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Abstract: This paper presents a deep learning algorithm for channel estimation in 5G New Radio
(NR). The classical approach that uses neural networks for channel estimation requires more than
one stage to obtain the full channel matrix. First, the channel has to be constructed by the received
reference signal, and then, the precision is improved. In contrast, to reduce the computational cost,
the proposed neural network method generates the channel matrix from the information captured
from a few subcarriers along the slot. This information is extrapolated by applying the Least Square
technique only on the Demodulation Reference Signal (DMRS). The received DMRS placed in the
grid can be seen as a 2D low-resolution image and it is processed to generate the full channel matrix.
To reduce complexity in the hardware implementation, the convolutional neural network (CNN)
structure is selected. This solution is analyzed comparing the Mean Square Error (MSE) and the
computational cost with other deep learning-based channel estimation, as well as the traditional
channel estimation methods. It is demonstrated that the proposed neural network delivers substantial
complexity savings and favorable error performance. It reduces the computational cost by an order
of magnitude, and it has a maximum error discrepancy of 0.018 at 5 dB compared to Minimum Mean
Square Error (MMSE) channel estimation.

Keywords: channel estimation; computational cost; convolutional neural network; MIMO system;
MSE analysis

1. Introduction

Due to the high variability of the wireless channel, its estimation is recognized as
one of the most challenging techniques in many cellular use cases, such as Reconfigurable
Intelligent Surface (RIS), mmWaves, massive Multiple-Input Multiple-Output (MIMO),
and Open Radio Access Network (O-RAN) for the Radio Unit. To support more stringent
requirements of next generation systems, the traditional channel estimation techniques
must be improved, as they become a bottleneck due to high complexity or limited accu-
racy. Conventional methods, such as Least Square (LS) and Minimum Mean Square Error
(MMSE), follow mathematical models and are blind to the underlying characteristics of
the channels [1]. Commonly, LS offers the lowest accuracy in many scenarios, but has the
benefit of not requiring prior information. Thus, it is still considered a valuable choice
when implementation is considered [2]. Alternatively, MMSE minimizes the estimation
error, but has a higher computational cost requiring channel statistical information [3].

By virtue of the ability to adapt quickly in various environments, Deep Learning
(DL) techniques have gained interest in many aspects of wireless communication systems
showing promising results [4]. Since DL is purely data-driven, the networks are optimized
over large training datasets and can then provide very high levels of accuracy [5]. It has
been demonstrated that neural network-based channel estimation outperforms the MMSE
technique, as shown in [3,6]. In particular, ref. [6] demonstrates error improvement up to
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2 orders of magnitude compared to MMSE channel estimation, while [3] highlights the
efficacy with different Doppler frequencies in the transmission channel model. However, a
major concern regarding DL solutions is their effectiveness in real-world scenarios, and [7]
demonstrates the validity of orthogonal approximate message passing (OAMP) using DL
methods and how this approach can improve performance.

Generally, in the literature, the neural network design relies on one of three types of
Deep Neural Network (DNN) models, namely, Fully Connected (FCDNNs), Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Despite the fact that the
performance of the neural network can vary with the design, FCDNNs are usually applied
for classification problems, and are less suitable for channel estimation compared to the
CNNs and RNNs, as demonstrated in [8]. RNNs are able to keep track of the information
history, which is particularly suitable for channel estimation because the information on
one symbol is propagated along the slot, as shown in [9]. In particular, the Long Short-Term
Memory (LSTM), one of the most common RNNs, has shown the best results in terms of
bit error rate (BER) and mean square error (MSE). Whilst the LSTM-based architecture
reaches the lowest error rate, it unfortunately requires more complex operations. Therefore,
this architecture is not considered a good fit for hardware technology, such as System
on Chip (SoC) or Versal [10]. CNNs are traditionally used for image denoising. They
are therefore favorably applied to the noisy channel information in order to obtain a
clearer version as proved with ChannelNet, one of the first neural networks to be used for
channel estimation [11]. Two neural networks, specifically image super-resolution (SR) and
image restoration (IR), are used to enhance channel estimation, outperforming the MMSE
technique. Another approach is investigated in [12]; the overall proposal includes two
neural networks, but one in the user equipment (UE) and the other is in the base station (BS).
This setup enables the UE to gather Channel State Information, compressing it to minimize
transmission overhead, which results in improved MSE performance at the BS. Similar
in [13,14], it exploits the attention mechanism to focus on the critical features to yield the
best channel estimate. Indeed, in [13], first, multiple FCDNN-layers are used for frequency-
aware pilot design, and then a hybrid neural network is placed in the UE to acquire the
channel knowledge. The latter is composed of a FCDNN-layer per subcarrier, three CNN-
layers, and a Non-Local Attention module. Instead [14], proposes an encoder (FCDNN,
normalization layers, and an attention algorithm) and a convolutional architecture decoder
composed of seven layers.

