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Abstract: Uncrystallized indium-gallium-zinc-oxide (InGaZnO) thin-film transistors (TFTs) combined
with an aluminum nitride (AlN) dielectric have been used to promote performance and steadiness.
However, the high deposition temperature of AlN films limits their application in InGaZnO flexi-
ble TFTs. In this work, AlN layers were deposited via low-temperature plasma-enhanced atomic
layer deposition (PEALD), and InGaZnO films were fabricated via high-power impulse magnetron
sputtering (HIPIMS). The band alignment of the AlN/InGaZnO heterojunction was studied using
the X-ray photoemission spectrum and ultraviolet visible transmittance spectrum. It was found that
the AlN/InGaZnO system exhibited a staggered band alignment with a valence band offset ∆Ev of
−1.25 ± 0.05 eV and a conduction band offset ∆Ec of 4.01 ± 0.05 eV. The results imply that PEALD
AlN could be more useful for surface passivation than a gate dielectric to promote InGaZnO device
reliability under atmospheric exposure.

Keywords: indium-gallium-zinc-oxide; band offset; X-ray photoelectron spectroscopy; aluminum
nitride; high-power impulse magnetron sputtering (HIPIMS)

1. Introduction

Indium-gallium-zinc-oxide (InGaZnO, or IGZO) has been deemed as one of the promis-
ing channel candidates for flexible thin-film transistors (TFTs) due to its high mobility,
excellent optical transparency, and the capacity to grow on flexible substrates at low tem-
peratures with decent quality [1–3]. Meanwhile, IGZO FETs have also made impressive
progress in emerging technologies, such as flat planer displays [2], flexible circuits [4,5],
and electronic paper [6]. In spite of the great number of studies on InGaZnO TFTs, their low
operation voltage and long-term reliability are issues that still need to be explored [7–10].
These issues have been attributed to the charge trapping at IGZO/dielectric interface or
the conductivity modifications of the IGZO channel due to the exposure to the hydrogen or
water in the atmosphere [7–10]. The high-k gate dielectric was one of the effective solutions
for reducing the threshold voltage and subthreshold swing, which promote capacitance
coupling at the IGZO/dielectric interface [3,8]. However, the small bandgap (Eg) of the
high-k dielectric results in an insufficient band offset (∆E) at the InGaZnO/dielectric in-
terface, which is unable to prevent the injection of electrons and holes [10–12]. There are
many reported studies on the band alignments between InGaZnO and insulators, such
as SiO2 [13], Al2O3 [14], HfO2 [15], HfSiO [11], HfTiO [16], HfLaO [17], ZrSiOx [18], and
Sc2O3 [8]. Even if a specific dielectric is unsuitable for the gate of IGZO TFTs, it may
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play role in surface passivation, which is vital for IGZO TFTs due to their reliability being
hindered by exposure to the hydrogen or water in the atmosphere [10,19].

To the dielectrics mentioned above, aluminum nitride (AlN) is a viable alternative solu-
tion due to its high dielectric constant (~9.5 [20]) and Eg (~6.2 eV) [21], superior thermal con-
ductivity of ~17 W·m−1K−1 [22], low thermal expansion coefficient (~5.3 × 10−6 K−1 [23]),
and suitable thermal stability [24]. InGaZnO TFTs using AlN have been reported and
achieved acceptable device performance with a reduced self-heating effect [25,26]. How-
ever, to the best of our knowledge, no study has been conducted on the band offsets in the
AlN/InGaZnO heterojunction. In this work, by using X-ray photoelectron spectroscopy,
the band offsets in the InGaZnO/AlN heterojunction were analyzed, and InGaZnO and
AlN film were fabricated by high-power impulse magnetron sputtering (HIPIMS) and
plasma-enhanced atomic layer deposition (PEALD), respectively.

