employed to determine the most efficient time slicing
and resource allocation strategy. Given the small size of this data, it has a negligible effect
on network traffic. Furthermore, the MEC server can swiftly solve problem P2 due to
the limited number of decision variables, ensuring that regular data processing is not
interrupted. The operation of the algorithm does not require any additional conditions
or data.

6. Simulation Results

In this section, we assess the performance of our proposed scheme through compre-
hensive numerical simulations. Our high-performance experimental setup leverages a
2.10 GHz Intel(R) Xeon(R) Silver 4116 CPU with 48 cores, paired with two GeForce RTX
4070 GPUs, to ensure efficient simulation processing. This configuration is complemented
by 64 GB of RAM, which is essential for handling the memory-intensive tasks of our sim-
ulations. The software environment consists of Python 3.12, integrated with the convex
optimization library CVXPY 1.5, all running on an Ubuntu 22.04 LTS operating system. We
define the following parameters: Ad for antenna gain, fc for carrier frequency, de for the
path loss exponent, and di for the distance between nodes. We employ a free-space path loss

model to simulate signal propagation, with the average channel gain h = Ad(
3 × 108

4π fcdi
)de .

Additionally, we incorporate a Rayleigh fading model to account for channel gains. The
simulation parameters are summarized in Table 2 [6].

To verify the performance of our proposed algorithm, we consider the following three
representative benchmarks:

(1) UC With NOMA scheme [32]: By introducing NOMA technology without Back-
Com, MD1 offloads tasks to MD2 and HAP simultaneously.

(2) UC with BackCom scheme [17]: Users opt to complete computational tasks exclu-
sively via the BackCom mode. Specifically, the HAP continuously broadcasts RF energy to
the users throughout the time slot.

(3) Integrated BackCom and NOMA Without UC scheme [37]: The remote users di-
rectly offload computation tasks to the MEC server without the assistance of the nearby node.
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Table 2. Simulation parameters.

Symbol Value

Transmit power of the AP P0 1 W
Bandwidth W 1.2 MHz
Noise power σ2 10−3 W
The circuit consumption of the BackCom pba

1 and pba
2 0.01 W

The distance between MD1, MD2 and HAP 130 m, 180 m
The distance between MD1 and MD2 80 m
CPU frequency of MD1 f1 250 MHz
CPU cycles to compute 1 bit task of MD1 ϕ1 250 cycles/bit
CPU frequency of MD2 f2 250 MHz
CPU cycles to compute 1 bit task of MD2 ϕ2 150 cycles/bit
Equal computing efficiency parameter of MD1 κ1 10−8

Equal computing efficiency parameter of MD2 κ2 10−8

The antenna gain Ad 3
The carrier frequency fc 915 Mhz
The path loss exponent de 3

Figure 3 illustrates the comparative analysis of energy consumption across different
schemes under various latency constraint T, with parameters defined as ζ = −20 dB,
p0 = 1 W, and W = 1.2 MHz. The results indicate a consistent decline in energy consump-
tion for all four schemes, with our proposed algorithm demonstrating the lowest energy
expenditure at any task processing latency constraints. Our proposed algorithm outper-
forms the other three schemes by reducing energy consumption by 20%, 40%, and 40%,
respectively, when T = 1 s. From Figure 3, it can be observed that as the task execution de-
lay constraint becomes tighter, our scheme achieves greater energy savings. Our algorithm
outperforms the current state-of-the-art methods by approximately 8% under the same
network configuration. This improvement underscores the algorithm’s efficiency in energy
utilization, as a result of effectively integrating multiple communication technologies, such
as BackCom and NOMA.
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Figure 3. Energy consumption in different schemes versus the latency constraint T.

Figure 4 illustrates the amount of data processed by task offloading across various
schemes with the latency constraint T ranging from 1.0 s to 1.5 s. The proposed algorithm
is observed to consistently facilitate higher data offloading as the latency constraint T
increases. It can be observed that the gap in offloaded data between the proposed algo-
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rithm and the other schemes widens when the latency constraint T is small, highlighting
the algorithm’s robustness and effectiveness under time-sensitive conditions. This trend
indicates the algorithm’s adeptness at managing task offloading within tight time con-
straints, suggesting the capability to utilize constraint resources in real-life scenarios. In
contrast, the without UC scheme, in which MD1 directly offloads tasks to the HAP, suffers
from the poor channel condition between MD1 and HAP and exhibits the lowest data
offloading capability.
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Figure 4. Offloaded data in different schemes versus the latency constraint T.

