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Abstract: Due to the inherent limitations of a single viewpoint, reconstructing 3D human meshes
from a single image has long been a challenging task. While deep learning networks enable us to
approximate the shape of unseen sides, capturing the texture details of the non-visible side remains
difficult with just one image. Traditional methods utilize Generative Adversarial Networks (GANs)
to predict the normal maps of the non-visible side, thereby inferring detailed textures and wrinkles
on the model’s surface. However, we have identified challenges with existing normal prediction
networks when dealing with complex scenes, such as a lack of focus on local features and insufficient
modeling of spatial relationships.To address these challenges, we introduce EMAR—Enhanced
Multi-scale Attention-Driven Single-Image 3D Human Reconstruction. This approach incorporates
a novel Enhanced Multi-Scale Attention (EMSA) mechanism, which excels at capturing intricate
features and global relationships in complex scenes. EMSA surpasses traditional single-scale attention
mechanisms by adaptively adjusting the weights between features, enabling the network to more
effectively leverage information across various scales. Furthermore, we have improved the feature
fusion method to better integrate representations from different scales. This enhanced feature fusion
allows the network to more comprehensively understand both fine details and global structures
within the image. Finally, we have designed a hybrid loss function tailored to the introduced attention
mechanism and feature fusion method, optimizing the network’s training process and enhancing the
quality of reconstruction results. Our network demonstrates significant improvements in performance
for 3D human model reconstruction. Experimental results show that our method exhibits greater
robustness to challenging poses compared to traditional single-scale approaches.

Keywords: enhancing multi-scale attention; single image; normal map; human reconstruction

1. Introduction

In the fields of computer vision and graphics, reconstructing 3D human models from
a single image is both a challenging and significant task [1–5]. Compared to multi-view
reconstruction, single-image reconstruction offers advantages such as ease of data acquisi-
tion, lower costs, and wide applicability. These benefits make single-image reconstruction
particularly promising for various applications, providing rich possibilities for augmented
reality, virtual try-on, human–computer interaction, and animation production [6–10].

Recent methods leverage implicit functions to generate the final human mesh [11,12],
thus avoiding explicit mesh partitioning and more naturally capturing shapes and details.
Implicit functions offer greater flexibility by producing outputs at arbitrary resolutions
and densities [13]. Another key advantage is their ability to significantly reduce memory
consumption while maintaining the accuracy and quality of the models. As a result,
implicit functions are gaining increasing attention from researchers in the field of 3D
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human reconstruction. The flexibility of implicit functions allows for the smooth handling
of complex geometries and fine details, which is particularly beneficial for applications
requiring high precision, such as medical imaging and detailed character modeling in
video games.

Despite the development of robust representation functions, learning the detailed
textures of the non-visible side from a single image remains a major challenge. Existing
methods often employ generative adversarial networks to predict normal maps for the non-
visible side, thereby providing rich details and clothing the bare parameterized models with
intricate garments. Pifu [11] utilizes a pixel-aligned implicit function for high-resolution
clothed human digitization, effectively capturing local details; however, its reliance on local
information may lead to an oversight of the global structure. Similarly, while Pifuhd [13]
improves upon this approach with a multi-level pixel-aligned implicit function, it still
faces challenges in comprehensively capturing detailed features of the entire body. This
limitation can result in the loss of important details in complex scenarios, negatively
impacting the final output. Econ [14] aims to optimize the representation of clothed human
bodies through normal integrals, but it mainly focuses on local feature extraction, which
may lead to a lack of overall structure coherence. This limitation is particularly evident
in complex scenes. Additionally, generating normal maps requires the accurate modeling
of different parts of the input image. Traditional CNN networks, constrained by fixed
convolution kernel sizes, struggle to capture spatial relationships across various scales and
sizes, resulting in insufficient modeling capacity for spatial relationships between different
scale features.

Inspired by the powerful attention mechanism [15], we propose an Enhanced Multi-
Scale Attention module to improve normal map prediction for clothed human bodies.
This mechanism enables the network to learn discriminative features at different scales,
improving modeling for complex scenes and allowing adaptive weight adjustment based
on spatial relationships. Traditional CNNs, with limited feature fusion, struggle to capture
complex scene characteristics. Our approach enhances both detail and global structure
capture, boosting accuracy and robustness in normal prediction. Additionally, a hybrid
loss function is introduced to reduce noise and discontinuities, producing smoother and
more coherent normal maps. Our key contributions are as follows:

• We propose a novel network model, Enhanced Multi-Scale Attention-Driven 3D
Human Reconstruction from Single Image (EMAR), for robustly reconstructing 3D
human meshes from a single image.

