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Abstract: A non-contact slip ring is proposed in this paper. The bidirectional simultaneous wireless
power and data transfer (BD-SWPDT) technology is utilized to transfer power and data bidirectionally.
A bidirectional constant-voltage LC hybrid compensation topology is proposed, which utilizes the
LC series parallel structure to have different equivalent models at different frequencies. By using
different operating frequencies for forward and reverse power transfer, the system’s forward and
reverse transfer can be equivalent to different constant-voltage output compensation topologies. The
resonant parameters of the system are designed to achieve consistent voltage gain for forward and
reverse power transfer. And based on this topology, a data carrier injection method is designed
to achieve high Signal Noise Ratio (SNR) simultaneous data transfer. To improve the flexibility of
non-contact slip ring installation, a caliper-type coupling structure is proposed. Finally, the feasibility
of the proposed method is verified through experiments, achieving a forward and reverse output
power of 200 W and half duplex communication with a data rate of 19.2 kbps.

Keywords: wireless power transfer; contactless slip ring; simultaneous wireless power and data
transfer (SWPDT); caliper type coupling structure

1. Introduction

Magnetic Coupled Wireless Power Transfer (MC-WPT) technology is based on the
principle of electromagnetic induction, which achieves the transmission of electrical power
through non-contact means, directly avoiding physical contact between rotating structures
and providing an effective means for the development of electrical power transmission
technology for rotating structures [1,2]. With the development of WPT technology, it has
been applied in multiple fields, such as smart homes, mobile phones, electric vehicles, and
medical devices [3–8]. In addition, it has gradually been applied in some special industries,
such as wireless power supply in underwater environments [9,10] and rotary guidance
systems in the field of oil drilling [11].

In recent years, rotating equipment has gradually been applied in various fields of
our lives, especially in some very important areas, such as satellites, helicopters, radars,
oil drilling, and wind power generation [12]. During the operation of the equipment, it is
necessary to transmit the electrical power from the stator side to the rotor side, and at the
same time, the sensor signals on the rotor side also need to be transmitted back to the host
for internal operation and control. Due to the need for the device to rotate 360◦, in order to
prevent cable entanglement, the internal power transmission of the rotating structure is
usually achieved through conductive slip rings. For the wireless power transfer of rotary
structures, wireless power transfer technology with rotary structures has been widely
studied. A wireless power transfer rotary structure for a solar wing is proposed in [12], a
multi-U-shaped column rotary transformer is proposed in [13], and a mixed flux coupler is
proposed in [14]. The couplers adopted in these papers are traditional coaxial nested slip
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rings. However, the flexibility of this type of coupler is not high, and only unidirectional
power transfer is achieved without simultaneous data transfer. End-to-end couplers are also
proposed in [15–18] and Series or None compensation is adopted in these papers, which
will cause serious interference to data transfer when data are simultaneously transferred
sharing the same coupler [19]. In practical applications, in addition to power transfer,
simultaneous wireless data transfer is also needed. A simultaneous wireless power and
data transfer method adopting a half-cylinder stator and quarter-cylinder rotator coupler
is proposed in [20], which achieves simultaneous data transfer while supplying power
to rotating equipment. However, extra coils for data transfer are added in the coupler,
which will reduce the flexibility of the coupler. In some rotating applications, such as a
satellite solar wing, batteries are usually stored inside the satellite; when there is sunlight,
solar panels absorb solar radiation and convert it into electrical energy to power devices
such as sail sensors. At the same time, the electrical energy is transmitted to the satellite’s
internal battery for storage through conductive slip rings. While the satellite operates in the
shadow of the sun, the electrical energy in the battery is released to provide power for the
equipment. The sensor devices on the solar panel need to be powered through conductive
slip rings. In the process of power transfer, it is also necessary to transmit control data
to control the operation of sensors and other equipment on solar panels, and to transmit
sensor data through slip rings to the satellite for processing. These demands can be exactly
met by a BD-SWPDT system.