Despite the advantages of an accurate estimated channel using neural networks, all of
the above cited works require different stages to acquire the full channel matrix (e.g., two
neural networks or one neural network and an interpolation along subcarriers). A different
solution is considered in [15] using one CNN, called fast super-resolution (FSRCNN). The
latter uses eight CNN-layers to produce the channel matrix from the pilot information.
However, the pilot information is dimensioned though zero-padding in the input, and
each layer uses multiple channels. These two factors lead to an unnecessary growth of the
complexity and possible overfitting.

All of the above considerations result in a critical computational cost when imple-
mented in hardware.

To address this concern, we propose a low-complexity CNN which treats the channel
information in the Demodulation Reference Signal (DMRS) as a low-resolution noisy 2D
image. The extrapolation of the full channel matrix is performed by gradually adjusting
the padding at each layer. Because the channel is described by complex values, this aspect
is handled by applying the neural network in the real and imaginary parts, separately. The
contributions of this paper are summarized as follows:

1. The CNN is used for increasing the resolution of the 2D channel image. Only one
CNN is implemented to generate the full channel grid from the DMRS.

2. The computational cost is significantly reduced compared to other channel
estimation techniques.
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3. The improvements of the proposed approach are demonstrated by virtue of analyzing
several DL-channel estimation techniques in terms of complexity and MSE in a 5G
NR system. The stage-by-stage complexity analysis offers a tool for assessing the
complexity of any neural network incorporating LSTM, FCDNN, or CNN layers.

This paper is organized as follows. In Section 2, the 5G NR system model is described,
and the challenges of channel estimation are discussed. In Section 3, the traditional channel
estimations are introduced while highlighting advantages and drawbacks. In Section 4,
the focus is on the DL-channel estimations with particular attention to the proposed low
complexity CNN. In order to evaluate all of the different channel estimation methods, the
computational costs are compared in Section 5, and MSE analysis in a 5G NR simulation is
presented in Section 6. Finally, the conclusions are drawn in Section 7.

2. 5G NR System Model

Considering the downlink in a single-cell environment, the waveforms are sent by
the transmitter equipped with M antennas over the channel, and a corrupted version of
them are collected by K antennas at the receiver. The propagation over the channel can
bring noise, attenuation, distortion, fading, and interference [16]. Mathematically, this is
Equation (1).

Y = H X + N (1)

where Y = (y1 y2 . . . yK)T ∈ CK×1, is the received signal in vector form. The chan-
nel environment is captured by H ∈ CK×M, the transmitted signal is represented by
X = (x1 x2 . . . xM)T ∈ CM×1, and N = (n1 n2 . . . nK)T ∈ CK×1 is the additive white Gaussian
noise in the transmission. The operator (. . .)T defines the transposed vector form.

Focusing on the 5G NR standard, before transmitting the signal, the information
is built along the Downlink Shared Channel (DL-SCH) and Physical Downlink Shared
Channel (PDSCH). The first stage involves error detection, segmentation, channel-coding
operations based on Low-Density Parity-Check (LDPC) technique, rate-matching, and
finally reconstructing the codeblocks into codewords [17]. The subsequent phase of the
downlink chain is the PDSCH. The codeword first becomes subject to a scrambling op-
eration and then undergoes symbol modulation. The symbols are mapped onto L layers.
The number of layers determines how many independent streams can be transmitted in
parallel, S = (s1 s2 . . . sL)T. Because every signal can be considered as the product of a linear
combination, the data layers are not directly transmitted, but they are input into the precoding
module. As a consequence, the input–output model can be rewritten as Equation (2).

Y = H PS + N (2)

where P ∈ CM×L identifies the precoding matrix and it is a function of the wireless channel H,
and S ∈ CL×1 is composed of the L layers.

Therefore, the transmission can be improved in the form of increased achievable ca-
pacity and interference cancellation defining an appropriate precoding matrix [18]. The
improvement depends on the technique selected to obtain the precoding matrix (e.g.,
Maximum-Ratio Transmission (MRT) Precoder, Zero Forcing (ZF) Precoder, and Diagonal-
ization, but all of them require knowledge of the channel [19].

The described model is well-known to explain the input–output relationship in the
system, and highlights the improvement given by channel knowledge and interference
cancellation. However, in practice, the signals involved in the transmission are multidimen-
sional, and every signal on each antenna is defined in the frequency and time domains, that
is, subcarriers and symbols. This structure composes the resource grid where one resource
element is defined as the intersection of one subcarrier with a symbol. Therefore, the real
dimensions of the channel are given by the number of subcarriers (Nsc), the number of
symbols (Nsymb), and the antennas at the receiver (K) and transmitter (M).

