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Abstract: Radar radiation source recognition is critical for the reliable operation of radar commu-
nication systems. However, in increasingly complex electromagnetic environments, traditional
identification methods face significant limitations. These methods often struggle with high noise
levels and diverse modulation types, making it difficult to maintain accuracy, especially when the
Signal-to-Noise Ratio (SNR) is low or the available training data are limited. These difficulties are
further intensified by the necessity to generalize in environments characterized by a substantial
quantity of noisy, low-quality signal samples while being constrained by a limited number of desir-
able high-quality training samples. To more effectively address these issues, this paper proposes a
novel approach utilizing Model-Agnostic Meta-Learning (MAML) to enhance model adaptability
in few-shot learning scenarios, allowing the model to quickly learn with limited data and optimize
parameters effectively. Furthermore, a multimodal fusion neural network, DCFANet, is designed,
incorporating residual blocks, squeeze and excitation blocks, and a multi-scale CNN, to fuse I/Q
waveform data and time–frequency image data for more comprehensive feature extraction. Our
model enables more robust signal recognition, even when the signal quality is severely degraded by
noise or when only a few examples of a signal type are available. Testing on 13 intra-pulse modulated
signals in an Additive White Gaussian Noise (AWGN) environment across SNRs ranging from −20
to 10 dB demonstrated the approach’s effectiveness. Particularly, under a 5 − way 5 − shot setting,
the model achieves high classification accuracy even at −10dB SNR. Our research underscores the
model’s ability to address the key challenges of radar emitter signal recognition in low-SNR and
data-scarce conditions, demonstrating its strong adaptability and effectiveness in complex, real-world
electromagnetic environments.

Keywords: radar emitter; few-shot learning; multimodal fusion; intra-pulse modulation

1. Introduction

Radar radiant source identification is a key technology in radar communication sys-
tems, and the classification of radiant source intra-pulse modulation can provide radar
systems with more powerful analytical capabilities. This has already become an indispens-
able element in the electronic information system. The traditional intra-pulse modulation
classification method requires manual signal feature extraction. For example, Han et al. [1]
proposed a new modulation recognition algorithm for digital communication signals based
on higher-order cumulants (HOCs) and Support Vector Machine (SVM) to realize the
automatic classification of modulation signals. Nuaimi et al. [2] applied signal statistical
characteristics and maximum likelihood estimation to the automatic classification of modu-
lated and identified signals; Park et al. [3] used the wavelet transform characteristic and
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SVM to automatically classify and recognize eight different digitally modulated signals.
These traditional methods not only require a lot of prior knowledge but also spend a lot
of manpower and material resources to learn. In addition, the obtained signal has very
poor performance in the case of low SNR, making it impractical to reach the index for
actual application.

In recent years, with the development of technology, deep learning algorithms have
been widely used in the radar emitter signal recognition field. Convolutional Neural
Network (CNN) is one of the most classic models in deep learning. With the idea of weight
sharing and local perception, CNN greatly reduced the complexity and computing cost of
the network. In addition, it could also effectively process multi-dimensional images and
multi-dimensional sequences, especially in two-dimensional image processing. In the field
of radar, CNN has been widely used in classification and recognition problems, such as high-
resolution synthetic aperture radar image classification [4], radar one-dimensional range
target recognition [5] and radar gesture recognition [6]. For the intra-pulse modulated signal
of the radar emitter, existing researchers mainly uses CNN to extract the signal features.
Therefore, it is possible to directly transform the radar emitter signal and use the two-
dimensional image extracted after signal transformation as the input of the CNN network,
which will automatically extract the deep hidden features of the radar radiation source
signal and classify and recognize it. With CNN’s excellent feature extraction capability
and huge data processing capability, Zheng et al. [7] designed an image feature deep
learning network based on AlexNet [8], which used large sample full pulse data to form an
image feature representation of intra-pulse parameter changes, and it revealed the hidden
waveform design mechanism of radar emitter from a macroperspective to realize radar
emitter recognition. Since then, in addition to using CNN to extract the two-dimensional
features of the signal [9–12], some scholars have also used CNN to extract the features
of the signal sequence of the emitter for classification and recognition [13,14]. Especially,
Niu et al. [15] proposed a one-dimensional convolutional neural network to learn and
recognize the effective features of the signal sequence of the radar emitter. In addition to
the feature extraction method of CNN, Qu et al. [16] carried out research on pulse repetition
interval modulation recognition combining a Recurrent Neural Network (RNN) and Long
Short-Term Memory Neural Network (LSTM).

With the development of jamming and anti-jamming technologies, the electromagnetic
environment has become increasingly complex and variable, making the acquisition of
radar emitter signals more challenging, particularly in obtaining high-quality and complete
emitter signals that can be used as training data [17]. Therefore, researching the intelligent
recognition of intra-pulse modulation of radar emitters under small-sample conditions
holds significant practical and applied value. In recent years, some scholars have studied
the recognition of radar emitters in small-sample scenarios. For example, Ding et al. [18]
proposed incorporating Generative Adversarial Networks (GANs) into CNNs, either by
adding a GAN module after the Sparse Autoencoder (SAE) module or after the feature
enhancement module to enhance features, achieving emitter recognition with few-shot
learning. Li et al. [19] utilized the learning capabilities of deep convolutional networks
and GANs to generate time–frequency images with noise reduction and data enhancement
effects on the basis of the original training set. These images were then used as a supple-
mentary training set, which was later used to assist the Visual Geometry Group (VGG)
in recognizing radar emitters in the original training set. Wang [20], addressing the issue
of data imbalance, built a model for expanding few-shot radar emitter signals using the
commonly used SMOTE and Borderline SMOTE algorithms, which is followed by signal
classification using decision trees, random forests, and KNN classifiers.

At present, most research on radar emitter recognition under few-shot learning condi-
tions focuses on methods such as expanding the target data samples or enhancing their
features, as mentioned above [21]. While these approaches are feasible in scenarios with a
high SNR, they encounter significant limitations in low-SNR environments. In such cases,
noise tends to overwhelm the actual radar emitter signals, resulting in insufficient diversity
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among the expanded samples. Additionally, generative algorithms like GANs lack strong
robustness and may even lead to model instability or failure [22], especially in high-SNR
scenarios. Moreover, it can be challenging to quantify when high-quality samples are
generated or whether the model has converged [23].

To address these shortcomings, this article proposes several significant contributions to
the recognition of intra-pulse modulated signals of radar emitters under few-shot learning
conditions. Inspired by the work in [24], building a model that can quickly adapt to
environments with limited samples is more robust and generalized than simply training a
model using data augmentation. The Model-Agnostic Meta-Learning (MAML) method,
which we are going to introduce, can achieve this goal. Despite the advantages of the
MAML optimization method in developing a model that can rapidly adapt under few-shot
conditions, recognizing radiation source signals at low SNRs continues to pose a substantial
challenge. Acknowledging that signals exhibit diverse dimensional features, we conduct
an analysis from various modalities and integrate these insights to create a multimodal
fusion model, further enhancing the accuracy of signal recognition.