Figure 5 illustrates the impact of input computation bits at MD1 on energy consump-
tion. It can be observed that our proposed algorithm achieves an average energy reduction
of approximately 30% compared to other benchmark schemes. Notably, as the input
computation bits escalate, the disparity in energy consumption between the proposed
algorithm and the other three schemes becomes more pronounced. This divergence can be
attributed to the algorithm’s ability to optimize resource allocation and leverage advanced
communication techniques, such as BackCom and NOMA, which become more beneficial
under higher computational input. This experiment underscores the robustness of our
proposed algorithm across various levels of input computation bits, suggesting its superior
adaptability in diverse scenarios.

Figure 6 illustrates the task offloading capabilities across four schemes. It is clear
that the proposed algorithm consistently achieves the largest amount of data processed by
task offloading, indicating its enhanced transmit capability. With an increase in the input
computation bits, the performance gap between the proposed scheme and the benchmark
schemes widens. The proposed algorithm demonstrates a notable advantage of 7%, 12%,
and 17% over the other schemes. This advantage can be attributed to the integration of
advanced communication techniques and the efficient allocation of resources. Furthermore,
at an input computation bit value of 2.4 Mbits, the proposed algorithm reaches its peak
performance, suggesting that an optimal balance has been achieved among the various
communication techniques employed.
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Figure 5. Energy consumption in different schemes versus input computation bits at MD2.
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Figure 6. Offloaded data in different schemes versus input computation bits at MD2.

Figure 7 compares the energy consumption of four different algorithms under varying
transmit power levels of the HAP, which in turn affects the energy harvested by MDs. It is
evident that the our proposed algorithm consistently exhibits the lowest energy consump-
tion of approximately 0.06 J across the entire spectrum of transmit power levels. The UC
with BackCom scheme exhibits slightly higher energy consumption attributable to its less
effective task offloading capability in the absence of NOMA’s assistance. Moreover, the UC
with NOMA and Integrated BackCom and NOMA without UC schemes demonstrates a
steady decrease in energy consumption as the transmit power increases. This is because
their restricted transmission modes cannot process enough tasks when energy is insuffi-
cient. This suggests that the proposed algorithm can adapt well to the variations in energy
supplies in different scenarios. The suboptimal performance of benchmark schemes also
indicates that the integration of BackCom and NOMA significantly enhances the energy
efficiency and robustness of the system.
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Figure 7. Energy consumption in different schemes versus transmit power p0 of HAP.

Figure 8 compares the offloaded data of four schemes under different transmit power
of the HAP. Notably, the proposed algorithm offloads largest amount of data whatever p0 is,
suggesting that MDs prefer to process tasks by task offloading. This is due to the strong task
offloading capability of the proposed algorithm, coming from the integrated communication
techniques. The UC with BackCom, without the NOMA technique, exhibits less favorable
performance, with the UC with BackCom and Integrated BackCom and NOMA performing
the worst. The Proposed UC with NOMA’s ability to maintain high offloaded data levels
even at lower power settings is particularly noteworthy. This indicates its robustness and
adaptability, enabling efficient data offloading even under constrained energy conditions.
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Figure 8. Offloaded data in different schemes versus transmit power p0 of HAP.

In Figure 9, we evaluate the energy consumption of the four schemes under different
offloading power constraint of MD1. It is evident that the proposed algorithm consis-
tently demonstrates the lowest energy consumption across the entire range of power
constraints, indicating its superior efficiency. Interestingly, at lower power constraints for
MD1, the without UC with integrated BackCom and AC scheme performs extremely poorly.
This underscores the critical role of user collaboration in energy-efficient task offloading.
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Meanwhile, the UC with BackCom scheme performs relatively better among benchmark
schemes, suggesting that BackCom technology can significantly enhance task offloading
efficiency when MD1’s power is constrained. Overall, this simulation highlights the benefits
of integrating multiple communication techniques, especially UC and BackCom, into the
proposed algorithm.
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Figure 9. Energy consumption in different schemes versus transmit power constraint Pmax
2 of MD2.