To collect the channel knowledge, the reference signal is allocated in some dedicated
resource elements across the transmitted grid. In the 5G NR standard, the reference signal
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is the DM-RS. The DM-RS provides high flexibility in the transmission configuration to
cater to different deployment scenarios. This is possible thanks to multiple configurations
in the resource grid. A first classification can be done considering the mapping type in
the time domain. For mapping type A, the first DM-RS is located in symbol 3 or 4 of the
slot regardless of where the data transmission starts, while mapping type B places the
reference signal in the first symbol of the data allocation. In case of rapid change of the
channel, additional reference symbols are included in the resource grid in order to ensure
an accurate channel estimation. It is possible to configure a double DM-RS structure which
supports up to four reference-signal instances per slot. This flexibility is mirrored also in
the frequency domain, where two different types of the reference signals can be configured.
Type 1 consists of mapping up to four orthogonal signals using a single-symbol DM-RS and
up to eight orthogonal reference signals using the double-symbol DM-RS. In type 2, the
maximum allowed numbers are six and twelve, respectively. In order to ensure an accurate
estimation of the resource grid in both domains for the channel, the two configurations can
be combined [20]. Some of the possible combinations are illustrated in Figure 1.
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At the receiver, the DM-RS location in frequency and time is communicated by the
Downlink Control Information (DCI). The comparison between the received reference
signal and the known reference signal generates the channel knowledge for specific resource
elements. Using the channel estimation module, this knowledge is expanded and applied
to the whole resource grid, generating the channel matrix. Despite the working principle
being straightforward, the channel estimation is one of the most complex modules to be
implemented due to variability of the channel over time and frequency [21].

3. Traditional Channel Estimation Methods

The most common channel estimation techniques are LS and MMSE. Both of these
methods apply mathematical expressions to compute a closed form equation of the channel
matrix using different cost functions [2]. The aim of the LS estimator is to minimize the
square distance between the received and the reference signal, and uses Equation (3).

JLS
(
Ĥ
)
= ∥Y − XĤ∥2 (3)
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It leads to the multiplication of the pseudo-inverse of the transmitted signal, X ∈ CM×1,
by the received signal, Y ∈ CK×1, as in Equation (4).

ĤLS = (XHX)−1XHY (4)

where the term XH is the transposed transmitted signal. The outcome is the estimated
channel for each subcarrier, ĤLS ∈ CK×M.

Once the channel for specific elements in the resource grid is calculated, the informa-
tion is interpolated in both the frequency and time domains to gain the whole channel
knowledge. This technique is the most convenient in terms of complexity, and for this
reason, it is still widely used. However, the accuracy of this method is strongly related
to the signal-to-noise ratio (SNR) at the receiver [2,21]. In order to reduce the error and
consider the degradation due to noise and spatial correlation, the MMSE includes the
statistical information in the channel estimation.

In particular, MMSE aims is to minimize the error between the channel and the LS
estimation, expressed by Equation (5).

JMMSE
(
Ĥ
)
= E

{
∥H − ĤLS∥2

}
(5)

This leads to the closed form Equation (6) for channel estimation.

ĤMMSE = RHĤ

(
RHH +

σ2
n

σ2
x

I
)−1

ĤLS (6)

where RHĤ ∈ CK×K is the cross-correlation matrix between the exact channel and the
temporary channel estimated in the frequency domain, while the RHH is the autocorrelation
of the exact channel. The terms σ2

n and σ2
x take into account the variance of the noise and the

transmitted signal, respectively. The achievable performance is much higher than the LS
technique. However, the second-order statistical parameters are highly demanding in terms
of computational cost, and they are hardly accurate in a real system with a fast-varying
environment [2,21,22].

4. DL-Channel Estimation

As detailed in the previous section, the LS and MMSE are the most common solutions
for channel estimation, but both have associated limitations: LS lacks accuracy, while MMSE
has high complexity. In light of hardware implementation, both aspects are critical. Addi-
tionally, the wireless input–output relationship could be affected by non-linear phenomena,
which could potentially diminish the effectiveness of conventional methods [23].

In this vision, neural networks can learn quickly how to deal with different environ-
ments being unchained by mathematical equations. This is achievable because a large
dataset can be generated simulating all the possible scenarios, and the neural network
learns through offline training.

The classic neural network is able to learn thanks to the neurons present at each layer.
Indeed, generally, the classic DNN consists of multiple layers, and at each layer, new useful
data can be extrapolated. The gained information across layers depends on the type of
DNN used. The most promising neural network structures for the channel estimation
application presented in the literature are the FCDNN, the CNN, and the LSTM cells neural
network. The LSTM is particularly popular in wireless applications because it is capable
of building long-term memory associated with the data. Generally, these consist of fully
connected layers composed by LSTM cells, as shown in Figure 2.
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Figure 2. The LSTM layer.

Each LSTM cell has neurons which apply sigmoids or the hyperbolic tangents. Due to
the complex functions in the neurons, a hardware implementation is challenging. Instead,
more hardware-friendly functions are applied in the FCDNN and CNN neurons. The core
function of the neuron in FCDNN is a weighted-sum, and every neuron of each layer is
mapped to the subsequential layer, as shown in Figure 3 [24].
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Figure 3. Example of FCDNN with two hidden layers.