2. Materials and Methods
2.1. Fabrication of Samples

The InGaZnO films were prepared with a physical vapor deposition system (Ljuhv
SP122I, Jhubei city, Taiwan, China). The system at our institute has been used to deposit
TCO films such as IGZO and ITO in previous studies [7,27–29]. In this work, InGaZnO was
deposited by HIPIMS on c-plane sapphire wafers (α-Al2O3 (0001)) and quartz substrates
based in a ceramic target of InGaZnO (99.99% purity, In2O3:Ga2O3:ZnO = 1:1:1). The radio
frequency (RF) power and operating pressure were, respectively, 50 W and 40 mTorr, in a
pure Ar ambient environment. Further deposition details of InGaZnO can be found in a
previous work [7]. Prior to deposition, the wafers were divided into 10 mm × 10 mm pieces,
which were ultrasonically washed with normal organic cleaners (acetone, isopropanol, and
ultrapure water for 10 min each). HIPIMS-InGaZnO films exhibited an amorphous state
according to X-ray diffraction [7]. For uncrystallized InGaZnO films, high-temperature
deposition or annealing are improper because InGaZnO is widely used for low-temperature
applications with wafers like plastic and tape [7].

In this work, a Beneq TFS-200 reactor and the PEALD technique were utilized to grow
AlN at 185 ◦C. Given the requirements for a flexible thin-film transistor as well as the AlN
film quality, a low deposition temperature was used in this work, which has been reported
in the literature [30]. The precursors were trimethylaluminum (TMA) and ammonia (NH3),
using Al and N sources, respectively. Further AlN deposition details can be found in the
literature [30]. In this work, three samples (1#–3#) were used for XPS experiments: (1) 100
nm-thick IGZO on sapphire; (2) 3 nm-thick AlN grown on IGZO; (3) 40 nm-thick AlN
grown on IGZO.

2.2. Characterizations

A mature method [31] was used to calculate the valence band offset (∆Ec) and conduc-
tion band offset (∆Ev) based in X-ray photoelectron spectroscopy (XPS) [3,8,17,18,21,31]. A
Thermo ESCALAB 250 X-ray photoelectron spectrometer with a monochromatic Al -Kα

X-ray source (energy 1486.6 eV) was used for ex situ XPS measurements. The X-ray source
possessed a power of 300W, and the detection region was set was a spot with a radius of 650
µm and a take-off angle of 90◦. XPS survey scans with 1.0 eV/step were used to detect the
chemical state of samples 1–3#. High resolution scans with 0.05 eV/step and pass energy
of 30 eV were utilized to evaluate the binding energy of specific elements. In addition,
the valence band scans shared the same settings as the high-resolution scans. It should be
noted that the whole XPS spectra were corrected using the C 1s peak (using ~284.8 eV),
which stems from surface carbon contamination to compensate for the charging effect [3].
A 30 s Ar ion sputtering was used for sample 3#, which was followed immediately by XPS
measurements to eliminate the potential influence coming from the atmosphere, water
vapor, etc. The surface micromorphologies of the fabricated films were detected with a
Bruker Dimension Icon atomic force microscope (AFM). The Eg of AlN was evaluated using
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the sample fabricated on quartz using the UV–visible transmittance spectrum (JASCO,
wavelength range of 180–600 nm).

3. Results and Discussion
3.1. Chemical Bonding State Analysis

XPS survey scans with an 89.45 eV pass energy were obtained to analyze the different
chemical composition states in the InGaZnO, 3 nm AlN on InGaZnO, and 40 nm AlN films.
The O 1s, Ga 2p, C 1s, Zn 2p, N 1s, Al 2p, In 3p, In 3d, and In 4d peaks were seen in the
survey spectra of samples 1#–3# (Figure 1), which originated from In, Zn, Ga, Al, C, and O.
Table 1 provides the atomic ratios of the different elements in the targets and samples 1#
and 3#. Specifically, for the HIPIMS InGaZnO films, the Ga ratio and Zn ratio were higher
than those in the target materials, and the In ratio and O ratio were lower than those in the
target materials, which is similar with reported HIPIMS InGaZnO films [6].
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Figure 1. XPS survey scans of samples 1#–3# (IGZO, thin AlN, thick AlN). 

Table 1. Relative atomic ratios of the specific elements in IGZO targets, samples 1# and 3#. 