In the following text, we will first conduct a mechanism analysis and modeling of the
radar signal model used in this article, and then we provide a detailed explanation of the
signal preprocessing methods, such as Short-Time Fourier Transform (STFT). Subsequently,
we are about to introduce the MAML method to optimize model parameters, enhancing
adaptability to few-shot conditions and improving the overall training process. Apart
from this, we design a multimodal fusion neural network, DCFANet, which integrates
information from both I/Q waveform and time–frequency image domains. This integra-
tion facilitates comprehensive feature extraction and improves recognition capabilities.
Additionally, we implement residual blocks and squeeze and excitation blocks within
the architecture to enhance feature representation and channel attention, maintaining the
uniqueness of each modality. Furthermore, we introduce a joint loss function that supports
collaborative training across multiple modalities, contributing to the robustness of the
recognition process. Lastly, we will detail the experimental environment and settings,
conduct a comparative analysis of various methods and their associated variables through
ablation experiments, and present the significant results obtained from the experiments.

Our experiments generate 13 distinct intra-pulse modulated signals under the AWGN
environment, and the trained model is evaluated against existing advanced network models.
The results demonstrate that our multimodal fusion model with MAML achieves high
classification accuracy. Moreover, under challenging conditions involving doppler shift
and multipath fading, the model continues to perform as well as we expect.

Based on experimental studies, we summarize the following key contributions and
improvements. (1) The Base-CNN-MAML model constructed using the MAML method
achieved an approximately 30% higher accuracy under few-shot conditions compared to
traditional algorithms’ Base-CNN, and it performs on par with ResNet under traditional
algorithms, verifying the effectiveness of MAML. (2) We also investigated the impact
of sample size, further confirming the feasibility of the MAML method under few-shot
conditions and determining the optimal sample size parameters for this study. (3) Both
the proposed SE-ResNet-MAML and 1D-MSCNN-MAML models demonstrated superior
recognition performance for radar emitter signals in their respective modalities under
few-shot conditions. Particularly, our proposed multimodal fusion model DCFANet, when
combined with the MAML method, exhibited superior noise resistance in the sequential
modality and strong spatial feature capture and representation capabilities in the image
modality. Its recognition accuracy under both low and high SNR conditions surpassed
the other two unimodal models, achieving an overall recognition accuracy of 89.3% across
global SNR levels. (4) Finally, we further explored DCFANet-MAML through visualization
analysis, generating a confusion matrix and projecting high-dimensional vectors to low-
dimensional space before classification, which strongly confirmed the effectiveness of the
proposed method.



Electronics 2024, 13, 4045 4 of 24

2. Radar Signal Model and Signal Preprocessing

We are going to analyze and model the mechanism of the radar signal in this sec-
tion and present the preprocessing operations performed on the signal from different
dimensions.

In order to simulate the radar radiation source signals more closely to the real envi-
ronment, we will consider the noise and echo time delay to fit our study. On this basis,
multipath fading, doppler shift and time delay are added to the radar signals under a
multipath effect to correspond to the few-shot scenarios caused by complex electromagnetic
environments.

In order to achieve the purpose of analyzing and processing the signal from different
dimensions, we implement time–frequency transformation, which is most widely used
in signal processing, to transform the radar signal into a two-dimensional graph domain
for analysis and processing; besides, vector normalization is used for the time domain
waveform for analysis and processing.

2.1. Radar Signal Model

In the condition of white Gaussian noise, the signal model received by the radar
receiver can be simply expressed as

x(t) = s(t) + n(t) (1)

In Equation (1), x(t) represents the radar signal received, s(t) represents the radar
modulated signal, and n(t) represents the white Gaussian noise.

Radar modulated signals can also be expressed as

s(t) = Ae{j[2π f0t+φ(t)+ϕ0]} (2)

In Equation (2), A represents the amplitude of the radar emitter signal, f0 represents
the central frequency of the emitter signal, φ(t) represents the instantaneous phase shift
of the signal, and ϕ0 represents the initial phase of the signal. The primary distinctions
in the characteristics of the intra-pulse modulation information for radar emitter signals
are mainly reflected in φ(t). This study mainly considers 13 common types of intra-pulse
modulation signals for radar emitters, including the conventional pulse signal (NS), binary
phase-shift keying (BPSK) signal, which uses Barker codes, multi-phase shift keying (MPSK)
signals, including Frank, P1, P2, P3, and P4 codes, a linear frequency modulation (LFM)
signal, a frequency-coded signal (Costas), and multi-time coding signals, including T1, T2,
T3, and T4 codes.

However, during signal propagation, environmental factors often cause refraction, re-
flection, and other phenomena, which in turn lead to the occurrence of multipath effects [25].
Considering a real-world situation, the received signal model affected by multipath effects
can be expressed as

X = AS + N (3)

where A = [A0, A1, A2, . . . , An−1], Ak represents the amplitude fading caused by the
signal traveling through path k in multipath propagation; S = [s0, s1, s2, . . . , sn−1], where
sk = s(t − dk), sk represents the signal on path k, and dk represents the time delay of path k;
X = [x0, x1, x2, . . . , xn−1], wherexk represents the final signal received passing through path
k; N = [n0, n1, n2, . . . , nn−1], where nk = n(t) represents the white Gaussian noise on path
k referred to [26].

For specific modulation mode or the radar signal received at the specific time t, the
expression is

x(t) =
n−1

∑
k=0

Ake{j[2π f0(t−dk)+φ(t−dk)+ϕ0]} + n(t) (4)
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2.2. Signal Time–Frequency Image Domain Analysis and Processing

Some articles presents traditional signal processing as [27] does, so that the analysis
can be typically conducted in either the time domain or by transforming the signal into
the frequency domain. The time domain represents the variation of a signal with respect
to time, while the frequency domain characterizes the spectral components of the signal
over its entire duration. However, neither of these approaches can effectively capture the
relationship between the signal and frequency variation over time. Time–frequency analy-
sis, which integrates the advantages of both time-domain and frequency-domain analysis
for non-stationary signals, transforms a one-dimensional signal into a two-dimensional
time–frequency domain. This approach simultaneously presents the signal’s characteristics
from two perspectives, providing a clear and intuitive display of how frequency changes
over time. Such visualization aids in extracting more features during signal recognition [28].
Common methods of time–frequency analysis include (1) linear time–frequency distri-
butions, such as Short-Time Fourier Transform (STFT) and wavelet transform; and (2)
quadratic time–frequency distributions, such as Wigner–Ville Distribution (WVD) and
Choi–Williams Distribution (CWD).