Instead, the core function of the CNN is a 3-D Multiply-Accumulation (MACs) and its
layers are sparsely connected. Given the dense connectivity among the layers, FCDNNs
result in high complexity and memory requirements to store the needed parameters (i.e.,
weights and biases). When FCDNNs must either process high-dimensional data or consist
of many hidden layers, their complexity becomes problematic. This issue is overcome by
the CNN truncating some connections, thus alleviating the amount of operations to be
performed. In addition, when some parameters are shared among different connections,
the memory demand is lowered. This works well with images, where the locality of data is
essential to extract useful features/relationships from pixels.

The CNN is able to extract and move local information from one layer to another using
multiple feature maps (fmaps).

Consequently, the dimension of the current layer depends on the features of the
previous layer, where the planar section is defined with the height (MH) and width (MW)
of the previously extracted fmaps, and the depth is given by the number of filters (MC), as
shown in Figure 4.
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Figure 4. Example of a convolutional layer having MC = 3, KH = KW = 3, NC = 6. The yellow volume
refers to the input neurons, while the light green volume refers to the output neurons. Accordingly,
the orange block is the input sliding window, while the green block indicates the output neurons
interested by that window.

At each layer, the filters extract multiple features from the input by spanning the
current fmap with a sliding window. This window comprises KH × KW neurons, which are
associated with learnable weights, and each window performs convolutions in the local
region of the current fmap. At the end of this process, the outcome of each filter corresponds
to a new fmap (NH × NW). The set of all the calculated fmaps in the current layer is going to
be the depth of the next layer (NC). Once all the fmaps have been processed, the planar size
generated for each CONV layer is given by the following Equation (7)

NH(W) =
MH(W) − KH(W) + 2PH(W)

SH(W)
+ 1 (7)

where PH(W) is the row (column) padding size and SH(W) is the row (column) stride. The
padding size indicates the number of additional rows and columns added at the borders
of the input fmaps (e.g., by using zero values) to extend the sizes of the output fmaps. The
stride refers to the distance between adjacent sliding windows.

Proposed Convolutional Neural Network

Following the previous considerations among the pertinent neural network models,
the need for lower computational cost and simpler operations suggests focusing on the
convolutional neural network. However, the configuration of a CNN structure can make a
substantial difference, as there are several degrees of freedom that can be explored before
disqualifying a specific structure, since the complexity and the accuracy of a neural network
varies with the parameters of a specific application. For example, a neural network can
have a simple structure, but this could be highly dependent on the dimension of the input,
and to achieve a certain level of accuracy, the input size has to increase. Therefore, a
more complex neural network, in which computational cost varies less with the input,
could be the preferred choice. In light of the above, the choice of the CNN structure is not
enough to guarantee favorable characteristics, but all the parameters involved in the system
play a significant role. In the literature, the DL-channel estimation is used to improve the
outcomes of the LS technique. In [3,8], this resulted in performing the LS calculations only
on the reference signal and applying the neural network on the outcome. This increases the
accuracy of the estimated channel in a few subcarriers generating a partial outcome. The
latter is, then, interpolated across the subcarriers to obtain the full channel matrix. In other
designs (e.g., [3,8,11]), the interpolation is a preliminary or middle stage of the channel
estimation process using the neural network.
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Unlike previous art, our proposal exploits the CNN to: (a) assist the channel estimation
of a preliminary LS stage on the reference symbols only; (b) avoid the interpolation stage;
(c) completely leverage only one CNN for the estimation of the full channel matrix. The
proposed architecture is illustrated in Figure 5.
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The estimation of the channel matrix, H, is arranged as a 2-D image having NSC
rows and NOFDM columns, which are the number of subcarriers and symbols, respectively.
Since each value is a complex number, it is split into its real and imaginary parts, thus
composing two different images, which are provided to the CNN in a parallel manner. In
this application, the full channel grid is denoted with NSC = 288 and NOFDM = 14, but only
the DMRS resource elements are provided as input to the network (NSC = 288, NOFDM = 3).

In the first layer, the symmetric padding is used to increase the horizontal size from
3 to 7. The same process is applied in the second and fifth layers, while the third and the
fourth layers are classic convolutional layers, and the output has the same dimension of the
input. An activation function follows each layer: the hyperbolic tangent (tanh) is applied
after the first three layers, while the Rectified Linear Unit (ReLU) is used after the fourth
and fifth layers. At the end, this neural network structure provides the full channel matrix
as an output. To the best knowledge of the authors, this is the first time where the CNN is
used to increase the resolution of the input without additional processing. Another novelty
in the structure is related to the number of channels per layer. Considering the simplicity
of an image which characterizes the estimated channel, the enormous amount of channels
per layer proposed in the literature is not needed. This can show signs of overfitting in
the networks, especially when the amount of training data is limited. Additionally, fewer
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channels translate in less data to store and process, which reduces the memory requirements
and quickens the training process.