• To effectively capture and integrate global and local features, we introduce an en-
hanced multi-scale attention module that helps the network learn more discriminative
feature representations at different scales, thereby improving its ability to model
complex scenes.

• For effective multi-scale information fusion and interaction, we design a novel feature
fusion module based on the enhanced multi-scale attention module, improving the
accuracy and robustness of normal prediction.

• We introduce a hybrid loss function to supervise network training and ensure fast
convergence, enhancing the network’s robustness in handling complex structures and
resulting in high-fidelity 3D human models.

2. Related Works

Single-image 3D human reconstruction. In the field of 3D human reconstruction
from a single image, research has shown clear progression, evolving from early volumetric
methods to fine-grained implicit representations. Early works, such as BodyNet [8], pio-
neered the use of deep learning to predict 3D human volumes directly from RGB images,
though they struggled with handling occlusions. Mid-stage research focused on improv-
ing both reconstruction accuracy and robustness. For instance, Lasor [16] used synthetic
occlusion-aware data and neural mesh rendering to enhance the accuracy of body pose
and shape, while Cliff [17] incorporated scene information to improve performance in
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complex environments. Recent studies have shifted toward ultra-fast and highly detailed
reconstructions. Ultraman [18] achieved fast, fine-grained 3D reconstruction suitable for
real-time applications, and Human as Points [19] introduced a method that generates
precise point clouds directly from single-view images, enabling detailed geometric repre-
sentation. Additionally, implicit methods like Pamir [20] and IUVD [21] explored efficient
and compact implicit representations.

The latest advancements, such as Implicit Clothed Human Reconstruction [22], com-
bine self-attention mechanisms with Signed Distance Functions (SDFs) to achieve precise
and robust reconstruction of clothed human bodies, offering more realistic models that
enhance virtual and augmented reality applications.

However, most existing methods primarily capture local features while overlooking
global information. This imbalance makes it difficult to maintain accuracy and coherence
in complex scenes, particularly when dealing with intricate clothing details and dynamic
poses. Addressing these deficiencies is crucial for improving the robustness of reconstruc-
tion techniques.

Attention mechanism. In the field of 3D human reconstruction, attention mechanisms
have become a pivotal tool, enhancing accuracy, optimizing processes, and improving
model generalization. Wei et al. [23] pioneered temporal attention mechanisms to capture
3D human poses and shapes from monocular video, which significantly improved recon-
struction accuracy and handling of temporal information. Building on this, Cho et al. [24]
introduced a cross-modal attention-based method using Transformers for 3D human mesh
recovery, effectively fusing image, depth map, and keypoint data and leading to greater
robustness. Xue et al. [25] further refined this approach by incorporating adaptive token
sampling into Transformers, enhancing both the speed and precision of mesh reconstruc-
tion. Lin et al. [26] streamlined human pose and mesh reconstruction through an end-to-end
Transformer model, capturing intrinsic relationships between human pose and shape. For
multi-person 3D reconstruction, Qiu et al. [27] applied a progressive video Transformer
method to accurately reconstruct multiple humans in dynamic sequences.

Attention mechanisms have also been applied to clothed human reconstruction, as
demonstrated by Zhang et al. [28] with the Side-View Conditioned Implicit Function (SIFU),
and Li et al. [29] with the R3D-SWIN model, which uses shifted window attention for single-
view 3D reconstruction. These advancements showcase the significant potential of attention
mechanisms in enhancing 3D human reconstruction across various scenarios.

However, despite these advancements, many methods still face challenges in ef-
fectively integrating multi-scale features, which limits their ability to accurately model
complex human shapes and movements.

3. Methodology

In this section, we present the details of our proposed EMAR. Section 3.1 describes the
network overview of our EMAR. Section 3.2 explains the EMSA module. Section 3.3 shows
the feature fusion module. Section 3.4 introduces our constructed hybrid loss function.

