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Abstract: Conventional methods for tumor diagnosis suffer from two inherent limitations: they
are time-consuming and subjective. Computer-aided diagnosis (CAD) is an important approach
for addressing these limitations. Pathology whole-slide images (WSIs) are high-resolution tissue
images that have made significant contributions to cancer diagnosis and prognosis assessment. Due
to the complexity of WSIs and the availability of only slide-level labels, multiple instance learning
(MIL) has become the primary framework for WSI classification. However, most MIL methods fail
to capture the interdependence among image patches within a WSI, which is crucial for accurate
classification prediction. Moreover, due to the weak supervision of slide-level labels, overfitting may
occur during the training process. To address these issues, this paper proposes a dual-attention-based
multiple instance learning framework (DAMIL). DAMIL leverages the spatial relationships and
channel information between WSI patches for classification prediction, without detailed pixel-level
tumor annotations. The output of the model preserves the semantic variations in the latent space,
enhances semantic disturbance invariance, and provides reliable class identification for the final
slide-level representation. We validate the effectiveness of DAMIL on the most commonly used
public dataset, Camelyon16. The results demonstrate that DAMIL outperforms the state-of-the-art
methods in terms of classification accuracy (ACC), area under the curve (AUC), and F1-Score. Our
model also allows for the examination of its interpretability by visualizing the dual-attention weights.
To the best of our knowledge, this is the first attempt to use a dual-attention mechanism, considering
both spatial and channel information, for whole-slide image classification.

Keywords: attention; computational pathology; multiple instance learning; whole-slide image;
computer-aided diagnosis; WSI classification

1. Introduction

Histopathology is the gold standard for tumor diagnosis. Tissue sections are typically
scanned to create whole-slide images (WSIs), which serve as important references for pathol-
ogists [1–3]. Deep learning-based WSI processing and analysis play a crucial role in devel-
oping tumor computer-aided diagnosis systems. In recent years, we have witnessed some
achievements in assisted disease diagnosis using deep learning models [3–9]. Unlike natu-
ral images, WSIs possess extremely high resolutions (typically 100,000 × 100,000 pixels) [10],
which poses a labor-intensive task for pixel-wise annotation, making it a significant chal-
lenge for constructing accurate classification models. Furthermore, the complexity of
WSIs is also reflected in the potential low contrast in localized areas. This phenomenon
can reduce the distinction between lesion areas and normal tissues, increasing the risk of
misdiagnosis or missed diagnosis. Low contrast not only affects the judgment of human
pathologists but also adversely impacts the feature extraction and classification accuracy
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of deep learning models [11]. Particularly during the instance feature aggregation phase,
the information from positive instances with low contrast can be more easily diluted by
other features, leading to potential misclassification at the bag level.

To tackle these challenges, the current approach commonly adopts multiple instance
learning (MIL) for WSI classification modeling [12–15]. MIL treats each WSI as a bag con-
taining multiple instances, which are fixed-sized (e.g., 256 × 256) image patches segmented
from the tissue regions of the WSI. If there exist positive (abnormal) instances within the
bag, it is labeled as positive; otherwise, it is labeled as negative (normal). Subsequently,
feature extraction and aggregation of all instances are performed to generate predictions at
the bag level.

The inherent complexity of WSIs poses challenges for developing classification models
that are not as straightforward as traditional computer vision. Due to the small proportion
of positive instances within a positive WSI bag (less than 10%), the most critical features of
positive instances may be diluted or even discarded during the stage of instance feature
aggregation, leading to misjudgments in the final results. Additionally, with thousands
or even tens of thousands of instances in a WSI, but only label at the bag level, the weak
supervision signals make it easy for the model to get stuck in local optima during the
training process, resulting in poor generalization of the trained model.

In recent years, the modeling approaches based on MIL have shown some achieve-
ments in WSI classification. However, there is still much room for improvement in con-
structing robust models for accurate WSI classification. Due to the inherent characteristics
of WSI, most existing MIL models are trained based on bag-level labels, which makes
it challenging for the models to learn rich feature representations [16,17]. Furthermore,
considering computational costs, many models only sample a few high-weight instance
features as bag representatives for subsequent bag prediction [4,16–18]. However, this ap-
proach discards the potential semantic relationships among different instances, ultimately
leading to suboptimal solutions for the classification models, as these latent semantic rela-
tionships are crucial in WSI classification. To address the aforementioned issues, we need to
explore how to enable the models to learn the latent semantic relationships among different
instances in order to construct robust WSI classification models.

In order to capture the potential semantic relationships between different instances
more effectively, we propose a novel dual-attention MIL framework (Figure 1). Specifi-
cally, DAMIL utilizes a dual-attention architecture to train the model. The first attention
mechanism acquires the channel feature weights of all instances, while the second attention
mechanism acquires the weights of all instances in the spatial dimension. Distinct from
previous MIL approaches (Figure 2), our method simultaneously takes into account both
the spatial and channel information of the instance features within each bag, enabling a
more refined representation of bag-level features.

Our main contributions can be summarized as follows:
1. We propose a novel dual-attention MIL framework that can capture richer latent con-

nections among instances within a bag, both in the spatial and channel domains, ultimately
generating more discriminative bag-level representations for classification prediction.

2. The idea of dual-attention module, which was originally used for 2D image classifi-
cation, is skillfully applied to our proposed framework, which makes an attempt to provide
a new way of thinking for the later migration of models between different learning tasks.

3. We evaluated DAMIL based on the benchmark WSI dataset Camelyon16, and the
experimental results show that our method outperforms the current state-of-theart method
in terms of ACC, AUC, and F1.

4. The effectiveness of the proposed module is demonstrated through rich ablation
experiments, and the interpretable heatmaps predicted by the model are obtained using
Grad-CAM [19], which proves that the ROIs generated by the model are in good agreement
with the pixel-level annotations.