A bidirectional simultaneous wireless power and data transfer (BD-SWPDT) system
with non-contact slip ring based on caliper type coupling structure is proposed in this paper.
A bidirectional constant-voltage LC hybrid compensation topology and a BD-SWPDT
topology are proposed, and a caliper-type coupler is designed to improve system flexibility.
In the power transfer channel, based on the capacitive or inductive characteristics of LC
series and parallel networks at different frequencies, by controlling the frequency during
bidirectional power transfer, the system topology is equivalent to different constant-voltage
output topologies in forward and reverse power transfer, achieving constant voltage output
during bidirectional power transfer. For data transfer, amplitude shift keying (ASK) is
adopted, the coupler is frequency division multiplexed, and parallel networks with a center
frequency of the data carrier to achieve the impedance isolation of the power and data
transfer channel are added. Finally, bidirectional simultaneous wireless power and data
transfer is achieved through the same caliper-type coupling structure. The proposed system
has the following features:

(1) Simultaneous wireless power and data transfer through a pair of coupled coils;
(2) An on-contact slip ring based on a caliper-type coupling structure is utilized to replace

the traditional contact slip ring equivalently;
(3) Bidirectional power transfer with independent transfer gains is achieved;
(4) A constant-voltage output topology with band-pass filtering characteristics is pro-

posed, achieving constant voltage output and suppressing the power interference on
simultaneous data transfer.

This paper is organized as follows. In Section 2, a structural diagram of the BD-SWPDT
system is shown. In Section 3, the bidirectional power transfer channel is analyzed based
on its circuit models, and its operation principle is illustrated. In addition, the caliper-type
coupler is analyzed through simulation. In Section 4, the structure of the simultaneous
data transfer channel is proposed, and its operation principle is illustrated. In Section 5, an
experimental prototype is built to verify the correctness of the theoretical analysis and the
feasibility of the proposed system. In Section 6, a discussion is offered, and the results of
the proposed system are compared with the references. Finally, a conclusion is drawn in
Section 7.

2. System Overview

The structural diagram of the proposed BD-SWPDT is shown in Figure 1. The power
transfer channel and the data transfer channel share the same pair of coupled coils. In the
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power transfer channel, when electrical power flows in the forward direction, a driving
signal is applied on the primary active bridge and the active bridge operates in an inverter
mode to generate high-frequency voltage. The reactive power of the system is compensated
by a compensation network, and an alternating magnetic field is generated on the primary
coil. The reactive power of the system is also compensated by a compensation network
on the secondary side. The secondary active bridge is not applied on a driving signal, or
operates in a rectification mode using a control strategy to convert AC into DC, thereby
achieving the forward transmission of electrical power. Similarly, when electrical energy
flows in the opposite direction, a secondary side active bridge is applied on a driving signal
and operates in inverter mode, while the primary side is in rectification mode. The system
achieves bidirectional power transfer by controlling the driving signals of the primary
and secondary sides. In the data transfer channel, when data are forward-transferred, the
data are modulated onto a high-frequency carrier through a modulation module, and the
high-frequency carrier is injected into the primary coils through the data carrier injection
module. On the secondary side, the carrier is extracted by the data carrier extraction
module and demodulated by the data demodulation module to recover the data. Due to
the symmetric structure of the data transfer channel, the process of reverse data transfer is
the same as forward data transfer.
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3. Bidirectional Power Transfer Channel
3.1. The Topology of the Power Transfer Channel