3.1. Network Overview

Our proposed EMAR, as shown in Figure 1, takes an RGB image Iin as input and
obtains the SMPL(-X) mesh M through human pose estimation. Either the SMPL or
SMPL-X mesh can be used interchangeably depending on the requirements. Based on our
experiments, the choice between these two parameterized models has minimal impact on
the final results. However, since this is not the primary focus of our research, we will not
delve into further details on this aspect. Using Pytorch3D 0.7.1 rendering, we generate the
normalized maps N(V/IN) for both the visible and invisible sides of the mesh. These maps,
along with the input image, are concatenated and fed into the clothing-normal prediction
network. The network employs an enhanced multiscale attention module to extract features
at multiple scales and a feature fusion module to combine these features, resulting in more
accurate front and back clothing-normal maps NCB(V/N). Finally, by combining SDF
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features extracted from M, we predict the final 3D human reconstruction result. Below, we
focus on detailing our innovative contributions.

Figure 1. Overview of our proposed EMAR. Given a single-view image Iin and the corresponding
SMPL-X mesh M, we first prepare the normal maps N(V/IN) and SDF features for M. Our enhanced
multi-scale attention module aids the network in learning more discriminative feature representations
across different scales. The proposed feature fusion module further enhances the feature representa-
tion, producing smoother and more continuous normal maps NCB(V/N). Finally, an Implicit Function
(IF) is utilized to infer the occupancy field Ô of the clothed human body.

3.2. Enhanced Multi-Scale Attention Module

In the following sections, we will provide a detailed description of the Enhanced
Multi-Scale Attention Module (EMSA). As illustrated in Figure 2, the input features are
denoted as X ∈ R(c×h×w), where c refers to the number of channels, and h and w represent
the spatial dimensions of the input features. To enhance the learning and representation
capabilities of features, we first divide the features into g groups, with each group having
c/g channels. In this paper, g is set to 3.

We map the input features of each group into four different branches. The second and
third branches undergo horizontal and vertical pooling, respectively, extracting global infor-
mation xh and xw along the corresponding directions. These features are then concatenated
and processed through a 1 × 1 convolution to further fuse the global information in the
height and width directions, forming a new feature map. Subsequently, the fused feature
map is split along the height and width directions to obtain new nxh and nxw values. To
constrain the resulting values within the range [0, 1], nxh and nxw are transformed non-
linearly through sigmoid activation functions. They are then combined with the original
feature map of the first branch to inject global information along the height and width
directions for feature enhancement. Normalization is performed to ensure that the mean
feature value within each group is 0 and the variance is 1, further stabilizing the feature
distribution. The process is outlined as follows:

f1 = GN(σ(nxh)× σ(nxw)× groupx)

where f1 represents the output feature map, GN represents the group normalization func-
tion, σ represents the sigmoid function, and groupx represents the grouped data. After
applying the sigmoid function to nxh and nxw, element-wise multiplication is performed
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with groupx, and the resulting feature map is then processed through the group normaliza-
tion function. nxh and nxw are obtained through the following functions:

(nxh, nxw) = split(conv1 × 1(Wavgpool(groupx)

+Havgpool(groupx)))
(1)

where split denotes the splitting function. Wavgpool and Havgpool respectively denote
average pooling along the horizontal and vertical directions.

Figure 2. Enhanced Multi-Scale Attention Module.

For the fourth branch, we directly apply two 3 × 3 convolutions to increase the recep-
tive field and enhance feature representation. Subsequently, the ReLU activation function
is utilized to enhance the non-linear representation capability of features. Then, another
3 × 3 convolution is performed to further extract and enhance features. Finally, the result
of the fourth branch is combined with the results of the first three branches, which have
undergone group normalization, and inputted into the feature fusion module (Section 3.3)
for integration, ultimately yielding the final feature map. The data processing procedure
for the fourth branch is outlined as follows:

f2 = conv3 × 3(ReLU(conv3 × 3(conv3 × 3))) (2)

Here, f2 represents the result of processing in the fourth branch. The subsequent
results from these two processes are fed into the feature fusion module, resulting in the
final outcome:

fout = f f (f1, f2) (3)

where fout represents the final output result, f f denotes the feature fusion module, and
further details will be elaborated in Section 3.3.