The rest of this paper is organized as follows: Section 2 introduces an overview of
the concept of MIL, the current state of research on MIL in the classification of whole-slide
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images (WSIs), and the application of attention mechanisms in MIL. We delve into the
paradigm of multiple instance learning (MIL) and provide a comprehensive exposure to
the component modules of the proposed Deep Attention-based Multiple Instance Learning
(DAMIL) framework in Section 3. Section 4 presents the experimental results and offers an
in-depth discussion of these findings. The conclusion of this paper described in Section 5.

Figure 1. Overview of the proposed DAMIL. The WSI is first cropped into a number of patches
and then feature extraction is performed with the pre-trained Resnet18. The generated feature
vector matrix is passed sequentially through the encoder, channel attention module, spatial attention
module, decoder, pooling layer, and fully connected layer to generate the finally prediction.

Bag Prediction

attention module

MIL

Bag Prediction

MIL

Bag Bag

(A) Conventional MIL (B) Proposed DAMIL

channel attention module

spatial attention module

Positive instance

Negative instance

Figure 2. Illustration of the difference between the attention-based conventional MIL model and the
proposed dual-attention MIL model.

2. Related Work
2.1. Multiple Instance Learning (MIL)

MIL is a machine learning framework developed from traditional supervised learning,
and is specifically designed for scenarios where annotating at the instance level is difficult
or impractical. In supervised learning, we typically work with a large amount of labeled
data, where each data instance (sample) has a clear label indicating its class. This learning
paradigm assumes that each sample is independent and individually labeled, and cannot
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be further decomposed into smaller parts. In contrast, MIL adopts a more relaxed form
of supervision. In this framework, data are organized into a series of bags, with each bag
containing multiple instances. The key difference from traditional supervised learning
is that we only know the label for the entire bag, not for each individual instance within
it. For example, a bag may be labeled as positive because it contains at least one positive
instance, but we do not know which specific instances are positive. Similarly, a negative
bag implies that all its instances are negative. This setup allows the model to work with
incomplete labeling information, making it suitable for problems with high annotation
costs or technical infeasibilities.

MIL opens up new application domains in machine learning by redefining the orga-
nization of the sample set. In the context of MIL, the label of an instance can be seen as
latent, as they are not directly observable in the learning process. This requires learning
algorithms to reason at a higher level and identify valuable patterns from incomplete or
indirect supervision. This learning approach has demonstrated powerful potential and
flexibility in domains such as image processing, text classification, and medical diagnosis,
especially when dealing with large-scale datasets with only coarse-grained annotations.
By focusing attention at the bag level rather than individual instances, MIL provides an
effective strategy for handling complex and diverse datasets.

2.2. Application of MIL in WSI Classification

In the field of digital pathology, the classification of WSIs is a challenging task. These
high-resolution images contain tens of thousands of cellular structures, including various
heterogeneous factors that may affect diagnostic outcomes. Due to the high-dimensional
nature and large number of samples in WSIs, direct instance-level annotation is both
impractical and resource-consuming. MIL provides an effective modeling strategy for
such data [20]. Within the MIL framework, a WSI can be regarded as a bag that contains
multiple instances, which may have diagnostic significance (such as specific cells or tissue
structures). As MIL allows for bag-level rather than instance-level annotations, it aligns
well with the characteristics of WSI data. In practice, pathologists often provide a diagnosis
for the entire slide rather than annotating each individual cell or tissue.

Several studies have demonstrated the effectiveness of MIL-based network models
for WSI classification applications [4,21–25]. These models can be broadly categorized into
two types: instance-level methods [4,25–28] and embedding-level methods [13,18,29–31].
Instance-level methods typically assign bag-level labels to each instance, resulting in
pseudo-labels for individual instances. This approach may selectively aggregate instance
features, such as selecting the top K most representative instances to represent the en-
tire bag’s features, thus forming a bag-level representation. This strategy is suitable for
scenarios that involve critical instances that play a decisive role in the final classification
decision. In contrast, embedding-level methods map individual instances into a feature
space and perform feature aggregation through specific operators to generate bag-level
representations. These operators can be simple statistical operations, such as taking the
mean or maximum, or more complex techniques like attention mechanisms and neural
network layers. This approach captures richer information in WSIs as it considers not
only the inter-instance relationships but also adapts to the unique distribution of instances
within each bag.

According to existing literature, embedding-level methods often outperform instance-
level methods in terms of performance [30,32]. On the one hand, embedding-level methods
better preserve the inter-instance relationships and structural information during feature
aggregation. On the other hand, instance-level methods may lose the capture of other
valuable information due to over-reliance on selected instances. Therefore, when selecting
the appropriate MIL method for WSI classification, researchers need to consider their
ability to preserve image heterogeneity and extract key features, in order to optimize
classification performance. With the continuous advancement of deep learning techniques,
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these methods are being further improved and optimized to better address the complexity
of WSI data.

2.3. Application of Attention Mechanism in MIL

In the early applications of MIL, traditional models often employed simple feature
aggregation techniques such as mean pooling or max-pooling [33,34] to integrate informa-
tion from individual instances within a bag and obtain a bag-level representation. The core
idea behind these methods is that pooling operations can capture the most salient features
within a bag or average features across the entire bag, thereby enabling bag-level classifi-
cation. While these simple aggregators achieved some success in the initial MIL research,
they have limitations when dealing with data that have complex structures and subtle
differences, such as WSIs, as these methods struggle to capture important information at a
fine-grained level.