When power and data are transferred simultaneously via the same pair of coupled
coils, the data transfer channel will be greatly interfered with by the harmonics components
of the power transfer channel. To suppress the interference of the power transfer channel,
compensation topologies with band-pass filtering characteristics such as LCC compensation
topology are usually adopted in both sides of an SWPDT system [19]. A bidirectional
constant voltage LC hybrid compensation topology is proposed in the paper, as shown
in Figure 2. Based on the capacitive or inductive characteristics of LC series in parallel
networks at different frequencies, the system topology is equivalent to different constant-
voltage output topologies in the forward and reverse transmission processes, controlling the
frequency during the bidirectional transmission of electrical power, and achieving constant-
voltage output in the bidirectional transmission process. Udc1 and Udc2 are equivalent DC
power sources for forward and reverse power transfer. Lp and Ls are the self-inductance of
the primary and secondary coils, M is the mutual inductance of the coupled coils, Ip and Is
are the current of the primary and secondary side coils, ULp and ULs are the voltages of the
primary and secondary side coils, Up and I1 are the voltage and current of the primary side
inverter, Us and I2 are the voltage and current of the secondary side inverter, and Cd1 and
Cd2 are the input or output filtering capacitors. S1–S4 and S5–S8 represent the active bridges
composed of four MOSFETs on the primary and secondary sides, respectively, and they
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are used to achieve DC inversion and controllable rectification in the bidirectional power
transfer. LC hybrid compensation topologies are adopted on the primary and secondary
sides of the system.
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The forward and reverse power transfer adopts different operating frequencies. In this
paper, the operating frequency of the forward power transfer is ff, the operating frequency
of the reverse power transfer is fr, and ff < fr; the forward and reverse operating angular
frequencies are ωf and ωr, respectively. The resonant frequency of the LC parallel network
composed of L1 and C1 is ω1, the resonant frequency of the parallel network composed of
L2 and C2 is ω2, the resonant frequency of the series LC network composed of L3 and C3 is
ω3, and the resonant frequency of the series LC network composed of L4 and C4 is ω4. The
relationships between each parameter in Figure 2 satisfy

ω4 < ω2 = ω f < ωr = ω1 < ω3

ω1 = ωr = 2π fr = 1/
√

L1C1

ω2 = ω f = 2π f f = 1/
√

L2C2

ω3 = 1/
√

L3C3

ω4 = 1/
√

L4C4

(1)

Due to ω2 = ωf, when power is transmitted in the forward direction, the impedance of
the parallel network composed of L2 and C2 on the secondary side is infinite, equivalent to
an open circuit. The secondary side is equivalent to a series compensation network. At the
forward operating frequency, the series LC network composed of L3 and C3 is capacitive,
while the LC parallel network composed of L1 and C1 is inductive. The forward power
transfer topology structure can be equivalent to a CLC-S topology with a constant-voltage
output characteristic.

When power is transmitted in the forward direction (the operating frequency is ff), the
equivalent capacitance of the series network (i.e., L3, C3) Cpeqwf can be derived, as

Cpeqw f =
C3

1 − ω f
2L3C3

(2)

The equivalent inductance of the parallel network (i.e., L1, C1) Leqwf can be derived as

Lpeqw f =
L1

1 − ω f
2L1C1

(3)

The primary compensation topology structure for power transfer can be equivalent
to a CLC compensation topology composed of Cpeqwf, Lpeqwf, and Cp. The parallel net-
work is equivalent to an open circuit. The series network (i.e., L4, C4) is equivalent to an
inductor Lseqwf.

Lseqw f = L4 −
1

ω f
2C4

(4)
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The equivalent circuit diagram of the forward power transfer channel is shown in
Figure 3.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 16 
 

 

equivalent to an open circuit. The series network (i.e., L4, C4) is equivalent to an inductor 

Lseqwf. 

4 2

4

1
seqwf

f

L L
C

= −  (4) 

The equivalent circuit diagram of the forward power transfer channel is shown in 

Figure 3. 

Cd2

Cp

M

Lp Ls

Cs

Lpeqwf

Lseqwf

Udc2

S1 S2

S3 S4

Udc1 Cd1

S5 S6

S7 S8

Cpeqwf

 

Figure 3. The equivalent circuit of the forward power transfer. 

When power is transferred in the forward direction, the secondary side active bridge 

operates in rectification mode, and the inverter can be treated as a voltage source Up and 

the load, while the rectifier is equivalent to a resistor Rseq. Based on First Harmonic Ap-

proximation (FHA), 1
2 2

dc
p

U
U


= . The further equivalent circuit of the forward power 

transfer channel is shown in Figure 4. 