3.3. Feature Fusion Module

In 3D human reconstruction tasks, models need to handle feature information from
different scales and resolutions. In complex scenes, features from different scales may con-
tain diverse crucial information. However, conventional Convolutional Neural Networks
(CNNs) often rely on simple convolution and pooling operations to fuse these feature
representations. This approach fails to adequately capture the complex relationships and
interactions among features at different scales, leading to insufficient modeling capabilities
for complex scenes. To address these limitations, we propose a Feature Fusion Module
(FFM) aimed at enhancing the model’s integration capability of features at different scales.
This module achieves better capture of details and global structures in complex scenes
through fusion of multi-scale features and adaptive weight adjustments.
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Figure 3 illustrates our proposed Feature Fusion Module, which efficiently integrates
multi-scale features through a series of refined operations, thereby enhancing the model’s
adaptability in handling complex scenes. Specifically, this module receives feature informa-
tion from two input feature maps (Input1 and Input2) and performs a series of processing
operations on these two feature maps. Firstly, adaptive average pooling (AvgPool) is
applied to each input feature map separately, compressing the global information of the
feature maps into 1 × 1 feature maps to extract global features. Then, the pooled feature
maps are reshaped to match subsequent matrix operations.

Reshape(AvgPool(Input) =
1

H × W

H

∑
i=1

W

∑
j=1

Input(i, j)) (4)

Figure 3. Feature Fusion Module.

Then, the reshaped feature maps are subjected to the Softmax function to generate
normalized weight matrices. These weight matrices reflect the importance of the feature
maps at a global scale. Subsequently, through matrix multiplication (Matmul), these weight
matrices are multiplied by the corresponding feature matrices to compute the fused weights.
This step ensures that information from the feature maps at a local scale is preserved, and
by weighting the fusion of global and local features, the expressive power of the features
is enhanced.

f = Softmax(AvgPool(Input)) (5)

Weights = Matmul(( f1), Reshape(Input2)) + Matmul(( f2), Reshape(Input1)) (6)

Here, Input denotes two inputs, Input1 and Input2, where f1 represents the processed
value of Input1, and f2 represents the processed value of Input2.

After generating the fusion weights, the initial feature maps are combined with the
fused weights through element-wise multiplication. This step enables the feature maps to
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adaptively adjust the weights of different features, thereby better integrating multi-scale
feature information. Finally, after passing through the Sigmoid activation function, the
final output feature map (Output) is generated. This feature fusion module significantly
enhances the model’s capability to capture both fine details and global structures, improving
its adaptability in complex scenes. It also boosts the accuracy and robustness of normal
prediction, effectively addressing the issue of information loss commonly seen in traditional
convolutional neural networks when handling multi-scale features.

Output = σ(sum(Weights1, Weights2) + groupx) (7)

3.4. Hybrid Loss Function

In normal map prediction, high-frequency noise and irregular edges can degrade
the results. To mitigate this, we introduce a mixed loss function consisting of L1 loss,
VGG perceptual loss, and Total Variation (TV) regularization. Each loss function has its
unique strengths and weaknesses. The L1 loss is simple and effective, directly measuring
the absolute error between the predicted and target values, thereby improving geometric
accuracy. However, it fails to capture high-level semantic features and may overlook fine
details. The VGG perceptual loss, by comparing feature space representations using a
pre-trained VGG network, enhances the visual quality of the reconstruction, especially in
terms of details and textures, but it comes with higher computational cost and emphasizes
visual perception rather than geometric accuracy. The Total Variation (TV) regularization
helps to suppress noise and maintain the smoothness of the normal map, reducing artifacts,
but it may lead to excessive smoothing, potentially diminishing fine details in the image.
By combining these loss functions, our hybrid loss achieves a balance between geometric
accuracy, visual quality, and noise reduction. In the actual implementation, these losses
are calculated separately for the visible and invisible parts of the normal map and then
combined into the total loss. Through extensive experiments, we have validated that this
hybrid loss function design achieves a good balance between accuracy and visual quality.
The specific experimental results show that, compared to individual loss functions, our
hybrid loss significantly improves reconstruction quality (see Section 4.2 for the results and
analysis of the loss function ablation study).