Figure 10 illustrates the energy consumption patterns under varying distances be-
tween MD1 and MD2 from 50 to 110 m. It is observed that the energy consumption for
the proposed scheme, as well as the schemes incorporating UC with NOMA and UC with
BackCom, all exhibit a decline as the distance grows. This decrease can be attributed to
the reduction in channel gain with distance, which in turn requires more time and higher
power to offload tasks, consequently increasing energy consumption. The scheme without
UC but with integrated BackCom and NOMA does not show variation with distance, as it
does not rely on task offloading between MD1 and MD2. This observation underscores
the practical deployment consideration that the proper choice of helper devices should be
maintained within an optimal range to prevent a sharp deterioration in network perfor-
mance. The analysis not only quantifies the impact of distance on energy consumption, but
also highlights the critical role of user cooperation in efficient network architectures.

Figure 11 evaluates the task offloading strategy from MD1 as the distance between
MD1 and MD2 varies. As the distance between MD1 and MD2 increases, offloading tasks
via UC to MD2 becomes less efficient, prompting MD1 to offload tasks directly to the
HAP rather than relying on UC. This observation indicates that the proposed algorithm
effectively adapts to network topological changes, such as the distance between mobile
devices. By strategically diverting offloaded tasks to the HAP when UC is less efficient,
the algorithm enhances overall network performance and minimizes energy consumption.
In conclusion, the offloading strategy illustrated in Figure 11 demonstrates the algorithm’s
adaptability and efficiency in managing data flow, underscoring its capability to enhance
network performance and energy efficiency in real-world scenarios.
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Figure 10. Energy consumption in different schemes versus the distance between MD1 and MD2.
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Figure 11. Offloading strategy with different distances between MD1 and MD2.

7. Conclusions

This paper explores the HAP transmission energy minimization problem in the WPT-
MEC network via user cooperative communication. We take into account the processing
delay constraints of computational tasks and leveraged NOMA and Backscatter tech-
nologies to enhance network transmission efficiency and energy utilization efficiency. In
our proposed scheme, the HAP provides power supply to users through WPT technol-
ogy, assisting two MD2 at different distances (near-end and far-end) in completing their
delay-sensitive tasks. We formalize the energy consumption minimization problem as
a non-convex optimization mathematical model and, through in-depth analysis of the
problem’s inherent structure, transform the original problem into a convex optimization
problem with only a few variables by introducing auxiliary variables and performing
variable substitution, which allows for rapid solution. Simulation results show that our
proposed scheme outperforms existing baseline schemes.

The optimization of our method lies in the carefully designed variable substitution
technique that converts the non-convex optimization problem into a convex one, result-
ing in high algorithmic solution efficiency, fast solution speed, and ease of deployment.
The limitation of our scheme is that it only considers the channel state of a single time slot,
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without accounting for dynamic wireless channel state variations and imperfect channel
state information. In future work, we plan to investigate energy consumption minimization
in dynamically changing network environments based on deep reinforcement learning
technology and expand our current model to scenarios with multiple MDs and multiple
helper nodes, thereby increasing the practicality and flexibility of our algorithm.
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Appendix A. Proof of Lemma 1

From Equation (15), we have:

p2a

1 + h2a p21
=

1
h2a

f
(

lac
2a

Bt3

)
(A1)

Substituting Equation (29) into (A1), we express p2a as:

p2a =
1

h2a
f
(

lac
2a

Bt3

)
+

1
h2a

f
(

lac
21

Bt3

)
f
(

lac
2a

Bt3

)
(A2)

Utilizing the identity f (x1) · f (x2) = f (x1 + x2)− f (x1)− f (x2), we can expand the
right hand size of (A3) as:

p2a =
1

h21
f
(

lac
21 + lac

2a
Bt3

)
− 1

h21
f
(

lac
21

Bt3

)
+

(
1

h2a
− 1

h21

)
f
(

lac
2a

Bt3

)
(A3)

By combining this result with Equation (29), the lemma is proven.