Every design choice of the proposed CNN is a strategic decision aimed at balancing
the model’s performance, computational efficiency, and resource constraints for practical
real-world applications. This was achieved by a combination of empirical testing and
insights from relevant prior research. Each parameter involved in the neural network,
such as dimension of the kernel, padding, and number of channels, was tuned at each
layer. This allowed us to notice that it is more advantageous in term of accuracy to
include larger kernels in the first layers rather than later ones. Instead, the number of
channels was identified as a parameter that could be minimized to reduce computational
costs. This is due to the fact that the channel, seen as an image, does not have highly
detailed information.

A similar investigation was conducted for the padding method and the location of the
size increments. Three different types of padding methods were considered: replication
of the edges, zero-padding, and symmetric padding. The latter result was more effective
thanks to propagation of the DMRS structure in the resource grid, while the location of the
size increment was found to be more effective when placed at the beginning of the network.

In order to assess the advantages of this model, two additional CNN structures with
pre-interpolation stages have been implemented. These two architectures are going to differ
in the number of layers; one is composed of three layers while the other is designed with
six layers. Increasing the number of layers should increase the accuracy, compromising the
computational cost, giving good benchmarks in the subsequential analysis. An illustrative
comparison is also included in Figure 6, where Figure 6a describes the traditional approach
using interpolation, and Figure 6b shows in detail all of the settings at each layer in the
proposed CNN.

The model reported in Figure 6a receives the preliminary estimation provided by LS
and the results are interpolated, increasing the size of the input from 288 × 3 to 288 × 14.
The Input Image Layer forwards the input image to the first CONV Layer, which adopts
3-D filters with planar sizes of 9 × 9. Padding sizes are set to PH = PW = 4 in order to
preserve the sizes of fmaps. A sequence of L–2 CONV Layers, with L being the number
of layers, is stacked throughout the model. Each of them consists of several filters with
5 × 5 planar sizes. Moreover, in this case, the sizes of the generated fmaps are preserved by
setting PH = PW = 2. Finally, the last CONV Layer performs the remaining computations
to generate the estimated channel. It is worth underlining that the stride SH = SW = 1
throughout the CNN and the Rectified Linear Unit are used as non-linear activation.

The model reported in Figure 6b receives the original symbols after application of LS
without an interpolation stage (288 × 3). The Input Image Layer forwards the input image
to the first CONV Layer, which adopts 3-D filters having planar sizes 5 × 5. In this scenario,
CONV layers are responsible for progressively increasing the size of input symbols to
build the full-size channel grid. To reach this goal, the padding sizes are tuned in each
layer. In this case, PH = 2 allows the number of subcarriers to be kept unchanged, while
PW = 4 allows the size NOFDM to grow from 3 to 7. The second CONV layer adopts 9 × 9
filters, which lead to 288 × 13 planar representations. The last three CONV layers, having
KH = KW = 5, extract further features from internal data and specifically the fifth layer
increases the size from 13 to 15. At the end, a Resize layer is used to crop 1 column to meet
the desired number of OFDM symbols (288 × 14).

In order to robustly estimate the channel and adjust the weights of the network for
this application, the CNNs are trained offline using an image-to-image regression. At each
iteration, the training data are generated varying the channel profile, Doppler effect, delay
spread, and SNR value, in order to consider a wide range of environmental 5G scenarios.
Each value associated to each parameter is randomly selected from the predefined valid
range, as shown in Table 1.
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Table 1. Configurable parameters in the neural network training.

Parameters Range

Channel profiles TDL-A, TDL-B, TDL-C, TDL-D, TDL-E
Doppler effect 20–200 Hz
Delay spread 100–300 ns

SNR levels −5 to 15 dB

For each iteration of training, the predicted image is compared to the perfect channel
estimation using the loss function reported in Equation (8).

loss =
1
2

OH×OW×OC

∑
i=1

(Hi − Hpi)
2 (8)

where OH, OW, and OC, represent the height, width, and depth of the channel response,
respectively. The target image H is the actual channel, while the prediction Hp is the
estimated channel. The aim of the training is to minimize such loss by progressively
updating the parameters of the CNN.
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5. Computational Cost

Towards an efficient hardware implementation, the computational cost is a funda-
mental criterion to analyze. With offline training, the complexity depends strongly on
the neural network dimension and topology. Because the design choices largely affect the
number of operations involved in the computation, an analysis among the state-of-the-art
DL-channel estimation techniques is presented. When considering the computational cost,
the primary focus lies in identifying the dominant factors that contribute the most to the
overall growth rate of the algorithm’s complexity. This helps to simplify the calculation,
focusing on the most significant operations.