Cp

M

Lp Ls

Cs

Lpeqwf

LseqwfCpeqwf

Up Rseq Us

 

Figure 4. The further equivalent circuit of the forward power transfer. 

The relationship between each parameter satisfies 

( )

( )

1
0

1
0

1
0

f peqwf

f peqwf

f p peqwf

f p

f s seqwf

f s

j L
j C

j L L
j C

j L L
j C











+ =





+ + =


 + + =


 (5) 

Based on (2), (3), and (5), The output current of the primary inverter can be derived 

as 

2 2 2

1 1 1

1 2

1

2 2 (1 )f dc

seq

M L C U
I

R L





−
=  (6) 

and the current of the primary coil can be obtained. 

Figure 3. The equivalent circuit of the forward power transfer.

When power is transferred in the forward direction, the secondary side active bridge
operates in rectification mode, and the inverter can be treated as a voltage source Up
and the load, while the rectifier is equivalent to a resistor Rseq. Based on First Harmonic

Approximation (FHA), Up = 2
√

2Udc1
π . The further equivalent circuit of the forward power

transfer channel is shown in Figure 4.
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The relationship between each parameter satisfies
jω f Lpeqw f +

1
jω f Cpeqw f

= 0

jω f

(
Lp + Lpeqw f

)
+ 1

jω f Cp
= 0

jω f

(
Ls + Lseqw f

)
+ 1

jω f Cs
= 0

(5)

Based on (2), (3), and (5), The output current of the primary inverter can be derived as

.
I1 =

2
√

2M2(1 − ω f
2L1C1)

2Udc1

πRseqL1
2 (6)

and the current of the primary coil can be obtained.

.
Ip =

2
√

2Udc1(ω f
2L1C1 − 1)

jω f L1π
(7)

The voltage transfer gain of the forward power transfer channel can be expressed as

G f =
Udc2
Udc1

=
M

Lpeqw f
=

M(1 − ω f
2L1C1)

L1
(8)

When power is transmitted in reverse, due to ω1 = ωr, the parallel network composed
of L1 and C1 on the primary side is equivalent to an open circuit, the series LC network
composed of L4 and C4 on the secondary side is inductive, and the parallel network
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composed of L2 and C2 is capacitive. The reverse power transfer topology structure can be
equivalent to the LCC-S topology, and the system can achieve constant voltage output.

When power is transmitted in the reverse direction (the operating frequency is fr), the
equivalent inductance of the series network (i.e., L4, C4) Lseqwr can be derived,

Lseqwr = L4 −
1

ωr2C4
(9)

The equivalent capacitance of the parallel network (i.e., L2, C2) Ceqwr can be derived as

Cseqwr = C2 −
1

ωr2L2
(10)

The secondary compensation topology structure for reverse power transfer can be
equivalent to an LCC compensation topology composed of Lseqwr, Cseqwr, and Cs. The paral-
lel network is equivalent to an open circuit. The series network (i.e., L3, C3) is equivalent to
a capacitor Cpeqwr.

Cpeqwr =
C3

1 − ωr2L3C3
(11)

The equivalent circuit diagram of the reverse power transfer channel is shown in
Figure 5.
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The relationship between each parameter satisfies
jωrLseqwr +

1
jωrCseqwr

= 0

jωr
(

Ls − Lseqwr
)
+ 1

jωrCs
= 0

jωrLp +
1

jωrCpeqwr
+ 1

jωrCp
= 0

(12)

Similar to the forward power transfer, the voltage transfer gain of the reverse power
transfer channel can be expressed as

Gr =
Udc1
Udc2

=
M

Lseqwr
=

ωr
2C4M

ωr2L4C4 − 1
(13)

According to the voltage gain formula of the forward and reverse power transfer,
when the input voltage of the system is constant, the magnitude of the output voltage is
related to the value of the equivalent inductance (Lpeqwf or Lseqwr) and M, and is independent
of the load, which can enable it to achieve constant voltage output. In addition, the voltage
transfer gain of both directions can be adjusted independently according to the applications.
In order to replace the traditional contact slip ring equivalently, the voltage gain is set to 1
and the values of Lpeqwf and Lseqwr are set to be equal to the value of M.