In recent years, embedding-based MIL methods have made positive advancements
in WSI classification tasks, particularly with the introduction of attention-based mod-
els [29,31,35–37]. The incorporation of attention mechanisms allows models to more flexi-
bly learn the relationships between instances and the importance of each instance for the
bag-level classification task. The model proposed in [29] was the first attempt to combine
attention mechanisms with MIL, marking a significant advancement in the field. In this
model, an auxiliary side branch network is utilized to learn the weight values, i.e., attention
scores, for each instance, enabling the model to emphasize instance features that are more
relevant for classification while suppressing irrelevant information. The weight values
of instances are then used to obtain a weighted bag-level representation, significantly
enhancing the model’s understanding of complex structures within WSIs. Following [29],
many research works have adopted and improved upon this attention-based MIL frame-
work [6,18,30,31]. For example, the DSMIL [18] determines weight values by calculating
the cosine distance between instances and the most representative instance. This approach
potentially identifies other instances that are similar to the most representative instance and
assigns them higher weights. Another example is TransMIL [30], which calculates attention
scores based on mutual information between instances, highlighting the interaction and
interdependence among instances. Leveraging this mutual information helps the model
better capture spatial contextual information within WSIs, thus providing richer and more
detailed representations at the bag level.

These attention-based models have not only achieved promising results in WSI classi-
fication but have also spurred the application of MIL in the field of medical image analysis.
Each model places emphasis on different aspects of instance weight calculation, show-
casing adaptability to diverse data distributions and characteristics. These innovative
approaches offer new perspectives and tools for addressing complex biomedical problems,
contributing to the accuracy and interpretability of automated pathology diagnosis systems.
With ongoing advancements in deep learning and attention mechanisms, it is anticipated
that these attention-based MIL models will evolve to become even more sophisticated and
specialized, addressing a broader array of challenging biomedical image analysis tasks.

3. Method

We now present our method for weakly supervised WSI classification. In this section,
we shall introduce the formulation of MIL and present our model: DAMIL.

3.1. Background: MIL Formulation

Taking the binary classification problem of MIL as an example, given a bag of instances
X = {x1, x2, x3 . . . xn}, where n is the number of instances in the bag, there is a potential
semantic relationship between the instances of x1, x2, x3 . . . xn, but their respective labels
y1, y2, y3 . . . yn are unknown. We need to predict the label Y ∈ {0, 1} of bag X, which can
be defined as



Electronics 2024, 13, 4445 6 of 18

Y(X) =

{
0, iff ∑n

i=1 yi = 0
1, otherwise

(1)

i.e., the label of a bag is positive if there is at least one positive instance in the bag and
negative otherwise. The model for predicting the label Y of a bag X can be described as

Y(X) = c(a( f (x1), f (x2), . . . f (xn))) (2)

where c is the classifier that achieves the final output, and a and f have different meanings
depending on how the MIL is modeled. If the modeling is based on an instance-level
approach, then f is the rater that classifies and scores all instances in the bag, while a is the
aggregator that aggregates features for instances previously selected based on the scoring.
If the modeling is based on an embedding-level approach, then f is the feature extractor
that performs feature extraction on all instances, while a is the aggregator that further
generates the bag representation based on all instance features.

Currently, most MIL models used for WSI classification employ attention models.
In this type of MIL model, the feature aggregator a is mainly composed of two modules: the
attention module and the classifier. The attention module is responsible for calculating the
weights of all instance features and aggregating them to obtain a bag representation b(x).
The classifier then utilizes the bag representation obtained in the previous step to output
the prediction results. The entire process of learning and prediction can be described as
follows [38]:

Y(X) = c(b(x)) (3)

b(x) = a( f (x1), f (x2), . . . , f (xn)) =
n

∑
i=1

αi f (xi) (4)

αi = softmax(∅a(xi)) (5)

where αi is the weight coefficient of the instance feature and ∅a is a neural network with a
nonlinear activation function.

3.2. DAMIL Proposed

The entire pipeline of the classification framework consists of the following parts:
1. Image segmentation. The WSI is segmented into patches according to a set size,

these patches can be overlapping or non-overlapping, and the patches with too little
organization regions are discarded according to a set threshold.

2. Feature extraction. The patches are embedded into the feature vectors space of
[1,512] by pre-trained Resnet18, all the feature vectors from each WSI form a matrix;
the number of rows of the matrix varies because the number of patches in each WSI
segmentation is not consistent.

3. Classification based on DAMIL. The feature vector matrix corresponding to each
WSI is fed into DAMIL for classification prediction.

Our key innovation is to consider the whole feature vector matrix as a 1D feature
map from the dimension of instance quantity, i.e., to consider the feature dimension of
each feature vector matrix as a channel dimension and the dimension of the number of
instances of each feature vector matrix as a one-dimensional spatial dimension (figuratively
speaking, to flatten out a 2D feature map into a 1D feature map, as shown in Figure 3),
and, thus, to design a novel module for capturing potential semantic relationships between
instances. Specifically, we propose DAMIL, which consists of two essential components:
a module for extracting channel attention weights and a module for extracting spatial
attention weights. Figure 1 demonstrates the architecture of DAMIL. Given a feature
matrix F ∈ RN×C as input, DAMIL will first encode the features in equal dimensions,
and then sequentially extract the channel-based attention weights Hc ∈ R1×C and the
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space-based attention weight Hs ∈ RN×1; the complete dual-attention extraction process
can be described as follows:

F1 = Hc(F)⊗ F (6)

F2 = Hs(F1)⊗ F1 (7)

F3 = F2 + F (8)

where ⊗ represents the element-wise multiplication of the matrix based on the broadcasting
mechanism, and F3 is the final output of the model based on the residual linkage. Figure 4
describes the computational process of each attention module, and each attention module
is explained in detail below.

2D feature map

Embedding of Negative Instance

Embedding of Positive Instance

Flatten

1D feature map

Figure 3. Graphical representation of the transformation from a 2D feature map to a 1D feature map.