The steps of this analysis are summarized in Tables 2 and 3, where each column
highlights an additional stage before reaching the total computational cost.

Table 2. Complexity derivation for traditional methods per stage.

Channel
Estimation
Techniques

Complexity per Reference
Elements in Symbol

(CrElem)

Complexity per
Reference Symbols

(Crs)

Complexity of the
Interpolation

Complexity per Tx and
Rx Antennas

MMSE
CrElem = N3

Re f Elem +

3 N2
Re f Elem + 3 NRe f Elem [25]

Crs = CrElem NRe f Symb Cinterp = Crs + 3 NnoRe f ElSlot
CMMSE = Cinterp
NTxAnts NRxAnts

LS CrElem = 4 NRe f Elem [25] Crs = CrElem NRe f Symb Cinterp = Crs + 3 NnoRe f ElSlot
CLS = Cinterp

NTxAnts NRxAnts

Table 3. Complexity derivation for DL-based channel estimations per stage.

Channel
Estimation
Techniques

Complexity of the
Input Computation

Complexity of the DL
Method per Layer

Complexity of the
Post-Interpolation

(Cintpost)
Total Complexity

CNN-L3 Cinterp =
Crs−LS + 3 NnoRe f ElSlot

CCNN =
NC MCKHKW NH NW

N/A Ctot = (Cinterp + 3 CCNN)
NTxAnts NRxAnts

CNN-L6 Cinterp =
Crs−LS + 3 NnoRe f ElSlot

CCNN =
NC MCKHKW NH NW

N/A Ctot = (Cinterp + 6 CCNN)
NTxAnts NRxAnts

FCDNN [3]
CLS−interpInFreq =

(Crs−LS + 3 NnoRe f ElSymb)
NTxAnts NRxAnts

CFCDNN =
Nneur Minput + Nneur

where
Minput = NTxAnts NRxAnts

Cintpost =
3 NnoRe f ElSlot

Ctot = CLS−interpInFreq +
NRe f Symb(4 CFCDNN) +Cintpost

CNN [8]
CLS−interpInFreq =

(Crs−LS + 3 NnoRe f ElSymb)
NTxAnts NRxAnts

CCNN =
NC MCKHKW NH NW and

CFCDNN =
Nneur Minput + Nneur

Cintpost =
3 NnoRe f ElSlot

Ctot = CLS−interpInFreq +
NRe f Symb(4 CCNN +

1 CFCDNN) + Cintpost

LSTM [8]
CLS−interpInFreq =

(Crs−LS + 3 NnoRe f ElSymb)
NTxAnts NRxAnts

CLSTM =
4Ns DHL(2N f eat + 2DHL + 1)

and
CFCDNN =

Nneur Minput + Nneur

Cintpost =
3 NnoRe f ElSlot

Ctot = CLS−interpInFreq +
NRe f Symb

(2 CLSTM + 1 CFCDNN) +
Cintpost

Proposed
CNN Crs−LS

CCNN =
NC MCKHKW NH NW

N/A Ctot = 4 CCNN
NTxAnts NRxAnts

NRe f Elem is the number of the reference resource elements in the symbol. KHKW are the dimensions of the used
kernel in the CNN. NRe f Symb is the number of the reference symbols in a slot. NH NW are the dimensions of the
CNN current layer output. NnoRe f ElSlot is the number of the resource elements not containing a reference resource
element in the slot. Nneur is the number of neurons in the FCDNN current layer. NnoRe f ElSymb is the number of
the resource elements not containing a reference resource element in the symbol. DHL is the size of the LSTM
hidden layer. NTxAnts NRxAnts are the number of antennas at the Tx and at the Rx. Ns is the number of LSTM cells.
NC MC are the number of channels in the CNN current layer and the subsequential one. N f eat is the number of
LSTM features.
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The considered total computation is the complexity needed to estimate the full channel
(Nsc × Nsymb × K × M) from the reference elements in the grid. The first table includes
the computation process for LS and MMSE techniques in order to provide a benchmark
against the traditional channel associated limitations: LS lacks in accuracy, while MMSE
has high complexity. The second table provides all the information per stage to compute
the complexity of the analyzed DL-based channel estimation methods.

This helps to highlight the possible reduction in complexity avoiding some stages. Addi-
tionally, in the prospect of massive MIMO application, a useful prediction of the complexity
growth is given by the increased number of antennas at one end. Figures 7 and 8 show
the total number of operations required to calculate the full channel matrix from the pilot
signals for different numbers of antennas at the receiver for each solution.
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Figure 7. Computational cost analysis among several DL channel estimations varying the number
of antennas at the receiver. The transmitter (user terminal, UT) uses two antennas. The calculation
is obtained from the above table considering the implemented designs and those reported in the
literature [3,8,25].