The Wigner–Ville Distribution (WVD) is a typical nonlinear quadratic transformation,
characterized by the absence of window function constraints, which grants it superior
resolution. The WVD of signal x(t) is expressed as follows:

wx(t, f ) =
∫ ∞

−∞
x(t + τ/2)x∗(t − τ/2)e−j2π f tdτ (5)

After the WVD transformation, the signal exhibits strong time–frequency concen-
tration, making it easy to distinguish single-component signals. However, for multi-
component signals, the WVD transformation might introduce numerous interference terms.
To address this, Cohen improved the method by incorporating different kernel functions
into the analysis [29]. The resulting collection of time–frequency distributions is defined as
Cohen’s class of time–frequency distributions:

Cx(t, w) =
∫ +∞

−∞
R(t, τ)e−jωτdτ =

∫ +∞

−∞

∫ +∞

−∞
Ax(τ, v)ϕ(τ, v)e−j(vt+ωτ)dτdv (6)

In the function, Ax(τ, v) is the fuzzy function of the signal x(t), while ϕ(τ, v) repre-
sents a different filter function. The Cohen class time–frequency distribution can also be
equivalent to

Cx(t, ω) =
∫∫∫

x
(

u +
τ

2

)
x∗
(

u − τ

2

)
ϕ(t − u, τ)e−jωτ−jωtdvdudτ (7)

A lot of researchers, such as in [30], have worked on improving the WVD by mod-
ifying Cohen’s class of time–frequency distributions through various kernel functions.
These modifications aim to both effectively suppress the interference terms generated dur-
ing the time–frequency transformation process and preserve the original time–frequency
characteristics of the signal. Experimental results have demonstrated that the exponential
kernel function provides the best suppression of interference terms. Consequently, the
exponential kernel function was incorporated into Cohen’s class distribution, leading to the
Choi–Williams Distribution (CWD). The CWD offers excellent time–frequency resolution
and effectively eliminates interference terms. Its mathematical representation is as follows:

CWDx(t, w) =
∫∫∫ √

πσ

τ2 x
(

u +
τ

2

)
x∗
(

u − τ

2

)
exp

[
−−π2σ(t − u)

4τ2

]
e−jωτ−jωtdvdudτ (8)

In the function, φ(τ, v) = e
−v2τ2

2 is the exponential kernel function introduced for
CWD. σ is the attenuation coefficient, which normally has the range of [0.1, 10].

In this article, we used Choi–Williams Distribution (CWD) to perform time–frequency
transformations on radar emitter signals to generate time–frequency images. Since the
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primary features extracted from these images pertain to the edges in the time–frequency
domain rather than the texture, using three-channel time–frequency images would sig-
nificantly increase computational complexity. Therefore, the time–frequency images are
converted into grayscale images to facilitate subsequent processing steps. (Further experi-
ments demonstrated that the neural network does not encounter a feature bottleneck during
training due to the use of grayscale images). When the SNR is 0 dB, the time–frequency
distribution images of seven types of intra-pulse modulation signals were extracted, as
shown in Figure 1.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Part of the time–frequency image of the pulse-modulated signal: (a) Barker; (b) Costas;
(c) LFM; (d) Frank; (e) NS; (f) P2; (g) T4.

2.3. Analysis and Processing of Signal I/Q Waveform Domain

After sampling, the accepted radar signal x(t) becomes a discrete signal x[n], which is
expressed as the following formula.

x[n] = xI [n] + j · xO[n] (9)

where xI [n] ∈ R represents the in-phase component of the signal, and xQ[n] ∈ R represents
the orthogonal component of the signal. If the number of sampling points in a sampling
period is N, the kth signal data vector can be expressed as

xk = [xk[0], xk[1], xk[2], . . . , xk[N − 1]]T (10)

The accepted x[n] is the plural discrete signal, which consists of real parts and imagi-
nary parts. The vector of the signal’s lth sampling point xl is defined as

xI/O
k [l + 1] =

[
xO

k [l + 1], xI
k[l + 1]

]T
(11)

where xI
k[l + 1] ∈ Re[x[n]], xQ

k [l + 1] ∈ Im[x[n]]. In order to improve the subsequent model
training speed and prevent the gradient from disappearing or exploding, this article then
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normalizes the real and imaginary parts of the complex sequence; as follows,
∆
xk [l + 1] is

the processed signal vector:

∆
xI

k [l + 1] =
xI

k[l + 1]− min
(
xI

k
)

max
(
xI

k
)
− min

(
xI

k
)

∆

xQ
k [l + 1] =

xQ
k [l + 1]− min

(
xQ

k

)
max

(
xQ

k

)
− min

(
xQ

k

) (12)

3. Intra-Pulse Modulated Signal Recognition of Radar Emitter under Few-Shot Learning
Condition Based on Multimodal Fusion

Generally speaking, the initial parameters of the traditional model are randomly ini-
tialized and need to be updated in multiple steps to achieve better results, while under
few-shot conditions, the insufficient number of samples can lead to underfitting or overfit-
ting after multiple steps. Even though, as mentioned in the introduction, some scholars
have focused on using data augmentation methods such as GAN to increase the number of
training samples, these autonomously generated “fake samples” are still very different from
the radar source signals in the real environment. To ensure that the model maintains good
generalization ability under the few-shot conditions, this paper adopts a meta-learning
strategy Model-Agnostic Meta-Learning(MAML) to optimize and improve the traditional
model training process. Different from the traditional optimization algorithms, the MAML
approach is adopted to obtain a better initial value, and only after one step of updating
can it obtain a better parameter for the current task, so as to train a model that can achieve
fast adaptation.

For the image modality in the 2D time–frequency domain of the signal, the use of a
conventional CNN will result in gradient vanishing and gradient decreasing due to the
increase in depth resulting in the model not being able to learn, so the residual module is
introduced to solve this problem. At the same time, in order to lighten the network, the
redundant features are weighted with the useful features, and the squeeze and excitation
attention mechanism (SE) module is introduced. Finally, a network based on residual
modules and a channel attention mechanism is used as the feature extractor. For the
sequential modality in the one-dimensional I/Q waveform domain of the signal, due to the
difficulty of identifying the feature scales of the sequence, and inspired by [31], utilizing
convolution kernels with different scales will increase the fault tolerance of the feature
extraction, and in summary, a Multi-Scale deep Neural Network (MSCNN) is proposed for
feature extraction.