3.2. The Caliper Type Coupler

In some irregular rotating power supply scenarios, such as the traditional conductive
slip ring structure shown in Figure 6a, this paper proposes a caliper-type coupler, as shown



Electronics 2024, 13, 3974 7 of 15

in Figure 6b, that uses only a part of the nested outer cylinder structure to achieve power
transfer. Compared with the traditional nested coupler shown in Figure 6c, the installation
of the caliper-type coupler is more convenient, the system’s flexibility is improved, and it is
conducive to the replacement and maintenance of the slip ring.
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Figure 6. (a) The traditional conductive slip ring, (b) the proposed caliper type coupler and (c) the
traditional nested coupler.

The dimension of the proposed caliper-type coupler is depicted in Figure 7. The inner
and outer diameters of the coupler are 100 mm and 160 mm, respectively, the air gap
between the inner and outer ring is 10 mm, and the height of the coupler is 60 mm. With
the parameters listed in Table 1, the magnetic flux density map of the coupler obtained by
applying a 5 A current excitation current to the primary and secondary sides of the coupler
using magnetic field simulation software is shown in Figure 8.
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Figure 7. The dimensions of the proposed caliper-type coupler.

Table 1. The parameters of the coupler.

Symbols Unit Value

Air gap d mm 10
Inner ring turns ns Turns 15
Outer ring turns Turns 15

Outer ring curvature Degree 90

When the excitation current increases, the magnetic flux density of the coupler in-
creases. To avoid magnetic saturation, the analysis of the magnetic flux density in the x-axis
direction of the system is shown in Figure 9. The maximum magnetic flux density of the
system is 12 mT, which is lower than the magnetic saturation threshold of the magnetic
core, and the system can work normally.
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4. Bidirectional Data Transfer Channel

Bidirectional data transfer is achieved through frequency division multiplexing cou-
pling coils, using parallel connection to inject and extract the data carrier and adding an
LC parallel network to achieve impedance isolation between the power carrier and data
carrier [21]. The injection and extraction method of the BD-SWPDT data carrier is shown in
Figure 10.
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Figure 10. The data carrier injection and extraction.

The lower part of Figure 10 shows the data transfer channel. An LC parallel network
is connected in series in the power transfer circuit, and the resonant frequency is set to the
data carrier frequency fs, which is much greater than that of the power carrier. When the
data carrier is loaded to both ends of the coil, the impedance of the parallel network to
the data carrier is relatively large, equivalent to an open circuit, and the equivalent circuit
of the data transfer channel is shown in Figure 11. When the power transfer circuit is
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working, the parallel network is equivalent to the inductor of the network at the power
carrier frequency. The impact of the inductance on power transfer can be compensated
for by connecting capacitors in series. Due to the pF level capacitance of Cps and Css, the
impedances of Cps and Css are very large due to the relatively low-frequency power carrier,
and the power carrier can barely flow through the data carrier processing circuit, thus
achieving impedance isolation of the power and data transfer channels.
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Figure 11. The equivalent circuit of the data transfer channel.

In the data transfer circuit, AC1 and AC2 are the data carrier voltage sources of the
primary and secondary sides, respectively. The ASK modulation and loading of the data
carrier are achieved by controlling the on–off of the analog switches SPDT1 and SPDT2.
Transformers T1 and T2 are used to achieve electrical isolation between the data transfer
circuit and the power transfer circuit. R1 is the sampling resistor of the secondary side
during forward data transfer, R2 is the sampling resistor of the primary side during reverse
data transfer, and the voltages of R1 and R2 are sampled for data demodulation. Cps and Css
are series compensation capacitors for the primary and secondary sides of the data transfer
channel, and their values satisfy 

Cps =
1

ωs2Lp

Css =
1

ωs2Ls

Cr1 = 1
ωs2Lr1

Cr2 = 1
ωs2Lr2

ωs = 2π fs

(14)

It should be noted that fs is much greater than ff and fr, the parallel networks (i.e.,
Lr1, Cr1, and Lr2, Cr2) can be treated as inductors Lr1 and Lr2, respectively, at the relatively
low-power transfer frequency, and the values of Lr1, and Lr2 can be directly added to the
values of Lp and Ls, respectively, when calculating the other parameters of the system.