L1 = ∥pred − target∥1 (8)

LVGG = ∥ϕ(pred)− ϕ(target)∥2 (9)

LTV = ∑
(i,j)

((predi+1,j − predi,j)
2 + (predi,j+1 − predi,j)

2) (10)

Here, pred represents the predicted normal map. Additionally, in TV regularization,
there is usually a regularization weight λ to control the influence of the regularization term
on the total loss, which typically ranges from positive real numbers, commonly between
0.01 and 10. In this paper, λ = 0.1. Next, we calculate the losses separately for the visible
and invisible sides of the normal map:

Ltotal_V = 5.0 × LL1_V + LVGG_V + λreg × LTV_V (11)

Ltotal_IN = 5.0 × LL1_IN + LVGG_IN + λreg × LTV_IN (12)

Finally, the total losses of the frontal and back normals are combined to form the final
total loss:

Lfinal = [Ltotal_V, Ltotal_IN] (13)

4. Experiments

In this section, we verify the feasibility of the algorithm through extensive experi-
ments. Section 4.1 introduces the dataset used, the experimental settings, and the three
metrics adopted. Section 4.2 outlines the comparison results with state-of-the-art methods.
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Section 4.3 provides an ablation study and related discussions. Section 4.4 introduces the
failure cases and analysis.

4.1. Datasets and Implementation

The Thuman2.0 [30], CAPE [31] and RenderPeople [32] datasets are widely used in
computer vision, each offering distinct features. Thuman2.0 focuses on human pose estima-
tion, providing diverse samples that capture how different poses affect body morphology,
essential for accurate 3D human reconstruction. CAPE, in contrast, includes images and
models of clothed humans, where clothing occlusion and shape greatly influence body
appearance. These factors are critical in training models, making both datasets ideal for
our study. The RenderPeople dataset complements these by offering high-quality 3D scans
of clothed humans in a variety of poses and clothing styles, further enriching the diversity
of samples for testing model generalization. These factors make all three datasets ideal for
our study.

Our network was trained separately on the Thuman2.0 and CAPE datasets. For the
Thuman2.0 dataset, we split it into a training set consisting of 500 models, a validation set
containing 21 models, and a test set with 5 models. For the CAPE dataset, we used the
entire dataset for training. We then evaluated our method on the CAPE, Thuman2.0, and
RenderPeople datasets.

To better analyze the network’s generalization ability on complex poses, we further
divided the CAPE dataset into “CAPE-Hard” and “CAPE-Easy” categories based on the
difficulty of the poses at test time. The “CAPE-Hard” category contains 100 models, which
include more challenging poses, while the “CAPE-Easy” category consists of 50 models
with relatively simpler poses. This categorization allowed us to test the generalization
ability of the network across poses of varying difficulty.

Additionally, the RenderPeople dataset includes highly detailed scans of 10 clothed
human subjects in natural poses. The diversity of clothing and poses in this dataset
allowed us to further evaluate the network’s performance under real-world conditions.
This additional evaluation helps provide a more comprehensive analysis of the method’s
generalization ability.

The proposed method was implemented on a desktop computer with an Intel(R)
Core(TM) i9-10980XE CPU @ 3.00 GHz (Intel Corporation, Santa Clara, CA, USA), NVIDIA
RTX A6000 GPU (NVIDIA Corporation, Santa Clara, CA, USA), and 128 GB of memory
(Kingston Technology Corporation, Fountain Valley, CA, USA). The EMAR model, as
proposed in this paper, supports end-to-end training and utilized the Adam optimizer with
an initial learning rate of 1 × 10−4, a batch size of 4, and was trained for 20 epochs.

Considering the characteristics of point clouds, we opted to use three specific loss
functions: the point-to-surface distance (p2s), Chamfer Distance, and Normal Difference.
These loss functions are particularly well suited for our task, as they directly measure the
geometric accuracy and surface smoothness of the 3D models. The p2s loss ensures that the
generated point cloud closely aligns with the target surface, Chamfer Distance minimizes
the overall discrepancy between two point clouds, and Normal Difference helps maintain
consistent and accurate surface normals, thereby enhancing the fidelity of the reconstructed
3D geometry.

4.2. Comparison Experiments

Qualitative Experiments. As shown in Figure 4, the qualitative experimental results
demonstrate that our method outperformed PIFu [11], PaMIR [20], and 2K2K [33]. PIFu
leverages pixel-aligned features to infer 3D geometry from 2D images, but its feature
representation is often insufficient for capturing fine details in complex regions. PaMIR
improves upon PIFu by introducing poseawareness, yet it struggles to generalize well
to unseen poses and complex geometric variations. 2K2K, while utilizing a hierarchical
approach, faces challenges in accurately estimating depth information from low-resolution
images, leading to less precise surface reconstructions.
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Figure 4. Qualitative experiments on in-the-wild photos, where green is the front of the model
and blue is the back of the model: Column (a) shows the input images, column (b) presents the
results of EMAR, column (c) shows the results of PaMIR, column (d) presents the results of PIFu,
column (e) shows the results of ICON, and column (f) shows the results of 2K2K.