3.1. Training Strategy of MAML Method Based on Meta-Learning

Addressing the issue of very limited trainable sample sizes for radar emitter intra-
pulse modulation signals, this article proposed the use of a meta-learning strategy. Differing
from traditional data-based learning methods, meta-learning operates with tasks as the
fundamental unit rather than individual data samples. In meta-learning, both the training
set and the validation set take tasks as elementary units rather than data units in traditional
deep learning. Furthermore, each training and validation task consists of a support set and
a query set. Through the training process, a meta-learning model learns from various tasks,
enabling the model to develop cross-task feature extraction and recognition capabilities.
During the test process, the model can accurately recognize new tasks, including those
with completely novel categories or only a few labeled samples. In meta-learning, if the
support set for a given task contains N categories and each category has K samples, the
task is referred to as an N − way K − shot task; details can also be found in [24].

The core concept of the Model-Agnostic Meta-Learning (MAML) method is to obtain
an optimal initialization of parameters, denoted as θ, which does not necessarily need to
perform well on any specific task but should be adaptable to a variety of similar tasks. The
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objective is to achieve strong generalization capabilities. The overall algorithmic framework
is illustrated in Figure 2.

Figure 2. MAML optimization algorithm framework flow.

As shown in Figure 2, MAML is divided into two layers of training, the learning rate
of the inner layer and the outer layer of training are, respectively, specified as α and β.
First, we randomly initialized the weight parameters of the model θ, and the dataset D is
divided into training dataset Dtrain and validation dataset Dval. Moreover, we include an
additional validation set DZ

val that is distinct from the regular validation set Dval, which
will be described in detail in subsequent articles and experiments. And then several data
samples in both the training dataset Dtrain and validation set are extracted to constitute a
training task unit Ti, all of which obey a distribution P(T).

(1) Inner layer training: Training and learning are carried out inside each task Ti, K
data are extracted from each task Ti =

{
dn+1, dn+2, . . . , dn+K, dn+K+1, . . . , dn+K+Q

}
to

obtain the support set Tsupport
i = {dn+1, dn+2, . . . , dn+K}, and the remaining Q data

constitute the query set Tquery
i =

{
dn+1, dn+2, . . . , dn+Q

}
. The corresponding loss

function is used to calculate the loss value LTi ( fθ) on Tsupport
i and its gradient ∇ on θ.

The submodel parameter θ′ is updated by the gradient descent of Equation (13) on
this task with the calculated gradient ∇:

θ′ = θ − α∇LTi ( fθ) (13)

After the parameter is updated, we randomly extracted Q data points. Then, we
processed forward propagation and loss function, calculating and obtaining LTi ( fθ′),
but we did not update θ′.

(2) Outer layer training: The second layer is the outer layer training, which is the meta-
learning process. First, we extracted batchtrain tasks from the training dataset Dtrain,
and each task Ti was obtained by distributed P(T) sampling. MAML sums all the loss
LTi( fθ′) values that were calculated in the inner training with θ′ in Tquery

i and carries out
gradient descent after calculating the gradient in order to update θ, the weight of the real
model, to obtain the updated model weights θupdated, as shown in Equation (14).
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θupdated = θ − β∇∑
Ti

LTi ( fθ′) (14)

After the end of the inner and outer training process, the θupdated obtained after
updating during the training process is saved as fast weights. In the validation set,
θupdated is used as the initial weight of the model, and only the inner gradient descent
is carried out without updating the weight parameter of the whole model. θupdated

is obtained as θ′updated after gradient descent, and the validation set Dval or DZ
val is

input into the model with the weight parameter θ′updated to output the final predicted
classification results.

3.2. Feature Extraction of Modulation Signal in the Image Domain Based on Residual and
Attention Mechanisms

Since the introduction of AlexNet, the era of deep learning has officially begun, with
Convolutional Neural Networks (CNNs) becoming increasingly deeper and their fitting
capabilities becoming stronger. However, as the depth of the network increases, the
risk of overfitting also rises. Numerous scholars have studied this phenomenon and
identified challenges in optimizing deep networks. It has been observed that valuable
information is difficult to directly utilize, leading to feature bottlenecks. Moreover, due to
the nature of activation functions and the multiplicative nature of backpropagation during
gradient computation, deep networks are prone to issues such as vanishing gradients or
exploding gradients.

Moreover, during the training process of neural networks, an increase in the number
of model parameters leads to greater information storage capacity and stronger repre-
sentational power. However, this also introduces the issue of information overload. The
emergence of attention mechanisms enables neural network models to focus on more
critical information within the training data. The squeeze and excitation (SE) module
incorporates attention mechanisms along the channel dimension, reducing the model’s
attention to non-essential channels and improving the overall efficiency and accuracy of
the learning process.

In this article, a neural network architecture combining residual networks and attention
mechanisms is designed to perform time–frequency feature extraction and classification on
the signal images obtained from the preprocessing in Section 2.2. This approach effectively
avoids information redundancy and enhances both the efficiency and accuracy of the model.

3.2.1. Deep Residual Neural Network

The Deep Residual Neural Network, also known as ResNet [32], is designed based
on a residual structure, utilizing shortcut connections through skip paths in the residual
network. The structure of the residual module is illustrated in Figure 3, where the residual
connection is represented by a skip line, with X as the input and F(X) as the residual
function. ResNet deepens the network by stacking residual modules, which mitigates the
performance degradation issues that often arise when networks become excessively deep.

Figure 3. Basic structure of residual network.



Electronics 2024, 13, 4045 10 of 24

3.2.2. Squeeze and Excitation Attention Mechanism

The squeeze and excitation attention mechanism (SE) module applies a series of trans-
formations to generate a weight matrix [33], which is then used to reconstruct the original
features and extract key feature information. By automatically learning the importance
of each feature channel, the SE module assigns corresponding weights to each channel,
enhancing the utilization of feature channels that are more useful for the task, while simul-
taneously suppressing the non-essential feature channels. The structure of the SE module
is illustrated in Figure 4.

Figure 4. Principle of SE channel attention mechanism, where H, W and C represent the height,
width, and channel dimensions of the input feature image f eaturei, respectively.

The channel attention mechanism consists of three processes: squeeze, excitation,
and regulation.

Squeeze Process: Fsqueeze(·), the Global Average Pooling (GAP), is applied to the
feature map f eaturei with dimensions H ×W × C, transforming f eaturei along the channel
direction to generate a 1 × 1 × C feature channel descriptor f eaturec, as described in
Equation (15), where f eaturei(m, n) is the eigenvalue of the feature graph f eaturei at the
position (m, n).

Fsqueeze( f eaturei) =
1

H × W

H

∑
m=1

W

∑
n=1

f eaturei(m, n) (15)

Excitation Process: Two fully connected layers Fexcitation(·, w1, w2) are used to learn
the importance of channel features, thus obtaining the channel attention weight of features
weightfeat ∈ R1×1×C, as shown in Equation (16).

Fexcitation ( f eaturei, w1, w2) = σ(w2 · δ(w1 · f eaturei) (16)

where w1 and w2 are the weight parameters of the two fully connected layers, σ indicates
the ReLu activation function, and δ indicates the Sigmoid activation function.