Sample In (%) Zn (%) Ga (%) O (%) Al (%) N (%) 
IGZO Target 16.67 8.33 16.67 58.33 NR NR 

1# 14.34 12.44 17.11 48.67 7.44 NR 
3# NR NR NR 1.63 51.15 47.22 

Firstly, the high Zn ratio could be attributed to the much larger sputtering yield (Zn: 
3.68 [6]), which accelerated the Zn sputtering off from the target to the substrate surface 
and increased the Zn percentage in the InGaZnO films. Secondly, compared with Ga, In 
experienced more collision scattering during sputtering due to its longer mean free path 
[6]. In addition, the actual Al: N ratio of sample 3# (~1.08:1) was different from the ideal 
ratio (1:1). It may have resulted from the high hygroscopicity of Al2O3 (Al-O) and sample 
3# being exposed to atmospheric water vapor or hydrogen before the XPS measurements. 
In addition, the surface morphology of InGaZnO and AlN is shown in Figure 2. Both the 
InGaZnO and AlN films had a flat surface with a relatively low root mean square (RMS) 
roughness of 1.02 and 0.32 nm, respectively. A flat surface is beneficial for suppressing 
surface recombination and leakage current, which thus increase the performance of IGZO 
TFT devices. 

Figure 1. XPS survey scans of samples 1#–3# (IGZO, thin AlN, thick AlN).

Table 1. Relative atomic ratios of the specific elements in IGZO targets, samples 1# and 3#.

Sample In (%) Zn (%) Ga (%) O (%) Al (%) N (%)

IGZO
Target 16.67 8.33 16.67 58.33 NR NR

1# 14.34 12.44 17.11 48.67 7.44 NR
3# NR NR NR 1.63 51.15 47.22

Firstly, the high Zn ratio could be attributed to the much larger sputtering yield
(Zn: 3.68 [6]), which accelerated the Zn sputtering off from the target to the substrate
surface and increased the Zn percentage in the InGaZnO films. Secondly, compared with
Ga, In experienced more collision scattering during sputtering due to its longer mean
free path [6]. In addition, the actual Al: N ratio of sample 3# (~1.08:1) was different
from the ideal ratio (1:1). It may have resulted from the high hygroscopicity of Al2O3
(Al-O) and sample 3# being exposed to atmospheric water vapor or hydrogen before the
XPS measurements. In addition, the surface morphology of InGaZnO and AlN is shown
in Figure 2. Both the InGaZnO and AlN films had a flat surface with a relatively low
root mean square (RMS) roughness of 1.02 and 0.32 nm, respectively. A flat surface is
beneficial for suppressing surface recombination and leakage current, which thus increase
the performance of IGZO TFT devices.
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Figure 2. The 2D and 3D AFM plots of InGaZnO (a,b), AlN films (c,d).

3.2. Energy Gap of AlN, IGZO

The Eg of the InGaZnO and AlN was, respectively, evaluated using the XPS O 1s CL
spectrum and ultraviolet-to-visible transmittance spectrum. According to the O 1s spectra
in Figure 3, the Eg of InGaZnO and AlN was 3.42 and 6.18 ± 0.05 eV, respectively. As
shown in Figure 3a, the energy loss structure on the high- energy side was used to evaluate
the Eg of the InGaZnO films [32,33]. The measured value for IGZO is in agreement with the
reported values (~3.4–3.6 eV) [3,34,35] but is higher than in some reports (~3.2 eV) [8,18].
In addition, the Eg of the direct bandgap semiconductor AlN was extracted from the Tauc
plot ((αhν)2 vs. hν) based on the UV–visible transmittance spectrum, which is close to the
reported values (~6.2 eV [20,21,36–38]).

3.3. Band Alignment Analysis

Figure 4 shows the valence band spectra for the thick InGaZnO and AlN films, and the
valence band maximum (VBM) of InGaZnO and AlN is obtained (2.32 and 1.73 ± 0.05 eV,
respectively). The VBM values were extracted by linear extrapolation [8,16–18] based on
Figure 4, and the values are similar to those reported for sputtered InGaZnO [8,16–18] and
ALD AlN films [21,30].