3.3. Channel Attention Module

We utilize the inter-channel relationships of all instances in the bag to compute the
channel attention weights. Since each channel of the feature vector matrix describes a
particular aspect of the instance, the channel attention weights mainly describe which
features are the most meaningful among all the instance features. In terms of aggregation
of spatial information, most of the work uses average pooling [39,40]. However, ref. [41]
argues that max-pooling can capture another important aspect of feature information,
which can be utilized to calculate more refined channel weights. Therefore, we adopt
a strategy that combines max-pooling and average pooling followed by concatenation.
Subsequent experimental results demonstrate that taking both max-pooling and average
pooling does outperform taking a single pooling.
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Feature Matrix

AvgPool

MaxPool
Channel Attention

MLP

Feature Matrix [AvgPool,MaxPool] MLP Spatial Attention

(b)

(a)

Figure 4. Illustration of each attention submodule. As depicted in the diagram, (a) illustrates
the channel attention module, while (b) illustrates the spatial attention module. Both attention
modules utilize max-pooling and average pooling for their outputs. Channel attention compresses
the dimension of instance quantity for pooling operations, while spatial attention compresses the
channel dimension for pooling operations.

We first compressed the spatial dimensions of the feature vector matrix using average
pooling and max-pooling to obtain two [1, 512] feature vectors representing the average
and maximum pooled features, respectively. Subsequently, these two feature vectors are
nonlinearly mapped using an multilayer perceptron (MLP) with a nonlinear activation
function, and then the outputs were element-wise summed and converted to the final
channel attention weights using the sigmoid function. The whole process is shown in
Figure 4a, which can be described as follows:

Hc(F) = sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F))) (9)

3.4. Spatial Attention Module

Similar to computing spatial attention weights based on 2D feature maps, we compute
spatial attention weights for different instances based on the dimension of instance quantity
of the feature vector matrix. Compared to channel attention, spatial attention can effectively
highlight the more important instances [42], which is just complementary to channel
attention. Similar to the computation of channel attention, we first compress the channel
dimension using max-pooling and average pooling to generate two feature vectors, which
represent the maximum and average pooled features of the whole channel, respectively.
We concatenate these two feature vectors to form a dual-channel 1D feature map. This
feature map is then nonlinearly mapped and downscaled by an MLP with a nonlinear
activation function, and, finally, sigmoid-transformed into the final spatial attention weights.
The specific operation is shown in Figure 4b, which can be described as follows:

Hs(F) = sigmoid(MLP(AvgPool(F)∥MaxPool(F))) (10)

where ∥ denotes the concatenation operation of two feature vectors.
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3.5. Combination Mode of Dual-Attention Modules

For the feature vector matrix obtained from the WSI, the two attention modules
mentioned above can work individually or collaborate, highlighting the most meaningful
features and important instances, respectively. When the two modules cooperate, there
are two types of connections: serial and parallel. Through experimental verification, we
found that the serial connection performs better than the parallel connection. Specifically,
the connection sequence of channel first and then spatial attention achieves the optimal
experimental results, which will be discussed in detail in the subsequent section. After
being processed by the dual-attention modules, a feature vector matrix with the same
dimension as the original input is obtained. This feature vector matrix undergoes max-
pooling and average pooling based on the dimension of instance quantity. The resulting two
feature vectors are concatenated and fed into an MLP with a nonlinear activation function
for nonlinear mapping and dimensionality reduction. Finally, the predicted probabilities
for package categories are obtained.

4. Experiments and Results

In this section, we conducted a comprehensive performance comparison between our
approach and the current state-of-the-art methods. Additionally, we further validated the
contributions of various modules in our framework to the prediction results through a
series of ablation experiments.

4.1. Dataset

We present our experimental findings based on the publicly available dataset Came-
lyon16 and TCGA Lung Cancer. Camelyon16 is the most widely utilized dataset in WSI
classification research, comprising 399 WSI images of breast cancer screenings classified into
two categories: normal and tumor. Due to the detailed pixel-level annotations provided for
positive WSIs, this dataset is not only used for classification but also extensively employed
in the task of ROI localization [18]. The TCGA Lung Cancer dataset includes two subtypes
of lung cancer: lung adenocarcinoma and lung squamous cell carcinoma. It comprises a
total of 1054 diagnostic digital slides available for download from the National Cancer In-
stitute’s data portal. We randomly divided the whole-slide images (WSIs) into 839 training
slides and 210 testing slides, discarding five slides due to poor quality or damage. During
the data preprocessing stage, we initially segmented each WSI into image patches with
a size of 256 × 256 pixels, at both a 20× and 10× magnification level. This segmentation
approach ensured that each image patch contained sufficient details, facilitating subsequent
feature extraction and classification. Throughout this process, we specifically excluded
image patches with less than 35% tissue region coverage, ensuring input data quality and
reducing interference from irrelevant background in subsequent analysis. Similar to the
methods employed in references [18,31], we utilized a pre-trained Resnet18 neural network
to map each image patch to a 512-dimensional feature space. Resnet18 was chosen as our
feature extractor due to its depth and ability to capture complex features. This approach
allowed us to extract a set of expressive feature vectors from the original image patches,
providing a strong foundation for model learning.

4.2. Implementation Details and Evaluation Metrics

During the training process of the model, we employed the Adam optimizer with an
initial learning rate of 0.0001. The weight decay was set to 1 × 10−5. To adjust the learning
rate, we used the cosine annealing schedule. Furthermore, in order to prevent prolonged
ineffective training and promptly capture the optimal model during the training process,
we incorporated an early stopping mechanism into our training strategy. The batch size for
training the MIL model was set to 1 (i.e., each batch contained only one bag). We conducted
the experiments on hardware equipped with an RTX 4090 GPU.