The MMSE and LS techniques represent the two benchmarks for evaluating the feasi-
bility on hardware of the rest of the techniques. Being the MMSE traditionally discarded for
implementation, clearly, the CNN network presented in [8] is not suitable, as the complexity
is 2 orders of magnitude higher than the MMSE. This highlights that CNN-based structure,
where the number of neurons in the network is not dependent on the number of antennas,
have a completely different order of complexity, indicating that the required computational
cost varies with design choices.

Indeed, the implemented CNNs with pre-interpolation are comparable to the MMSE
complexity. Although there is a big difference in number of layers, the computational
cost varies by half an order of magnitude. In this range, the FCDNN and LSTM networks
presented in [3,8] are included. The growth of the FCDNN complexity is faster than the
LSTM, having the number of neurons per layer dependent on the number of antennas in
the system.
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is obtained from the above table considering the implemented designs and those reported in the
literature [3,8,25].

As expected, the LS channel estimation with interpolation in frequency and time
domains is traditionally the least expensive in terms of computational cost. However, our
proposal provides the next lowest complexity, outperforming all other DL-based techniques.
The improvement results in terms of complexity are due to the full channel being obtained
as the output of the neural network, completely avoiding the interpolation stage and a
hardware-oriented CNN design.

The other three important factors in the choice of the hardware-oriented neural net-
work when it comes to their implementation are the memory usage, the opportunities
offered for parallelization, and the type of required operations. Because of the use of
locality, the CNN requires less memory for storing parameters, and each local section can
be parallelized. The other advantage is related to the type of involved operations since
convolution is predominant. In the FCDNNs, each neuron is connected to the neuron in
the subsequent layer. Therefore, the generated information has to be stored. This is true
also for the LSTM because it captures a recurrent property over time. As a consequence,
data have to be stored and propagated to the next cell to obtain the final result, therefore
each result is dependent on the previous one. Additionally, the latter uses sigmoids and
hyperbolic tangents in each cell, which are not hardware-friendly operations.

In conclusion, the proposed technique outperforms other DL alternatives when it
comes to implementation. In the next section, we evaluate the performance in terms
of accuracy in the channel estimation. Since FCDNN and LSTM present unfavorable
characteristics when it comes to their hardware implementation, the focus will be oriented
to the CNN structures. The LSTM is excluded, while the comparison with the FCDNN
structure is purely based on the neural network presented in [3].

6. Numerical Simulation and Analysis

To evaluate the performance of the proposed CNN-channel estimation in terms of
accuracy in the channel matrix estimation, the MSE is analyzed over a range of SNR values.
The main setup parameters are summarized in Table 4, and the simulated system is shown
in Figure 9.
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Table 4. Main setup parameters for the simulated system.

Parameters Settings

Antennas 2 Rx and 2 Tx
Resource blocks 24

Subcarrier spacing 15
Mapping type A

Layer 1
Symbol Allocation [0 14]

DMRS configuration
DMRS Configuration type = 2

DMRS length = 1
DMRS Additional Position = 2

Nfft 512

Channel
Channel profile = TDL-A

Doppler Shift = 36
Delay spread = 300 × 10−9
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Figure 9. Diagram of the simulated system comparing the channel estimation from the pro-
posed structure with CNNs with pre-interpolation, LS with post-interpolation, and MMSE with
post-interpolation.

Two antennas for the receiver and the transmitter are considered. The transmitted
grid is generated considering only the DMRS signals in the PDSCH.

At the receiver, the channel information is estimated using five different types of
channel estimation designs and compared with the perfect knowledge of the full channel.
These are the conventional LS estimation, the MMSE estimation, the pre-interpolated CNN
channel estimation with 3L and 6L, and an FCDNN-based channel estimation proposed
in [3]. The MSE results are obtained using MATLAB’s 5G Toolbox [26] and are presented in
the logarithmic scale in Figure 10.

All of the MSE curves improve as the SNR increases, following a linear trend. The
difference is in the rate of decreasing MSE. The LS technique decreases faster with the SNR
growth, while the rest of the curves present a slower trend. However, as expected, the
traditional LS technique generates the highest MSE, becoming competitive only at high
SNR values. On the other hand, the neural networks (CNN-6L, CNN-3L, FCDNN, and
the proposed CNN-based channel estimation) are all very close to the MMSE technique,
commonly considered the most accurate. The lowest MSE values are obtained by the
technique described in [3] and the CNN-6L design. However, they are not convenient
in terms of complexity considering their dependency with the number of antennas and
the evolution of this parameter in the communication systems (e.g., Massive MIMO and
Gigantic MIMO [27]), especially for the FCDNN network where the number of neurons is
proportional to the total number of antennas in the system.



Electronics 2024, 13, 4537 15 of 17

Electronics 2024, 13, x FOR PEER REVIEW 15 of 17 
 

 

CNN channel estimation with 3L and 6L, and an FCDNN-based channel estimation pro-
posed in [3]. The MSE results are obtained using MATLAB’s 5G Toolbox [26] and are pre-
sented in the logarithmic scale in Figure 10. 