Single-pole double throw switches SPDT1 and SPDT2 are connected to sampling
resistors by default for receiving signals when there is no data transfer. When data are
transmitted in the forward direction, the high- and low-level signals of the data control
SPDT1 to modulate the high-frequency carrier. The modulated signal is transmitted to the
primary side of transformer T1, and the voltage is stepped up by the transformer T1 and
transmitted to the secondary side of transformer T2 through the SS compensation network.
After the voltage is stepped down by transformer T2, a sine wave signal is received on
resistor R1, and then the data are demodulated through a data demodulation circuit. Due to
the symmetrical structure design of the primary and secondary compensation network, the
principle of data reverse transfer is consistent with that of forward transfer, thus enabling
half duplex communication between the two sides of the wireless power system.

5. Experimental Verification

With the parameters listed in Table 2, an experimental prototype shown in Figure 12,
built based on Figure 2 to verify the feasibility of the proposed BD-SWPDT system. The
two auxiliary power supplies are used to power the data transceivers. Two USB to TTL
converters are utilized to transmit and receive the data through the computer. A DC
power supply (ITECH-IT6522C) is used as the DC power source and an electronic load
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(ITECH-IT8813) is used as the load. In the data transceiver, a direct digital synthesizer (DDS,
AD9833) is used to generate the high-frequency data carrier, an analog switch (ADG5419)
is used to modulate the data carrier, and an operation amplifier (BUF634) is used as the
high-speed buffer to drive the coils.
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Figure 12. The experimental prototype. Figure 12. The experimental prototype.

Table 2. The parameters of the BD-SWPDT system.

Symbols Unit Values Symbols Unit Values

Udc V 48 fs kHz 1500
ff kHz 85 fr kHz 105
Lp µH 59 Ls µH 109
M µH 27.75 n -- 5
L1 µH 9.5 L2 µH 14.5
C1 nF 241 C2 nF 241
L3 µH 30 L4 µH 35
C3 nF 61 C4 nF 285
Cp nF 34.5 Cs nF 23.7
Lr1 µH 15 Lr2 µH 15
Cr1 pF 750 Cr2 pF 750
Cps pF 219 Css pF 118

The procedures for the parameter design of the proposed system are depicted in detail
in the flow chart shown in Figure 13. The values of Lpeqwf and Lseqwr can be determined
according to the mutual inductance and the transfer gain requirement of the practical
application, and other parameters can be calculated from the equations listed.

When power is transferred in the forward and reverse directions, the waveforms of
the power transfer channel under different output powers are shown in Figures 14 and 15,
respectively. It can be seen from Figures 14 and 15 that the voltage of the inverter is
slightly ahead of the inverter current, achieving zero voltage switch, the output voltage
almost remains constant under different output powers, and the voltage transfer gain of
the forward power transfer is the same with the reverse power transfer. The electronic load
is set to constant power mode, and when the output power is 200 W, the efficiencies of the
forward and reverse power transfer channel are 88.1% and 88.8%, respectively.
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When there is only bidirectional data transfer (without simultaneous power transfer),
the waveforms of the data transfer channel are shown in Figure 16. The transmitted data
“Data1 in” are modulated and amplified to be converted into modulated signal U1 (blue
waveform), which is loaded onto both ends of the transformer. The secondary side receives
the signal waveform U4, as shown in the purple waveform, and after demodulation, the
data “Data1 out” are restored, as shown in the green waveform. Since the waveforms
of “Data1 in” and “Data1 out” are consistent, the data can be transmitted successfully.
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As can also be seen from Figure 16, no interference occurs on the waveforms of the data
transfer channel.
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When power and data are transferred simultaneously, the power transfer channel will
introduce interference to the data transfer channel, and the waveforms of the data transfer
channel are shown in Figure 17. Comparing Figures 16 and 17, it can be inferred that the
data transfer channel will be interfered with by the power transfer, but the interference is
small, and almost does not affect the normal transfer of data.
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Figure 17. (a) The waveforms of the data transfer channel and (b) its stretched-out view with
simultaneous power transferred.