Regulation Process: The attention weight weightfeat is multiplied by the input feature
graph f eaturei, so we can obtain the output feature graph f eaturescale which incorporates
the channel weight.

3.2.3. SE-ResNet Network Architecture

By embedding the SE module into the ResNet residual module, SE-ResNet facilitates
the fitting of correlations between network channels and effectively reduces the computa-
tional complexity of the model, thus decreasing its overall size. In this article, SE-ResNet
is used as the feature extractor for the two-dimensional time–frequency image modality
of the signal. The SE-ResNet architecture consists of one convolutional module, eight
residual attention modules, and one fully connected layer. The input to the network is a
single-channel time–frequency image of size 224 × 224 × 1. The structure of the SE-ResNet
network is shown in Figure 5.
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Figure 5. SE-ResNet module.

3.3. Feature Extraction of Modulation Signal in the I/Q Waveform Domain Based on Multi-Scale
1D Convolution

For the complex radar emitter signals in the form of I/Q waveforms, the preprocessing
outlined in Section 2.3 is used to convert the data into a format suitable for input into a One-
Dimensional Convolutional Neural Network (1D CNN). However, standard convolutional
networks typically utilize convolution kernels of a single scale, which limits the range of
features that can be extracted. The quality of the model’s classification results is somewhat
dependent on the amount of spatial information available in the signal. Yet, in few-shot
learning conditions, the limited spatial information in the signals becomes a significant
challenge. By increasing the multi-scale span of the model, the richness of the signal’s
spatial information can be enhanced [34].

To address the problems above, the article proposes a One-Dimensional Multi-Scale
Convolutional Neural Network (1D MSCNN) with different convolution kernel sizes to
capture various types of features. These complementary features improve the accuracy
of classification. The input to the network is a one-dimensional complex I/Q waveform
sequence, and the network consists of an input layer, 10 convolutional modules, a fully
connected layer, and an output layer, which are all cascaded sequentially. Each convolu-
tional module comprises a multi-scale convolution unit, a max-pooling layer, and a batch
normalization layer, which are also arranged sequentially. The structure of 1D MSCNN is
shown in Figure 6.

Figure 6. The 1D MSCNN structure flow.
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3.4. Intra-Pulse Modulated Signal Recognition of Radar Emitter Based on Multimodal Fusion

Currently, most signal modulation recognition approaches only consider single modal
information from a single dimension when selecting signal features. This becomes particu-
larly challenging in scenarios with few-shot learning conditions, where such single modal
features are insufficient to provide a robust representation. By leveraging the diversity and
complementarity between multiple modalities, multimodal fusion allows for the extraction
of adequate features even when sample sizes are limited. Therefore, this article proposes
a multimodal fusion network, Double Channel Fusion Attention Neural Network (DC-
FANet), combined with a meta-learning strategy for feature extraction and the classification
of radar emitter signals.

First, the fusion model is constructed using SE-ResNet and 1D MSCNN, which are
used to extract features from the image domain and the I/Q waveform domain, respectively.
The deep features from these two modalities are then fused at the feature level according to
a specific ratio, reflecting the relative importance of each modality. The combined features,
along with the deep features from the individual modalities, are input into the SoftMax
layer for separate predictions. Finally, decision fusion is performed by linearly weighting
and summing the three prediction results, which are then passed through a SoftMax layer
to obtain the final multimodal output.

Moreover, to enable the model to learn across tasks under few-shot learning conditions,
the MAML algorithm is used in place of traditional optimization algorithms. The model
weights obtained from training on the support set are saved as fast weights, which are
fine-tuned on the query set without being updated to produce predictions. The technical
flow of the multimodal fusion model is shown in Figure 7.

Figure 7. Technical process framework of multimodal fusion model.

In this article, we use cross-entropy to calculate the loss between the predicted results
and the true label distribution. Let xi represent the i/textth sample, p(xi) be the true label,
and q(xi) represent the predicted label. The cross-entropy loss function is defined as shown
in Equation (17).
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Ecross(p, q) = −
n

∑
i=1

p(xi) log[q(xi)] (17)

Since all three predicted results will influence the final decision, and we aim to mini-
mize the distance between predictions with the same label while maximizing the distance
between predictions with different labels, we propose a joint loss function as shown in
Equation (18) to achieve consistency across multimodal objectives.

Ejoint-cross
(

p, qi, qs, qj
)
=

4
5

n

∑
i=1

p(xi) log[qi(xi)]−
1
5

n

∑
i=1

p(xi) log[qs(xi)]−
n

∑
i=1

p(xi) log
[
qj(xi)

]
− 1

n

{
4
5

n

∑
i=1

q(xi) log[qi(xi)] +
1
5

n

∑
i=1

q(xi) log[qs(xi)]

} (18)

where qi(xi) and qs(xi) represent the unimodal prediction results from the time–frequency
image and the I/Q waveform sequence, respectively. qj(xi) is the prediction result from
the joint modal features. Based on the ratio of the joint features to the individual unimodal
features, which is 320:256:64=5:4:1, the ratio of the unimodal feature vector to the joint
feature vector is used as a coefficient.

4. Simulation Experiment and Analysis

In this section, the data used in this paper and the proposed method will be described
and experimented.

Since there is no publicly produced dataset for radar radiation source signals, in order
to simulate the real complex electromagnetic environment as much as possible, the radar
pulse signal parameter settings in this paper refer to some books and publicly published
papers [10,11,35,36]. In this paper, 13 types of major radar radiation source signals are
considered, and the detailed radar signal parameters are shown in Table 1.

Table 1. Radar signal parameters for simulation.

Signal Type Signal Parameter Parameter Range

NS Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Barker

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Code Length [3,4,5,7,11]
Code Width [40 ns–290 ns]

LFM

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Sweep Width ∆ f [Fs/20–Fs/16]
Sweep Direction [Up, Down]

MPSK

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]
Frank Code Length [4,9,16]

P1 Code Length [4,9,16]
P2 Code Length [4,9,36]
P3 Code Length [8,10,16]
P4 Code Length [8,10,16]

Code Width [40 ns–290 ns]

Costas

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Frequency-Hopping FH [3,4,5,6]
Fundamental Frequency [Fs/32–Fs/25]
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Table 1. Cont.

Signal Type Signal Parameter Parameter Range

T1,T2

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Phase State Number Nc 2
Segments Number k [4,5,6]

T3,T4

Sampling Frequency Fs 100 MHz
Center Frequency Fc [Fs/6–Fs/5]

Phase State Number Nc 2
Segments Number k [4,5,6]

Sweep Width ∆ f [Fs/20–Fs/15]

Subsequently, we are about to describe the experimental environment and construct
the multimodal dataset by simulation modeling of the radar signals strictly according to the
parameters in Table 1 using the processing methods mentioned in Section 2. The detailed
composition of the multimodal dataset will be clarified in this section.