Considering the imbalanced nature of the dataset, we assessed the performance metrics
in all experiments using not only accuracy (ACC) and F1-Scores but also prioritized the
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area under the curve (AUC) as the primary measure. AUC exhibits lower sensitivity to
class imbalance and provides a more comprehensive reflection of the model’s classification
ability. ACC was calculated using a threshold of 0.5 across all experiments. To ensure the
robustness and reliability of the evaluations, we employed a 10-fold crossvalidation method,
which ensured that each data point had a chance to be used for validation, allowing for a
more objective assessment of the model’s performance. Finally, we reported the average
performance metrics obtained on the 10 validation subsets to provide a comprehensive
evaluation of the overall model performance.

We present the performance comparison results between DAMIL and the state-of-
theart MIL methods on the CAMELYON-16 and the TCGA Lung Cancer dataset. To provide
a comprehensive evaluation, we selected several representative MIL methods for compar-
ison: (1) MeanPooling and max-pooling, instance-level methods that directly aggregate
instances to obtain bag-level representations; (2) ABMIL, a classical MIL model based
on attention mechanism that assigns weights to different instances; (3) DSMIL, utilizing
non-local attention pooling technique to enhance the model’s recognition ability for key
instances; (4) TransMIL, a transformer-based architecture that leverages the powerful global
dependency modeling capability of transformers; and (5) CLAM, incorporating a clustering
constraint mechanism during the multiple instance learning process to enhance the model’s
selectivity and diversity of instance features, thereby improving its discriminative power.
The experimental results of all these models are from their official implementations and
adopt the same hyperparameter settings as our proposed model. This approach ensures the
accuracy and fairness of our evaluation and comparison results, enabling us to accurately
measure the performance improvement of DAMIL compared to existing models.

The experimental results, as shown in Tables 1 and 2, reveal that the MIL approach
utilizing both max-pooling and average pooling techniques falls short of achieving an
accuracy rate (ACC) and area under the curve (AUC) higher than 65% across different
magnification levels. This further emphasizes the superiority of embedding-based methods
over instance-based ones. When analyzing the CAMELYON-16 dataset, a significant
reality that cannot be overlooked is the relatively small proportion (less than 10%) of
tumor regions in the majority of positive whole-slide pathology images (WSIs). This
characteristic poses a challenge to many MIL models in effectively learning representative
patch-level representations for accurate classification. Consequently, the experimental
results on this dataset fully demonstrate a model’s competence in addressing this issue.
In this challenging context, our DAMIL model showcases its exceptional adaptability and
classification performance. In particular, at 20x magnification, DAMIL outperforms the
state-of-the-art models by 2.25% in ACC, 3.76% in AUC, 6.24% in recall rate, and 4.1% in
F1-Score, respectively. Of noteworthy mention is DAMIL’s minimal standard deviation in
AUC, recall rate, and F1-Score, showcasing the model’s stability and robustness. Similar
trends are observed in the experiments conducted at 10x magnification, where DAMIL
also achieves the highest ACC, AUC, and F1-Score, surpassing other optimal models by
2.51%, 1.68%, and 3.42% respectively. By comparing the results obtained at the two different
magnification levels, the superior performance of the DAMIL model in handling highly
imbalanced datasets becomes apparent. These findings not only highlight DAMIL’s efficacy
in slide-level labels but also demonstrate the potential for its application in the field of
pathological image analysis.

Notably, although the new model incurs increased computational overhead, this in-
vestment largely translates into significant performance gains. The added computational
complexity primarily stems from the dual-attention mechanism and more sophisticated fea-
ture extraction steps. These enhancements greatly improve the model’s accuracy and stabil-
ity, especially when handling complex pathological images. Specifically, the dual-attention
mechanism enhances the model’s ability to identify key regions and adapt to varied patho-
logical environments. While this requires additional computational resources, experimental
results indicate that this investment is worthwhile. To further enhance the model’s scalabil-
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ity, we plan to employ model compression and parallel computing strategies in the future,
which will help reduce computational costs while maintaining performance.

Table 1. Experimental results of the CAMELYON-16 dataset (magnified 20×). The corresponding
standard deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score FLOPs Model Size

Mean pooling 0.6391 ± 0.0291 0.6227 ± 0.0559 0.1500 ± 0.1070 0.2342 ± 0.1375 62.1 M 521.7 K
Max-pooling 0.6341 ± 0.0334 0.5344 ± 0.0886 0.2062 ± 0.1769 0.2735 ± 0.1965 62.1 M 521.7 K
ABMIL [29] 0.8547 ± 0.0384 0.8438 ± 0.0718 0.7188 ± 0.1112 0.7951 ± 0.0652 77.8 M 652.1 K
DSMIL [18] 0.8420 ± 0.0594 0.8107 ± 0.1146 0.6750 ± 0.1553 0.7652 ± 0.1098 116.9 M 851.6 K
CLAM [31] 0.8601 ± 0.0411 0.8736 ± 0.0418 0.7500 ± 0.0977 0.8151 ± 0.0644 94.4 M 787.3 K

TransMIL [30] 0.8472 ± 0.0379 0.8642 ± 0.0504 0.6750 ± 0.0874 0.7777 ± 0.0622 610.8 M 2.64 M
DAMIL 0.8772 ± 0.0397 0.9018 ± 0.0387 0.7812 ± 0.0675 0.8361 ± 0.0509 189.4 M 1.43 M

Table 2. Experimental results of the CAMELYON-16 dataset (magnified 10×). The corresponding
standard deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score