In contrast, our improvement is attributed to the incorporation of the Enhanced Multi-
Scale Attention Module, which enables our model to focus on more discriminative features
across multiple scales. This helps in capturing finer details and better handling complex
geometric structures that PIFu, PaMIR, and 2K2K struggle with. For example, the 2K2K
method encounters difficulties in depth estimation due to the lower resolution of input
images, which results in less clear representations of the human form.

Compared to ICON [5], our method shows significant improvements in detail accuracy,
as illustrated in Figure 5. ICON primarily relies on implicit surface reconstruction and
can generate reasonably detailed 3D human models. However, its performance is limited
by the lack of explicit surface normal prediction, which can result in less accurate surface
details. In contrast, our method predicts more accurate normal maps, enabling the model
to capture finer surface details, leading to superior performance in both qualitative and
quantitative measures. This richer surface detail information enhances our model’s ability
to reconstruct more complex human forms.

Table 1 compares the time complexity of various 3D human reconstruction meth-
ods. PIFu exhibits a quadratic complexity of O(n²), making it computationally more
demanding as input size increases. In contrast, Pamir, ICON, 2K2K, and EMAR all
have a linear complexities of O(n), indicating that they are more efficient and scalable
for larger datasets. Overall, newer methods showed improved computational efficiency
while maintaining performance.

Quantitative Experiments. In Table 2, we present the quantitative results on the
CAPE, Thuman2.0, and RenderPeople datasets, with the CAPE column being the weighted
average of the first two columns. The results of our method are shown in the last two rows:
the second-to-last row (denoted as Ours (T)) reflects the performance of our model trained
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on the Thuman2.0 dataset, while the last row (denoted as Ours (C)) shows the performance
when trained on the CAPE dataset.

Table 1. Comparison of time complexity of various methods.

Methods Time Complexity

PIFu O(n²)
PaMIR O(n)
ICON O(n)
2K2K O(n)
EMAR O(n)

Table 2. Quantitative results on the CAPE, Thuman2.0, and RenderPeople datasets. ↓ indicates lower
values are better. Bold values represent the best performance.

Dataset CAPE-Easy CAPE-Hard CAPE Thuman2.0 RenderPeople

Method Chamfer↓ P2S↓ Normals↓ Chamfer↓ P2S↓ Normals↓ Chamfer↓ P2S↓ Normals↓ Chamfer↓ P2S↓ Normals↓ Chamfer↓ P2S↓ Normals↓

PIFu (2019) 2.823 2.796 0.100 4.029 4.195 0.124 3.627 3.729 0.116 3.024 2.297 0.201 2.103 1.452 0.191
PaMIR (2021) 1.936 1.263 0.078 2.216 1.611 0.093 2.123 1.495 0.088 1.730 1.330 0.118 1.196 0.984 0.124
ICON (2022) 1.233 1.170 0.072 1.096 1.013 0.063 1.142 1.065 0.066 1.013 1.050 0.082 0.735 0.831 0.080
2K2K (2023) 1.264 1.213 0.070 1.437 1.385 0.060 1.379 1.328 0.063 1.651 1.247 0.079 1.032 0.932 0.077
Ours (T) 0.802 0.768 0.050 0.884 0.861 0.053 0.857 0.830 0.052 0.986 1.024 0.076 0.735 0.797 0.051
Ours (C) - - - - - - - - - 1.097 1.192 0.081 0.906 0.839 0.069

Figure 5. Comparison of Details with ICON.

When trained on Thuman2.0, our method achieved the best performance across almost
all datasets and metrics, particularly excelling in the more challenging “CAPE-Hard” subset
and demonstrating its strong generalization ability to various difficult poses.
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However, when trained on the CAPE dataset, while the performance remained strong,
there was a slight decrease in the Thuman2.0 and RenderPeople evaluations. This suggests
that although the CAPE dataset includes a variety of clothing and poses, it may not fully
capture the variability required for optimal generalization to other datasets. Nevertheless,
our method still achieved competitive results, reaffirming its robustness across different
datasets and conditions.