In addition, the effectiveness of the MAML method in few-shot conditions will be vali-
dated in this section, and the effect of the number of samples on the model performance will
be explored. In particular, we will conduct comparison and ablation experiments between
the model under multimodal fusion and the model under each unimodal modality as a
way to highlight the superiority of our proposed multimodal model incorporating MAML.

4.1. Experimental Environment and Settings

The experiments in this article are conducted using the deep learning framework PyTorch
with the network model built and tested on a personal computer. The system configuration
includes Windows 11 as the operating system, 16 GB of RAM, an Intel i5-13600KF CPU, and an
NVIDIA 4080 GPU with 16 GB of VRAM. The various methods utilized in this experiment are
accompanied by hyperparameter settings, which are listed in Table 2 for detailed reference.

Table 2. Hyperparameter settings for different methods.

Method Task Num Batchsize Epochs Learning
Rate (LR) Inner LR Outer LR

Base-CNN - 128 100 0.001 - -
ResNet18 - 256 100 0.001 - -

Base-CNN-MAML 10 - 150 - 0.02 0.01
ResNet18-MAML 10 - 180 - 0.02 0.003
SE-ResNet-MAML 10 - 180 - 0.02 0.003
1d-VGG-MAML 10 - 200 - 0.01 0.005

1d-MSCNN-MAML 10 - 200 - 0.01 0.005
DCFANet-MAML 8 - 150 - 0.02 0.01

4.2. Dataset Description

In this article, MATLAB 2022a is used to simulate the 13 common radar emitter modulation
signals described in Section 2.1, including NS, Barker, Frank, P1, P2, P3, P4, LFM, Costas, T1,
T2, T3, and T4. The simulation is conducted in an Additive White Gaussian Noise (AWGN)
environment, and the number of time-domain signal sampling points is set to 1024. To construct
a multimodal dataset, each signal sample undergoes the time–frequency transformation and
waveform processing described in Sections 2.2 and 2.3, resulting in both a time–frequency image
dataset and a waveform dataset. The structure of the entire multimodal dataset is as follows.

Image Domain Dataset:

• Sample format: CWD time–frequency image, file storage format is .png;
• Sample dimensions: [224, 224, 1], 224 indicates the length and width of the image and

1 is the number of RGB channels, since the time–frequency plots in this article are in
grayscale;
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• SNR range: −20 to 10 dB, with a step size of 2 dB;
• Number of signal samples per single modulation type at a specific SNR: 150.

Waveform Domain Dataset:

• Sample format: I/Q waveform sequence, file storage format is .mat;
• Sample dimensions: [1024, 2], 1024 is the length of the sequence, and 2 corroborates

that the characteristic dimensions of the sequence are the real and imaginary parts of
the I/Q waveforms;

• SNR range: −20 to 10 dB with a step size of 2 dB;
• Number of signal samples per single modulation type at a specific SNR: 150.

In this article, the dataset D was randomly divided into a training set Dtrain and a
validation set Dval at a ratio of 4 : 1, resulting in a total of 24,960 training samples for each
individual modality. To ensure the data alignment across different modalities, the data
distribution was kept consistent across all modality datasets.

To further verify the generalization ability and cross-task learning capability of the
model, an additional validation set DZ

val, distinguished from the standard validation set
Dval, is introduced. The model was trained using the standard training dataset Dtrain, and
it was validated with DZ

val.
The differences between DZ

val and Dval are outlined below:

1. The signals in the regular dataset D are simulated using a Rician channel, while DZ
val

uses a Rayleigh channel;
2. In D, the signal propagation does not account for multipath fading, time delay, or doppler

shift. However, in DZ
val, these three influencing factors are incorporated into the signal.

The visual differences in the time–frequency images are illustrated in Figure 8.

(a) (b)

Figure 8. Costas time–frequency images at −2 dB from two different validation sets: (a) Costas
time–frequency image from D; (b) Costas time–frequency image from DZ

val.

It is essential to emphasize that the training set Dtrain does not partition samples based
on the SNR. Specifically, within each category of radiation source signals, there are samples
corresponding to 16 different SNR levels (ranging from −20 to 10 dB with increments of
2 dB). This approach is designed to enable MAML to search for optimal initial parameters
across the entire SNR spectrum rather than being limited to a specific SNR level. Conversely,
the validation sets Dval and DZ

val are meticulously stratified by SNR, facilitating a clear
and comprehensive evaluation of the model’s performance at each SNR level during the
subsequent analysis and testing phases.

4.3. Algorithm’s Performance Analysis
4.3.1. Comparison between MAML Algorithm and Traditional Optimization Algorithm

In this section, experiments are conducted to explore the recognition performance
of models using traditional optimization algorithms and the MAML algorithm under
few-shot learning conditions. A CNN with 5 convolutional layers and 1 linear layer is
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used as the Baseline model, which we call Base-CNN. Then, we train Base-CNN on the
two-dimensional image dataset along with the advanced model ResNet18. Both models
are tested on the time–frequency images of Dval and DZ

val.
For the MAML optimization, the gradient update steps are set to 5, and the meta-

learning task is set to 5 − way 2 − shot. The inner and outer learning rates are set to 0.005
and 0.02, respectively. The traditional optimization method uses the Adam optimizer with
a learning rate of 0.001. The comparison results, showing the accuracy curves, are presented
in Figure 9.

From Figure 9a, we can observe that Base-CNN optimized using MAML achieves
an approximately 30% improvement in accuracy across the entire SNR range compared
to the traditionally optimized Base-CNN. Furthermore, Base-CNN-MAML’s performance
on the few-shot dataset is comparable to that of ResNet18 despite the increase in training
time. However, Base-CNN-MAML has only 0.520M parameters, which is nearly 1/40th
of ResNet18’s parameter count (11.6 M). As shown in Figure 9b, models using traditional
optimization algorithms exhibit poor generalization ability in few-shot learning conditions,
failing to achieve the expected recognition accuracy even at a high SNR. In contrast, both
Base-CNN-MAML and ResNet-MAML not only perform well on the original Dval but also
demonstrate excellent generalization performance on DZ

val.

(a) (b)

Figure 9. Part of the time–frequency image of the pulse-modulated signal: (a) the accuracy rate on
Dval under each SNR; (b) the accuracy rate on DZ

val under each SNR.

Experiments have demonstrated that on few-shot datasets, the MAML optimization
algorithm significantly enhances the model’s generalization performance and recognition
accuracy compared to traditional optimization algorithms. This validates the effectiveness
of using the MAML optimization algorithm under few-shot learning conditions.