Using the evaluation method proposed by Kraut et al. [31], the valence band offset
(∆Ev) of the AlN/InGaZnO heterojunction can be calculated as

∆Ev = (ECore − EVBM)InGaZnO − (ECore − EVBM)AlN
−(EInGaZnO

Core − EAlN
Core)AlN/InGaZnO

(1)

where Ecore and EVBM are, respectively, the core level (CL) positions and the VBM of these
bulk materials, combined with the CL difference of the thin AlN/InGaZnO film.
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According to Kraut’s method, we further measured the core-level spectra of samples
1#–3# to evaluate the actual band alignment and the corresponding band offsets (∆Ev and
∆Ec). The high-resolution core-level spectra are provided in Figure 5 for (a) InGaZnO VBM
with CLs and (b) AlN VBM with CLs, as well as in Figure 6 for the InGaZnO-AlN CLs.
Figures 5 and 6 were utilized to evaluate the specific CL peak positions. Table 2 exhibits
the extracted values; thus, the valence band offset ∆Ev with different CLs (Zn, Ga, O)
were calculated as −1.28, −1.19, and −1.28 ± 0.05 eV, respectively. The average ∆Ev of
AlN/InGaZnO was calculated as nearly −1.25 eV.
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Table 2. Summary of XPS data on IGZO, AlN, and AlN/IGZO samples. Peak position values and
VBM values are ± 0.05 eV.

1# Thick IGZO 3# Thick AlN 2# Thin AlN on IGZO
Valence Band

Offset
Average

∆Ev

Conduction
Band Offset

IGZO
Metal
Core

Metal
Core
Level

Metal
Core-IGZO

VBM

Al 2p
Core
Level

Al2p-AlN
VBM

∆CL
IGZO-AlN

Zn2p3 1021.74 1019.42
74.08 72.35

948.35 −1.28
−1.25

4.04

Ga2p3 1117.68 1115.36 1044.30 −1.19 3.95

In3d5 444.49 442.17 371.10 −1.28 4.04

Subsequently, the conduction band offset ∆Ec of AlN/IGZO was calculated to be 3.86,
3.87, and 3.92 ± 0.05 eV with different CLs (Zn, Ga, O) using the following equation [3,9–14]:

∆Ec = Eg(AlN)− Eg(IGZO)− ∆Ev (2)

Figure 7 exhibits the abbreviated band diagram and the complete band diagram
of the AlN/InGaZnO heterojunction. These results demonstrate that a staggered align-
ment (or type-II) existed at the AlN/InGaZnO heterojunction with an average ∆Ev of
−1.25 ± 0.05 eV and an average ∆Ec of 4.01 ± 0.05 eV. The PEALD AlN film had a large Eg
and ∆Ec but a negative ∆Ev, which could provide sufficient electron confinement combined
with undesirable hole confinement. These results imply that the PEALD AlN is not the
perfect candidate as a gate dielectric in InGaZnO TFTs because of the inability to confine
holes may result in serious device instability issues owing to the various hole defects
or acceptor traps. Additionally, AlN still plays a vital role in the surface passivation of
InGaZnO devices, which promotes device stability during atmospheric exposure [11,12].
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4. Conclusions

The AlN/InGaZnO heterojunction was found to have a staggered alignment. AlN
and InGaZnO were, respectively, produced via PEALD and HIPIMS. The corresponding
∆Ec and ∆Ev were evaluated to be 4.01 ± 0.05 eV and −1.25 ± 0.05 eV, respectively.
These results suggest that AlN could provide a sufficient barrier for electrons but cannot
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hinder holes on InGaZnO, which form the threshold voltage and cause the long-term
instability of InGaZnO TFTs. In addition, they indicate that AlN is more suitable for
surface passivation to prevent InGaZnO surfaces from exposure to atmosphere hydrogen
and oxygen. This accurate determination provides useful information for the further
development of transparent TFTs.
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