 
Figure 10. MSE analysis varying the SNR. The comparison is between the implemented designs 
and the FCDNN postinterpolated proposed in [3]. 

All of the MSE curves improve as the SNR increases, following a linear trend. The 
difference is in the rate of decreasing MSE. The LS technique decreases faster with the 
SNR growth, while the rest of the curves present a slower trend. However, as expected, 
the traditional LS technique generates the highest MSE, becoming competitive only at 
high SNR values. On the other hand, the neural networks (CNN-6L, CNN-3L, FCDNN, 
and the proposed CNN-based channel estimation) are all very close to the MMSE tech-
nique, commonly considered the most accurate. The lowest MSE values are obtained by 
the technique described in [3] and the CNN-6L design. However, they are not convenient 
in terms of complexity considering their dependency with the number of antennas and 
the evolution of this parameter in the communication systems (e.g., Massive MIMO and 
Gigantic MIMO [27]), especially for the FCDNN network where the number of neurons is 
proportional to the total number of antennas in the system. 

Despite a slightly reduced accuracy achieved by the proposed technique, its overall 
performance is very much in line with the state-of-the-art methodologies. This reduction 
is expressed in an increase of the MSE at each SNR level, and it is expected due to the 
approximation introduced for reducing the complexity. The first factor which played an 
important role is the use of the padding method to increase the dimensions in favor of the 
computational cost. Therefore, the interpolation stage is not needed, and the full-channel 
dimensions are achieved symmetrically mirroring the reference information. Two other 
important factors in the reduction of accuracy are the low number of channels and layers 
in the proposed CNN. As already mentioned, each layer helps to denoise the input and 
the channels collect the feature information. Indeed, the impact of increasing the number 
of layers and channels is also proven by the CNN-6L and CNN-3L neural network perfor-
mances. Increasing the number of layers appears especially beneficial at lower SNR levels, 
though its impact diminishes at higher SNR values. 

Despite these hardware-oriented design choices impacting the MSE analysis, the pro-
posed CNN outperforms the LS technique by an order of magnitude at low SNR levels 

Figure 10. MSE analysis varying the SNR. The comparison is between the implemented designs and
the FCDNN postinterpolated proposed in [3].

Despite a slightly reduced accuracy achieved by the proposed technique, its overall
performance is very much in line with the state-of-the-art methodologies. This reduction
is expressed in an increase of the MSE at each SNR level, and it is expected due to the
approximation introduced for reducing the complexity. The first factor which played an
important role is the use of the padding method to increase the dimensions in favor of
the computational cost. Therefore, the interpolation stage is not needed, and the full-
channel dimensions are achieved symmetrically mirroring the reference information. Two
other important factors in the reduction of accuracy are the low number of channels and
layers in the proposed CNN. As already mentioned, each layer helps to denoise the input
and the channels collect the feature information. Indeed, the impact of increasing the
number of layers and channels is also proven by the CNN-6L and CNN-3L neural network
performances. Increasing the number of layers appears especially beneficial at lower SNR
levels, though its impact diminishes at higher SNR values.

Despite these hardware-oriented design choices impacting the MSE analysis, the
proposed CNN outperforms the LS technique by an order of magnitude at low SNR levels
and maintains competitive performance at higher SNRs. The largest deviation from MMSE
is 0.018 at 5 dB, which is minimal, concerning the ability of the transmission system to
recover the information using up-sampling and error correction post-channel estimation [3].
Therefore, with its hardware implementation benefits, this CNN-based channel estimation
approach thus proves to be a viable option for 5G NR systems, showing that effective results
can be achieved through neural networks without requiring highly complex designs.

7. Conclusions

Every channel estimation method based on neural networks found in the literature
needs multiple stages to estimate the whole channel. In this paper, we presented a convolu-
tional neural network for channel estimation which has the LS applied at DMRS signals
as an input and generates the whole channel as an output. With the purpose of a future
hardware implementation, the performance of the proposed CNN is evaluated using two
terms of comparison: computational cost and the mean square error. Our CNN has the
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lowest complexity among the analyzed neural networks such as FCDNN, LSTM, and other
CNN architectures. Additionally, Tables 2 and 3 present the mathematical expressions
to compute the complexity, not only for the neural networks included in this study, but
with the computational cost divided by stages, for any model which uses these types of
layers. Moreover, the results of the error analysis prove competitive MSE performance
to the MMSE channel estimation applied to a 2 × 2 MIMO system, having a maximum
discrepancy of 0.018 at 5 dB SNR. On the basis of these analyses, the proposed CNN
technique gives a deployable solution outperforming earlier approaches reported in the
literature. In this vision, a further study on the integration of the real and imaginary parts
could lead to additional resource savings. Subsequently, quantizing the proposed CNN
and implementing it on VERSAL technology can provide a definitive validation for the
CNN-based channel estimation method.
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