Mean pooling 0.6367 ± 0.0197 0.6074 ± 0.0495 0.1062 ± 0.0662 0.1833 ± 0.1013
Max-pooling 0.6440 ± 0.0357 0.5783 ± 0.0836 0.2938 ± 0.2021 0.3600 ± 0.1930
ABMIL [29] 0.8346 ± 0.0393 0.8302 ± 0.0565 0.6625 ± 0.1388 0.7561 ± 0.0787
DSMIL [18] 0.7920 ± 0.0842 0.7863 ± 0.1121 0.5188 ± 0.2146 0.6390 ± 0.2177
CLAM [31] 0.8413 ± 0.0351 0.8392 ± 0.0646 0.6812 ± 0.0622 0.7737 ± 0.0510

TransMIL [30] 0.8019 ± 0.0514 0.8128 ± 0.0715 0.6938 ± 0.0906 0.7372 ± 0.0627
DAMIL 0.8597 ± 0.0375 0.8470 ± 0.0690 0.6750 ± 0.1012 0.7903 ± 0.0696

Additionally, we conducted supplementary experiments on the TCGA Lung Cancer
dataset, as shown in Table 3. This dataset is renowned for its high heterogeneity and diverse
sample sources, featuring significant genetic and epigenetic differences across various
subtypes such as lung adenocarcinoma and lung squamous cell carcinoma. Furthermore,
sample imbalance and potential technical noise adds complexity to the clinical setting.
In this challenging context, the DAMIL model demonstrated exceptional competitiveness
and broad adaptability. Consistent with the results on the CAMELYON-16 dataset, DAMIL
also excelled in this experiment, particularly in terms of stability, with leading ACC,
AUC, recall, and F1-Scores, further underscoring its robustness. In this new experimental
environment, DAMIL not only maintained outstanding performance but also exhibited
excellent adaptability to diverse pathological image data, reinforcing our conclusion that
DAMIL is a powerful tool for handling imbalanced and complex pathological image
data. These results not only highlight DAMIL’s efficiency with slide-level labels but also
underscore its broad potential for application in the field of pathological image analysis.

Table 3. Experimental results of the TCGA Lung Cancer dataset (magnified 20×). The corresponding
standard deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score

Mean pooling 0.7218 ± 0.0235 0.7423 ± 0.0515 0.2135 ± 0.0382 0.3146 ± 0.0265
Max-pooling 0.7449 ± 0.0331 0.7903 ± 0.0721 0.3622 ± 0.0651 0.4261 ± 0.1032
ABMIL [29] 0.8541 ± 0.0160 0.8463 ± 0.1012 0.6825 ± 0.1301 0.7726 ± 0.0412
DSMIL [18] 0.8332 ± 0.0275 0.8595 ± 0.1306 0.6203 ± 0.0147 0.7581 ± 0.0674
CLAM [31] 0.8615 ± 0.0191 0.8761 ± 0.0754 0.6964 ± 0.0521 0.8192 ± 0.0486

TransMIL [30] 0.8472 ± 0.0177 0.8624 ± 0.0972 0.7143 ± 0.1002 0.7653 ± 0.0615
DAMIL 0.8703 ± 0.0207 0.9123 ± 0.0146 0.7692 ± 0.0514 0.8436 ± 0.0713
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4.3. Experimental Analysis

In order to delve into the sophistication of our DAMIL framework in the field of MIL,
we have employed T-SNE, an exceptional nonlinear dimensionality reduction technique,
to conduct clustering analysis and visualization processing on the bag-level feature vectors
generated by several state-of-the-art models on the test set. As revealed in Figure 5, our
visualization results transform data points in the high-dimensional feature space into
interpretable two-dimensional charts, where the red and blue dots symbolize positive
and negative WSIs, respectively. In Figure 5, it is evident that feature vectors with the
same labels cluster together well, forming distinct partitions. Moreover, there are clear
boundaries between clusters of different labels, showcasing a high degree of discrimination
among the feature vectors. This not only unveils the powerful capability of the DAMIL
model in feature learning, but also emphasizes its noticeable advantage in distinguishing
different categories. The experimental results strongly validate the effectiveness of DAMIL
in accurately identifying and categorizing bag-level features from complex biomedical
image datasets. These clustering tendencies and clear classification boundaries directly
reflect the potential of the model in practical applications, particularly in clinical settings
requiring fine discrimination. Through these intuitive visualizations, the performance of
the DAMIL model is thoroughly showcased, thereby providing a reliable foundation for
our research in the field of MIL.

Figure 5. Visualization of the clustering of package representations generated by the model using
T-SNE. From left to right, the clustering results for ABMIL [29], DSMIL [18], and DAMIL.

The core of the DAMIL framework lies in its advanced processing pipeline, which
first encodes the input feature vector matrix with equal dimensions. It then sequentially
passes through the channel attention module and spatial attention module to highlight the
most influential features and crucial instances in the data, respectively. This dual-attention
strategy effectively captures the complex interactions between deep features and instances.
Ultimately, with the help of a decoder, the model re-maps the encoded features for accurate
prediction and classification.

To further enhance the interpretability of the results, we employed the Grad-CAM
technique. This technique reveals the contribution of each instance in the network’s
predictions by assigning an activation value to each instance. We normalize these activation
values and precisely map them back to the corresponding spatial positions of the original
WSI, generating intuitive visualizations. As shown in Figure 6, this figure includes the
results of comparative analysis, where the first column displays pixel-level annotations of
the WSI, and the subsequent three columns represent the interpretable heatmaps generated
by the ABMIL, DSMIL, and DAMIL models at the corresponding positions in the WSI.

Upon careful observation of Figure 6, we can clearly see that the DAMIL model
not only identifies more positive instances than the ABMIL and DSMIL models but also
exhibits higher accuracy in depicting the boundaries between tumors and normal tissues.
Particularly commendable is the high consistency between the interpretable heatmaps
generated by DAMIL and the pixel-level annotations. This not only demonstrates DAMIL’s
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exceptional performance in capturing details but also reinforces its practical value in
medical image processing, especially in scenarios that require precise determination of
tumor edges. Through this in-depth visual analysis, we not only elucidate the effectiveness
of the DAMIL model but also provide the medical community with a powerful tool to
improve diagnostic accuracy and enhance the ability to interpret model decisions.