Electronics 2024, 13, 3974 13 of 15

The waveforms of the voltage of the coupled coils are also measured when power and
data are transferred simultaneously, and are shown in Figure 18. It can be seen from the
green circles that high-frequency waves are superimposed on the relatively low-frequency
power carrier when the data carrier is transferred, which indicates that power and data are
transferred simultaneously via the same coupled coils.
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To verify the effect of the proposed power transfer topology on the suppression of
power interference, and due to the open circuit characteristics of the parallel networks
(L2, C2) and (L1, C1) when power are transferred in the forward direction and the reverse
direction, respectively, the waveforms of the data transfer channel are measured and shown
in Figure 19. Here, power and data are transferred simultaneously with the LC parallel
networks removed. Comparing Figure 19a,b, it can be inferred that the power interference
can be significantly suppressed by the proposed topology, resulting in a high-quality
transfer of data and reducing the complexity of the data demodulation circuit.
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6. Results and Discussion

Table 3 summarizes the performance of this work and relevant works presented
in [12,15,16,19–21]. It can be inferred from Table 3 that the coupler types of rotary applica-
tions can be roughly divided into four categories—the coaxial type, the planar type, the can
type, and the caliper type. Due to the coupling structure, the maintenance of the coaxial
nested coupler is more inconvenient than other types of couplers. The two sides of the
coupler cannot be disassembled separately, which decreases the maintenance flexibility.
In practical applications, besides the power transfer, data transfer is of equal importance.
However, simultaneous data transfer is not applicable in [12,15,16], which limits its imple-
mentation in practical applications. SPWDT technology is proposed in [19–21], and this
structure and two channels are formed to transfer power and data separately. However,
in [20], extra coils are added to transfer data, which will increase the volume and complexity
of the coupler. In this work, bidirectional power transfer is also achieved in addition to
SWPDT sharing the power transfer coils, and the transfer gains of the two directions can be
adjusted independently. When the power transfer channel operates, a large component
of harmonics will be generated, which will cause EMI issues. In this work, compensation
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networks with band-pass filtering characteristics are proposed, suppressing the EMI and
creating a favorable condition for data transfer.

Table 3. The performance comparison among the technologies with rotary applications.

References [12] [15] [16] [19] [20] [21] This Work

Data Transfer N/A N/A N/A Y Y Y Y
Coupler Type Coaxial Nested Planar Can type Coaxial Nested Coaxial Nested Coaxial Nested Caliper type
Maintenance

Flexibility Medium High High Medium Medium Medium High

Power Transfer Unidirectional Unidirectional Unidirectional Unidirectional Unidirectional Unidirectional Bidirectional
Channels 1 1 1 2 (Shared) 2 (Separate) 2 (Shared) 2 (Shared)
Harmonic
Filtering N/A N/A N/A Y N/A N/A Y

7. Conclusions

A non-contact slip ring system with bidirectional simultaneous wireless power and
data transfer is proposed in this paper. A caliper-type rotary coupling structure is proposed.
Compared with traditional coaxial nested slip rings, it has higher flexibility and easier
disassembly and maintenance, and equivalent replacement can be achieved with traditional
contact slip rings. The proposed bidirectional constant-voltage LC hybrid compensation
topology not only achieves bidirectional constant voltage output, but also filters out most
of the high-order harmonics in the power transfer channel, achieving simultaneous high-
stability data transfer through the same coupler. The voltage transfer gain of both directions
can be adjusted independently according to the application. Finally, the feasibility of the
proposed BD-SWPDT system is verified by experiment.
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