4.3. Ablation Experiments

In this section, we compare and discuss the roles of the proposed modules, including
the EMSA module and the Feature Fusion module.

To evaluate the effects of each component, we conducted ablation experiments using
ICON as the baseline model. We implemented the Feature Fusion module through channel
concatenation, which is the most common method. Subsequently, we separately added
the EMSA module and the Feature Fusion module to complete the experimental settings.
Table 3 presents the numerical results of different combinations of these modules. With the
addition of various key components, the performance of the network gradually improved,
with our model achieving the best performance. Following this was the baseline model
with the EMSA module, while the baseline model performed the worst among all indicators.
This further confirms the necessity and effectiveness of our proposed approach.

Table 3. Ablation experiments on the CAPE dataset. ↓ indicates lower values are better.

Baseline EMSA FFM Chamfer↓ P2S↓ Normals↓

✓ 1.142 1.065 0.066
✓ ✓ 0.998 0.943 0.055
✓ ✓ 1.041 0.973 0.060
✓ ✓ ✓ 0.857 0.830 0.052

The ablation study shows how different loss functions impact model performance,
as shown in Table 4. Using only L1 loss improved geometric accuracy but failed in detail
recovery, resulting in higher Normals values. Adding VGG loss unexpectedly worsened
all metrics, indicating that it did not effectively capture necessary features in this context.
Similarly, using only Total Variation loss negatively affected both geometric accuracy and
detail preservation across all metrics. Combining L1 and VGG losses achieved a balance
between shape fidelity and detail, resulting in the lowest values for Chamfer and P2S,
with Normals values being only 0.003 higher than the optimal performance. However, it
is noteworthy that changes in the Chamfer and P2S metrics, compared to those obtained
with all three loss functions, were 2.02% and 1.22%, respectively, while the change in the
Normals metric reached 5.45%. This discrepancy arises because the Normals values are
inherently lower than those of the other two metrics, causing what may seem like a minor
change to have a significantly different impact. After comprehensive consideration, we
decided to use three loss functions together.

Table 4. Ablation experiment of loss function. ↓ indicates lower values are better.

Baseline L1 LVGG LTV Chamfer↓ P2S↓ Normals↓

✓ ✓ 0.855 0.835 0.065
✓ ✓ 0.860 0.840 0.080
✓ ✓ 0.865 0.845 0.090
✓ ✓ ✓ 0.840 0.820 0.055
✓ ✓ ✓ 0.845 0.825 0.060
✓ ✓ ✓ 0.855 0.830 0.075
✓ ✓ ✓ ✓ 0.857 0.830 0.052
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4.4. Failure Cases and Analysis

As shown above, our proposed EMAR can effectively reconstruct the 3D human mesh
from a single image. However, our model still faces some challenging issues. As shown
in Figure 6, when the body undergoes self-intersection, the predicted human mesh by the
network often exhibits various faults. In Figure 6A, the target person’s hands are clasped
together, but the predicted human mesh shows the hands crossing fingers. In Figure 6B,
the target person is standing with one leg bent and the other leg stretched forward while
trying to reach forward to grab the heel with both hands, but the predicted human mesh is
in a squatting position. This is due to inaccurate human pose estimation, which affects the
final reconstruction results. Precise pose estimation will be the direction of our next work.

Figure 6. Failure ases.

5. Conclusions

This paper presents an enhanced single-image 3D human body reconstruction method
driven by multi-scale attention. To address the issue of inability to utilize feature corre-
lations across different scales, we propose an Enhanced Multi-Scale Attention (EMSA)
module, which helps the network learn more distinctive feature representations at various
scales, thereby improving robustness to various human poses. To tackle the problem of
ineffective integration of information at different scales, leading to insufficient modeling
capabilities for complex scenes, we designed a Feature Fusion Module (FFM) to enhance
the model’s integration capability of features at different scales. Additionally, we intro-
duced a loss function more suitable for normal map prediction, enabling the network to
generate smoother normal maps. Finally, we conducted comparative experiments and
ablation studies, and the results demonstrate that our method surpasses most state-of-the-
art approaches. Code has been published on github (https://github.com/R33333/EMAR
(accessed on 2 September 2024)).
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