Appendix B. Proof of Lemma 2

First, the objective function is convex when P0 is given. The constraints (33), (38), (39),
and (40) are linear inequalities, which are inherently convex.

Next, consider constraint (34). The function f
(

lac
2
B

)
is convex, and its perspective

t3 f
(

lac
2

Bt3

)
is also convex with respect to the variables lac

2 and t3, as the perspective operation

preserves the convexity [41]. Similarly, the term t3C1 f
(

lac
2a

Bt3

)
is convex. Since the remaining

terms in constraint (34) are linear with respect to t1, lb
21, lac

2 , t0, t2, ψ2, the entire constraint
(34) is convex. The same reasoning applies to constraint (35), confirming its convexity.

For constraint (36), the convexity is less straightforward. However, by multiplying
both sides of the inequality by t3, we obtain:

t3
1

h21
f
(

lac
2

Bt3

)
+ t3C1 f

(
lac
2a

Bt3

)
≤ t3Pmax

2 (A4)

In this inequantion (A4), t3
1

h21
f
(

lac
2

Bt3

)
is convex with respect to lac

2 and t3, as it repre-

sents the perspective of f
(

lac
2

Bt3

)
. Similarly, t3C1 f

(
lac
2a

Bt3

)
is convex with respect to lac

2a and t3.
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The term t3Pmax
2 is linear in t3, making constraint (36) a convex inequality. Using the same

approach, we can confirm that constraint (37) is also convex.
Therefore, Problem P2 is proven to be convex.

Appendix C. Proof of Theorem 1

Let λi ≥ 0 for i = 1, 2, . . . , 10 represent the Lagrange multipliers associated with
the constraints. The Lagrangian function for problem (P1.1.1), formulated using these
multipliers, is given by:

L(t, ψ,l′) = P0(t0 + t1 + t2)

+ λ1[t0 + t1 + t2 + t3 + t4 − T]

+ λ2

[
Pb

2 t1 +
t3

h21
f
(

lac
2

Bt3

)
+ t3C1 f

(
lac
2a

Bt3

)
+ C2(L2 − lb

21 − lac
2 )− µh2P0(t0 + t2 + t1 − ψ2)

]
+ λ3

[
Pb

1 t2 +
t4

h1a
f
(

lac
1a

Bt4

)
+ C3(L1 + lb

21 + lac
2 − lac

2a − lb
1a − lac

1a)− µh1P0(t0 + t2 + t1 − ψ1)

]
+ λ4

[
1

h21
f
(

lac
2

Bt3

)
+ C1 f

(
lac
2a

Bt3

)
− Pmax

2

]
+ λ5

[
1

h1a
f
(

lac
1a

Bt4

)
− Pmax

1

]
+ λ6

[
lac
21 + lb

2a − lb
1a + lac

1a

]
+ λ7

[
(L2 − lb

21 − lac
2 )ϕ2

f2
− T − t0

]

+ λ8

[
(L1 + lb

21 + lac
2 − lac

2a − lb
1a − lac

1a)ϕ1

f1
− T − t0

]
+ λ9[ψ1 − t2]

+ λ10[ψ2 − t1] (A5)

We can use the first-order optimality conditions. Taking the derivative of the La-
grangian function yields:

lac,∗
2 =

Bt3 log2

−λ7
ϕ2
f2

Bt3 − λ2C2 + λ3C3 − λ8
ϕ1
f1

Bt3

λ2
t3

h21
+ λ4

1
h21

ln 2

+, (A6)

lac,∗
2a =

Bt3 log2

 −λ3C3 − λ8
ϕ1
f1

Bt3

λ2C1
t3

h21
+ λ4C1

1
h21

ln 2

+, (A7)

łac,∗
1a =

Bt4 log2

−λ3C3 − λ8
ϕ1
f1

Bt4

λ3
t4

h1a
+ λ5

1
h1a

ln 2

+, (A8)

By analyzing the first-order partial derivatives, we can determine the essential condi-
tions for an optimal solution. Utilizing the connections between the auxiliary variables and
the primary variables allows us to formulate the theorem.
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