Figure 6. Interpretable heatmap of a WSI. The initial column displays pixel-level annotations
of lymph node metastasis in a WSI, while the subsequent columns showcase the interpretable
heatmaps corresponding to the red-boxed regions of the WSI acquired via ABMIL [29], DSMIL [18],
and DAMIL, respectively.

4.4. Ablation Study

We conducted a series of ablation experiments based on the CAMELYON-16 dataset,
including comparative experiments of different methods for computing spatial and channel
attention, as well as comparative experiments for different combination patterns of the
two attention modules. The details of the experiments are described in detail below.

The channel attention mechanism is devoted to highlighting key features in the net-
work and achieving this goal by performing pooling operations in the dimension of instance
quantity. This study delved into various approaches to effectively capture channel attention,
including the separate use of average pooling, the separate use of max-pooling, as well as
the combination of these two pooling methods. In the final approach, we employed an MLP
with shared parameters to parallelly process the results of both pooling methods, ultimately
obtaining a complete representation of channel attention through element-wise summation.
According to the comparative results shown in Table 4, the strategy of combining average
pooling and max-pooling significantly outperforms individual pooling methods in terms of
performance. The reason for this significant performance improvement may be that average
pooling and max-pooling represent two complementary ways of extracting information.
Average pooling preserves the overall background information in channels by extracting
the average value of features, while max-pooling highlights key signals by focusing on
the strongest responses. This fusion approach allows the network to integrate global and
local information, forming a more comprehensive and balanced feature representation.
Moreover, the parameter sharing mechanism of MLP further enhances learning efficiency,
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enabling the model to finely adjust attention allocation to features. This comprehensive
approach not only fully utilizes the advantages of the two pooling techniques but also
provides an effective way to accurately capture and leverage features that contribute to the
task, thereby significantly improving the overall performance of the model.

In the realm of advanced feature representation, spatial attention plays an integral role,
aiming to emphasize crucial instances, which is achieved through pooling operations along
the channel dimension. In order to extract effective spatial attention, this study explored
different strategies, namely employing average pooling, max-pooling, and a combination
of both. Unlike the generation of channel attention, for spatial attention, we experimented
with two integration techniques: one through element-wise addition and the other through
concatenation followed by processing with a fully connected layer. As depicted in Table 5,
experimental results demonstrate that generating spatial attention by concatenating the
results of average and maximum pooling, followed by a fully connected layer, yields
significantly superior effects compared to other experimental settings. The underlying
reason behind this outcome can be attributed to the concatenation strategy, which offers
a richer and more detailed combination of features. Unlike element-wise addition, this
approach avoids losing any information from individual pooling operations. Concatenation
preserves both the global features induced by average pooling and the salient features
extracted by max-pooling, which can be comprehensively optimized and integrated during
subsequent processing with a fully connected layer. As a result, the model gains a more
precise ability to identify and emphasize crucial instances, thereby crucially enhancing
its predictive performance. This signifies that, when designing attention mechanisms,
the rational fusion of different information types is pivotal in enhancing the efficacy of
spatial attention.

To validate the performance of DAMIL, we have devised a series of experiments aimed
at assessing the individual usage of the modules as well as their combined applications.
Furthermore, we have conducted comparative analyses of various approaches for inte-
grating these modules. The results indicate a significant improvement in experimental
outcomes when the channel attention and spatial attention modules are fused together,
as depicted in Table 6. Further analysis reveals that integrating the channel attention mod-
ule before the spatial attention module yields superior performance. The effectiveness of
this combination can be examined from several perspectives. First, the introduction of the
channel attention module plays a crucial role in feature selection. In deep learning model
processing, different feature channels often carry semantic information at varying levels
and domains. The channel attention mechanism can dynamically score the importance of
each channel based on its contribution to the task. This early filtering allows the model
to discard irrelevant or redundant features from the outset, providing a more precise and
optimized foundation for subsequent module operations. Secondly, with pre-processing
by channel attention, the highlighted key information in the feature maps offers a clearer
and more defined target for spatial attention. Spatial attention can then focus on detailed
analysis of local areas and the exploration of feature relationships using the refined features.
This processing order not only enhances spatial attention’s sensitivity to local patterns
but also increases the model’s overall discriminative power by reducing interference from
secondary information. Moreover, this strategy of selection before localization fully exploits
the potential of attention mechanisms to refine information progressively. Throughout this
process, the flow of information is optimized step by step, transforming from vague to clear,
from scattered to focused. This hierarchical application of attention equips the model with
a layered ability to analyze complex scenarios, maintaining high accuracy and robustness
when handling various input types. From an information theory perspective, this config-
uration can be viewed as a process of progressive entropy reduction, thereby improving
the model’s information utilization efficiency and learning robustness. By mitigating inter-
ference from irrelevant information, this approach aids in developing more efficient and
universally applicable deep learning architectures. In conclusion, these findings expand
the understanding of leveraging attention mechanisms to enhance model performance in
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the field of deep learning, providing strong theoretical and empirical support for future
research directions and performance optimization strategies.