4.3.2. Influence of Sample Size on Model Recognition Performance

Building on the performance advantage of the MAML optimization algorithm demon-
strated in the previous section, this section continues the experimental analysis of MAML’s
recognition performance under few-shot learning conditions. Since the MAML algorithm
adopts a meta-learning strategy, the task settings N − way K − shot also influence the
model’s performance. For a 5 − way radar emitter signal recognition task, the recognition
performance is analyzed and compared for different numbers of samples per class in the
task’s support set with K = 1, 3, 5, 10.

In the experiment, ResNet18 is used as the feature extraction network. The variation
in recognition accuracy of radar emitter signals on the Dval and DZ

val with respect to SNR is
shown in Figure 10. In each recognition task, 5 samples per class are selected to form the
query set, which indicates Q = 5.

The results show that at an SNR of −2 dB, the recognition accuracy on Dval for K = 1
exceeds 90%, further proving the feasibility of the MAML optimization algorithm under
few-shot conditions. As the sample size increases, the overall recognition accuracy on both
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Dval and DZ
val continues to improve. Notably, on Dval at −10 dB, the accuracy improves by

3.81%, 6.15%, and 7.23% for K = 3, 5, 10 compared to K = 1, respectively.

(a) (b)

Figure 10. Influence of MAML on model recognition accuracy under different sample sizes: (a) recog-
nition accuracy rate of ResNet18-MAML on Dval under different sample sizes; (b) recognition accuracy
rate of ResNet18-MAML on DZ

val under different sample sizes.

However, when K > 5, the improvement in overall recognition accuracy begins to
plateau, and increasing the sample size significantly raises both training and inference time.
Therefore, a compromise is adopted, and in subsequent experiments, the recognition task
is set to 5 − way 5 − shot.

4.3.3. Comparative Analysis of Model Recognition Results under Different Unimodal and
Multimodal Fusion Approaches

Based on the experimental results from the previous two sections, it is evident that
current advanced models still struggle to achieve high recognition rates at low SNR. There-
fore, in the following analysis, multiple models will be used to extract features and perform
classification for radar emitter signals across different unimodal modalities. The results
will then be compared and analyzed to assess performance improvements and limitations.

In this article, different models are adopted to extract features and classify radar
emitter signals based on their respective modalities. For the one-dimensional I/Q waveform
sequence modality, the 1D VGG model, constructed by analogy to the VGG architecture,
and the 1D MSCNN model proposed in Section 3.3, are used. For the two-dimensional
time–frequency image modality, in addition to ResNet18 as previously mentioned, the
SE-ResNet model introduced in Section 3.2 is also utilized for feature extraction.

Experimental results demonstrate that the performance of different signal modalities
varies depending on the model applied to the corresponding modality with each modality
exhibiting its own strengths and weaknesses. To leverage the diversity and complementarity
of features from different modalities, this article proposes fusing the features from multiple
modalities to form a multimodal representation. Considering the potential differences in
decision making between the fused features and unimodal features, decision-level fusion is
employed to unify the outputs from both unimodal and multimodal models. This approach is
implemented in the multimodal fusion model DCFANet as previously introduced.

In this article, the trained multimodal fusion model, along with the models from each
unimodal modality, is experimentally validated on both Dval and DZ

val. The recognition
accuracy curves for the different unimodal models and the multimodal model as a function
of SNR are presented in Figure 11.

As shown in Figure 11a, at a low SNR, SE-ResNet-MAML and ResNet18-MAML
perform less effectively in extracting and recognizing the two-dimensional time–frequency
image modality compared to 1D-VGG-MAML and 1D-MSCNN-MAML, which focus
on extracting and recognizing the one-dimensional I/Q waveform sequence modality.
Specifically, the feature extraction and recognition models for the sequence modality achieve
an average recognition accuracy 11.53% higher than the image modality models at −20 dB.
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In contrast, at a higher SNR, the models focused on the two-dimensional image modality
outperform those focused on the sequence modality. For instance, at 4 dB, the image
modality models show an average improvement in recognition accuracy of 9.79% compared
to the sequence modality models. The DCFANet-MAML model, which combines the
features from both modalities, demonstrates superior performance. It benefits from the
sequence modality’s excellent noise resistance while also capturing and representing spatial
features from the image modality. As a result, its recognition accuracy is higher than the
two unimodal models at both low and high SNRs. The overall recognition accuracy of
DCFANet-MAML across the entire SNR range reaches 89.3%, with an accuracy above 90%
at −12 dB, and the recognition rate approaches 100% when the SNR exceeds 2 dB. This
confirms that the proposed multimodal fusion method for few-shot learning effectively
complements the information from different modalities, resulting in more comprehensive
joint features that significantly enhance recognition accuracy and model robustness.

(a) (b)

Figure 11. The relationship between recognition accuracy and SNR of different models in different modes.
(a) recognition accuracy of each method on Dval. (b) recognition accuracy rate of each method on DZ

val.

Subsequently, focusing on Figure 11b, we analyze the generalization performance and
cross-task learning capability of DCFANet-MAML. The model demonstrates impressive
results on DZ

val as well. At both low and high SNRs, it effectively leverages the fused
features, maintaining an accuracy of 83.9% at −10 dB, even when faced with signals
affected by various factors. The fact that the knowledge learned from the training set Dtrain
can be transferred to DZ

val while maintaining robustness further validates the cross-task
learning characteristics of DCFANet-MAML. This robust performance under few-shot
conditions underscores the effectiveness of the proposed DCFANet-MAML model.

The parameter and calculation amount of the models involved in the experiments
are shown in Table 3. This comparison further illustrates that the multimodal fusion
method, DCFANet-MAML, maintains a lightweight structure while still achieving excellent
performance under few-shot learning conditions.

Table 3. Comparison of parameters and calculation amount of different models.

Model Params FLOPs

ResNet18-MAML 11.7 M 7.4 M
SE-ResNet-MAML 11.2 M 6.2 M
1D-VGG-MAML 0.85 M 7.1 M

1D-MSCNN-MAML 0.83 M 4.3 M
DCFANet-MAML 0.94 M 5.5 M

4.3.4. Confusion Matrix and Feature Visualization Analysis of the Multimodal
Fusion Method

In this section, we delve deeper into the recognition performance of the proposed
multimodal fusion method, DCFANet-MAML, under few-shot learning conditions. The
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evaluation is conducted through the use of a confusion matrix and feature visualization
on DZ

val, providing a comprehensive assessment of the model’s performance in terms of
classification accuracy and feature representation.