We have not only explored the effects of two attention modules on predictive perfor-
mance, but also compared and analyzed the individual impacts of the encoder, decoder,
and residual connections in the framework. As shown in Table 7, when the encoder, de-
coder, and residual connections are removed separately, there is a decrease in predictive
performance. Specifically, the absence of the encoder has the least impact on the model’s
performance, while the absence of residual connections has the most significant negative
impact, as evidenced by both the AUC value and recall rate evaluation metrics. The encoder
plays a vital role in extracting and transforming the input data features, so the removal
of the encoder may indicate that the model cannot fully capture the relevant information
in the input data. However, the subsequent modules may compensate for this loss to
some extent, given their inherent strength. On the other hand, the decoder is responsible
for reconstructing the target output based on the output of the dual-attention model. Its
absence may directly result in a deficiency in predictive functionality. As for residual
connections, they are commonly used to alleviate the issue of gradient vanishing during
network training, ensuring the effective flow of information through network layers. With-
out residual connections, network training may become more challenging, which explains
why their absence has the greatest impact on predictive results.

Table 4. Comparison of different implementations of channel attention. The corresponding standard
deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score

AvgPool 0.8747 ± 0.0310 0.8758 ± 0.0579 0.7312 ± 0.0725 0.8226 ± 0.0478
MaxPool 0.8772 ± 0.0320 0.8652 ± 0.0490 0.7375 ± 0.0968 0.8253 ± 0.0542

AvgPool + MaxPool 0.8772 ± 0.0397 0.9018 ± 0.0387 0.7812 ± 0.0675 0.8361 ± 0.0509

Table 5. Comparison of different implementations of spatial attention.The corresponding standard
deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score

AvgPool 0.8798 ± 0.0466 0.8744 ± 0.0516 0.7625 ± 0.0823 0.8343 ± 0.0679
MaxPool 0.8747 ± 0.0389 0.8717 ± 0.0507 0.7438 ± 0.1158 0.8230 ± 0.0645

AvgPool + MaxPool 0.8747 ± 0.0389 0.8740 ± 0.0654 0.7312 ± 0.0934 0.8215 ± 0.0613
[ AvgPool, MaxPool] 0.8772 ± 0.0397 0.9018 ± 0.0387 0.7812 ± 0.0675 0.8361 ± 0.0509

Table 6. Comparison of channel attention and spatial attention used alone and in different combi-
nations. + represents the parallel connection; → represents the series direction.The corresponding
standard deviations are indicated by ±. The best experimental results are highlighted in bold.

Method Accuracy AUC Recall F1-Score

Only Channel 0.8798 ± 0.0347 0.8686 ± 0.0581 0.7312 ± 0.1104 0.8255 ± 0.064
Only Spatial 0.8723 ± 0.0413 0.8683 ± 0.0687 0.7312 ± 0.1319 0.8155 ± 0.0730

Channel + Spatial 0.8748 ± 0.0406 0.8863 ± 0.0537 0.7688 ± 0.1104 0.8294 ± 0.0596
Spatial → Channel 0.8772 ± 0.0462 0.8740 ± 0.0378 0.7500 ± 0.1021 0.8284 ± 0.0679
Channel → Spatial 0.8772 ± 0.0397 0.9018 ± 0.0387 0.7812 ± 0.0675 0.8361 ± 0.0509

Table 7. Comparison of experiments with and without codec module and residual connection.
The corresponding standard deviations are indicated by ±. The best experimental results are high-
lighted in bold.

Method Accuracy AUC Recall F1-Score

DAMIL w/o Encoder 0.8722 ± 0.0462 0.8821 ± 0.0389 0.7812 ± 0.0793 0.8302 ± 0.0620
DAMIL w/o Decoder 0.8672 ± 0.0354 0.8796 ± 0.0540 0.7375 ± 0.0823 0.8148 ± 0.0555
DAMIL w/o ResConn 0.8748 ± 0.0388 0.8503 ± 0.0612 0.7062 ± 0.0979 0.8156 ± 0.0662

DAMIL 0.8772 ± 0.0397 0.9018 ± 0.0387 0.7812 ± 0.0675 0.8361 ± 0.0509
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5. Conclusions and Future Work

In this study, we introduced a novel dual-attention-based framework for multiple
instance learning, devised to bolster the representational prowess of MIL paradigms. Our
method demonstrated marked superiority over extant methodologies upon assessment
with the prevalently employed public dataset, CAMELYON-16. The cornerstone of our
technological breakthrough is the adept integration of a dual-attention mechanism within
the milieu of multiple instance learning. When juxtaposed with antecedent models that
are reliant on a singular attention mechanism, our proposed model exhibited an enhanced
capacity for discerning more distinctive representations of whole-slide images (WSIs),
which is pivotal for precise label prediction. The developed model proficiently under-
scored the paramount instances and their intrinsic salient features. To substantiate the
model’s efficacy, rigorous experimental comparisons against a gamut of leading-edge
models were carried out, with DAMIL demonstrating preeminence over all the current
state-of-the-art models. To augment model interpretability, we elucidated the model’s
predictive process through visualization techniques, which revealed its proficiency in
more accurately identifying positive instances and delineating clear demarcations between
tumorous and normal tissues, in concordance with pixel-level annotations rendered by
pathologists. We are confident that our contributions represent a significant advancement
in computational pathology for tumor diagnosis assistance and anticipate that DAMIL will
catalyze progressive developments in MIL-based WSI categorization.

Future research endeavors will be directed towards the conception of more sophis-
ticated channel and spatial attention models, as well as feature aggregation frameworks,
with the aim to meticulously capture salient macroscopic or microscopic features within
WSIs. These attributes are hypothesized to be of paramount importance for the prediction
of WSI classification, with the potential to further elevate the benchmark for experimental
findings. To enhance the scalability of DAMIL and its application in practical clinical set-
tings, we plan to explore optimization strategies for the model. This will involve employing
model compression techniques to reduce computational burden and implementing par-
allel computing strategies to increase processing efficiency. These optimization measures
will help maintain high performance while enabling the model’s real-time application in
clinical environments. Through these approaches, we aim to further advance DAMIL’s
practicality in the field of pathological image analysis, facilitating its seamless integration
into clinical workflows.
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