Figure 12 presented the confusion matrices for the DCFANet-MAML model under three
different SNR conditions: −20 dB, −10 dB, and 0 dB. These matrices represent the classification
performance on three meta-validation tasks with randomly sampled categories. The categories
are as follows: LFM, P1, P2, T3, and Frank at −20 dB; Costas, Rect, LFM, T3, and T4 at −10 dB;
and Barker, Rect, T1, P3, and P4 at 0 dB. Each meta-validation task consists of 2600 samples.
From the results, it is evident that at −20 dB, the model exhibits significant errors across all
sampled categories, although it still manages to extract subtle features from the signals. At
−10 dB, the main errors occur between the categories T3 and T4, as their two-dimensional
and one-dimensional features, are highly similar. At 0 dB, while some errors persist, the F1
scores for the sampled categories are calculated as 0.9578, 0.9475, 0.9452, 0.9646, and 0.9996,
indicating that the proposed method can achieve high-quality and highly reliable predictions
on randomly sampled meta-tasks at 0 dB.

(a) (b)

(c)

Figure 12. Meta-validation classification confusion matrix on DZ
val for different SNRs: (a) Meta-

validation classification under SNR = −20 dB, sampling categories: LFM, P1, P2, T3, Frank; (b) Meta-
validation classification under SNR = −10 dB, sampling categories: Costas, Rect, LFM, T3, T4;
(c) Meta-validation classification under SNR = 0 dB, sampling categories: Barker, Rect, T1, P3, P4.

Next, the focus shifts to the joint feature vectors obtained from DCFANet-MAML under
few-shot conditions on DZ

val, which are extracted and concatenated. These feature vectors
are then flattened and projected onto a two-dimensional plane using t-SNE for visualization,
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as shown in Figure 13. Additionally, t-SNE is also applied to the raw, unprocessed data
from DZ

val to provide a clear before-and-after contrast, which is presented in Figure 14,
highlighting the improvement in feature separability and representation achieved by
the model.

As shown in Figure 14, both the image and sequence modalities of DZ
val exhibit signifi-

cant overlap with many regions where features from different categories are indistinguish-
able. Yet, some categories still show larger inter-class separations, particularly where a high
SNR enhances the clarity of the features, whereas at low SNRs, the features become more
difficult to distinguish. This visualization result aligns well with real-world conditions,
reflecting the challenge of feature extraction at lower SNR.

After feature extraction using the DCFANet-MAML method, features across all SNRs
tend to become more dispersed, as shown in Figure 13a. However, some categories still
exhibit small inter-class distances, and some overlapping feature points persist. Further
analysis of the mapped feature vectors below −10 dB and above 2 dB SNR is conducted,
as illustrated in Figure 13b,c. These figures show that the SNR significantly influences
the inter-class distances of the features, affecting feature discriminability. Nonetheless,
DCFANet-MAML can still distinguish the majority of categories at low SNR below −10 dB.
At higher SNR, the inter-class distances are relatively larger, making the features easier to
differentiate.

(a) (b)

(c)

Figure 13. High-dimensional feature vector mapping of DCFANet: (a) feature vector mapping across
all SNRs; (b) feature vector mapping for SNRs under −10 dB; (c) feature vector mapping for SNRs
above −2 dB.
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(a) (b)

Figure 14. t-SNE visualization of DZ
val: (a) t-SNE visualization of the time–frequency image modality;

(b) t-SNE visualization of the I/Q waveform sequence modality.

In summary, the proposed method demonstrates the ability to obtain richer and more
distinguishable features, improving the model’s performance and recognition accuracy.

4.4. Method Limitations and Future Work

Despite the promising results demonstrated by the proposed model in this study,
several limitations must be acknowledged, and it is also essential to provide avenues for
further exploration in future research.

Firstly, due to the absence of publicly accessible datasets and the challenges associated
with hardware limitations in acquiring real radar emitter signals, we are constrained to
generating a trainable signal dataset solely within a simulated environment. While this
allows for controlled experimentation, the performance of the model may differ when
applied to real-world radar emitter signals, which are subject to more complex noise char-
acteristics, signal distortions, and environmental factors. To successfully incorporate real
radar signal data into the model, it is imperative to maintain consistency between the
number of sampling points and the length of the signal sequences with the specifications
outlined in our experimental design. This congruence ensures that all data transformations
align precisely with those described in the article. Furthermore, adjustments to the real
radar signal characteristics and model parameters can be facilitated by fine tuning variables
such as STFT parameters and the hyperparameters of the model. The potential discrep-
ancies between simulated data and real-world radar signals may significantly impact the
model’s generalization performance. Therefore, future research will aim to explore addi-
tional methodologies for obtaining empirical radar data as well as investigate the model’s
adaptability to the inherent variations present in real-world radar environments.

Additionally, the study only considered radar emitter signals under the AWGN envi-
ronment. In more complex electromagnetic environments, a variety of noise types are likely
to occur, including interference from other signals, atmospheric noise, and jamming tech-
niques. The model’s robustness to these more intricate noise conditions remains unexplored
and represents an area of ongoing research. Future work will focus on evaluating and
enhancing the model’s performance in more realistic and diverse channel environments.

Moreover, the signals used in this study are limited to those that are known and
present in the existing databases. The few-shot conditions represent only one of the
challenges arising from a complex electromagnetic environment, but in real-world scenarios,
electromagnetic environments often contain unknown or previously unencountered radar
emitter signals. The current approach may not be suitable for detecting or recognizing
such unknown signals. With the superior generalization capabilities provided by MAML,
future research will extend the work by investigating the detection and recognition of
unknown radar emitter signals with the aim of adapting and improving the proposed
model to handle previously unseen or unidentified signals in complex environments.
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5. Conclusions

In this article, we first propose the MAML method to optimize the model parame-
ters and improve the training process, acclimatizing the training process to the few-shot
environment. By introducing residual block, SE block, and 1D MSCNN, we design a
multimodal fusion neural network, DCFANet, based on deep learning. The function of this
network is to fuse the multimodal information from the I/Q waveform domain and the
time–frequency image domain of the intra-pulse modulated signal of the emitter in order to
realize the recognition of the intra-pulse modulated signal of the radar emitter. Moreover,
designing the multimodal collaborative converged infrastructure and introducing joint
loss function are also benefit to the maintaining the uniqueness and exclusivity of each
mode. The experimental simulation generated 13 different kinds of intra-pulse modulated
signals. We then tested the trained MAML and the proposed multimodal fusion neural
network to recognize the modulated signal and at last compared the results with most
existing advanced network models. Experiments show that the proposed multimodal
fusion method has a good result when classifying 13 different intra-pulse modulated sig-
nals of a radar emitter under few-shot learning conditions. In particular, when we set
the experimental setting to be N − way = 5 K − shot = 5, the global average accuracy on
the validation set Dval reaches 95.7%, and the classification accuracy reaches 93.8% when
the SNR is −10 dB; the global average accuracy on the validation set Z DZ

val, of which
signals are added in doppler shift, multipath fading and time delay, reaches 87.3%, and the
classification accuracy reaches 83.5% under the condition of SNR −10 dB.
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