Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier
<p>Schematic of the dual-branch APD with series diode, phase delay lines, bias-Ts (ideal RF choke <math display="inline"><semantics> <msub> <mi>L</mi> <mo>∞</mo> </msub> </semantics></math> and an ideal DC block <math display="inline"><semantics> <msub> <mi>C</mi> <mo>∞</mo> </msub> </semantics></math>), and 3 dB splitters and combiners.</p> "> Figure 2
<p>AC equivalent circuit of the nonlinearity in the APD circuit. Highlighted on the circuit are the diode series impedance <math display="inline"><semantics> <msub> <mi>Z</mi> <mi>S</mi> </msub> </semantics></math> and total capacitance <math display="inline"><semantics> <msub> <mi>C</mi> <mi>T</mi> </msub> </semantics></math> between the A-K terminals.</p> "> Figure 3
<p>Ideal APD gain (<b>a</b>) and phase (<b>b</b>) vs. input power. Highlighted on the characteristics are the small-signal gain and phase (<math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>S</mi> <mi>S</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>S</mi> <mi>S</mi> </mrow> </msub> </semantics></math>), the large-signal gain and phase (<math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>L</mi> <mi>S</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>L</mi> <mi>S</mi> </mrow> </msub> </semantics></math>), maximum gain and phase variations (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>G</mi> <mrow> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mo>Φ</mo> <mrow> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </semantics></math>) at the maximum input power <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>I</mi> <mi>N</mi> <mo>,</mo> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 4
<p>(<b>Left</b>) Small-signal gain <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>S</mi> <mi>S</mi> </mrow> </msub> </semantics></math>, large-signal gain <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>L</mi> <mi>S</mi> </mrow> </msub> </semantics></math>, and gain variation <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>G</mi> <mrow> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </semantics></math> vs. phase difference <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math>. (<b>Right</b>) Small-signal phase <math display="inline"><semantics> <msub> <mo>Φ</mo> <mrow> <mi>S</mi> <mi>S</mi> </mrow> </msub> </semantics></math>, large-signal phase <math display="inline"><semantics> <msub> <mo>Φ</mo> <mrow> <mi>L</mi> <mi>S</mi> </mrow> </msub> </semantics></math>, and maximum phase variation <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mo>Φ</mo> <mrow> <mi>M</mi> <mi>A</mi> <mi>X</mi> </mrow> </msub> </mrow> </semantics></math> vs. linear branch phase <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>L</mi> <mi>I</mi> <mi>N</mi> </mrow> </msub> </semantics></math> for a set <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> <mo>=</mo> <msup> <mn>84</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 5
<p>APD gain and phase for a fixed <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math> setting the amplitude variation. Depending on the <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>L</mi> <mi>I</mi> <mi>N</mi> </mrow> </msub> </semantics></math> choice, this APD can realize a negative (<b>a</b>), neutral (<b>b</b>), and positive (<b>c</b>) phase variation.</p> "> Figure 6
<p>(<b>Left</b>) Gain variation vs. <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>I</mi> <mi>N</mi> </mrow> </msub> </semantics></math> for different total capacitances <math display="inline"><semantics> <msub> <mi>C</mi> <mi>T</mi> </msub> </semantics></math>. (<b>Right</b>) Gain variation vs. <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>I</mi> <mi>N</mi> </mrow> </msub> </semantics></math> for different series resistance <math display="inline"><semantics> <msub> <mi>R</mi> <mi>S</mi> </msub> </semantics></math>.</p> "> Figure 7
<p>Gain variation vs. <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>I</mi> <mi>N</mi> </mrow> </msub> </semantics></math> for different ideality factor <span class="html-italic">n</span>. Lower ideality factors have the effect of shifting the APD amplitude turn-on “knee”.</p> "> Figure 8
<p>Measured (blue) vs. modeled (dashed) APD gain at 15 GHz (<b>a</b>) and 21 GHz (<b>b</b>) for different diode biases. The APD model fits the measured data on a broad frequency range for different diode biases and input powers.</p> "> Figure 9
<p>Inverted gain (<b>a</b>) and phase (<b>b</b>) of the HPA at 19 GHz. Superposed is the APD model response for Diodes 1 and 2. Diode 1 approximates the HPA characteristics on a wider range than Diode 2, thus suggesting higher linearity and efficiency improvements with this diode.</p> "> Figure 10
<p>(<b>a</b>) Diode fixture mounted on the test jig with bias-Ts. (<b>b</b>) Two-line TRL calibration kit. (<b>c</b>) Photo of the setup to characterize the diode and APD.</p> "> Figure 11
<p>Measured (solid) and modeled (dashed) I/V of two Diode 1 samples.</p> "> Figure 12
<p>(<b>a</b>) Diode layout [<a href="#B19-electronics-13-03818" class="html-bibr">19</a>] with reference planes. (<b>b</b>) Diode equivalent circuit with parasitic network realized with lumped and distributed elements.</p> "> Figure 13
<p>Measured (solid) and modeled (dashed) diode <math display="inline"><semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>22</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>S</mi> <mn>21</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> between 1 GHz and 26.5 GHz and for 0, 1, 25 mA bias current.</p> "> Figure 14
<p>Layout (<b>left</b>) and photo (<b>right</b>) of the APD prototype.</p> "> Figure 15
<p>(<b>Left</b>) Simulation between 10 and 26 GHz of the APD circuit for varying input powers and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> V. The HPA and APD bandwidths are indicated on the plot. (<b>Right</b>) Simulated APD gain vs. input power for varying <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mn>0</mn> </mrow> </msub> </semantics></math>. Superposed are the inverted HPA characteristics and diode DC current.</p> "> Figure 16
<p>Simulated AC voltage across the diode at 17 GHz (<b>Left</b>) and 20 GHz (<b>Right</b>) for varying input powers. The voltage peaks are below the 7 V diode breakdown voltage.</p> "> Figure 17
<p>(<b>a</b>) Simulated APD input and output signal. (<b>b</b>) Measured HPA output signal without and with simulated APD. (<b>c</b>) Measured HPA gain with simulated APD for different bias voltages. An optimal bias voltage that ensures maximum gain flatness is found before fabricating the APD circuit.</p> "> Figure 18
<p>Measured <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>S</mi> <mn>11</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>S</mi> <mn>21</mn> </msub> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> (<b>b</b>) for varying <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mn>0</mn> </mrow> </msub> </semantics></math> (to simulate the expanding APD characteristic caused by the RF power).</p> "> Figure 19
<p>Measured large-signal APD gain (<b>left</b>) and phase (<b>right</b>) between 15 and 21 GHz. For these measurements, the diode bias is <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>D</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> V.</p> "> Figure 20
<p>(<b>Left</b>) Block diagram of the wideband setup. (<b>Right</b>) Photo of the setup.</p> "> Figure 21
<p>Pulsed gain and phase at 19 GHz for different diode biases.</p> "> Figure 22
<p>Measured HPA output spectrum for the same 750 MHz signal without APD (brown), with APD (blue), and ideal response (black). NPR improves between 6.5 and 8.2 dB over the 4 GHz HPA bandwidth while maintaining the same average output power.</p> "> Figure 23
<p>Measured NPR, average output power, and average efficiency for the same 750 MHz signal at different backoff powers. For the same NPR, APD improves the HPA average output power by 1-2 W and the average efficiency by 5–9%.</p> ">
Abstract
:1. Introduction
2. Wideband Large-Signal APD Model
2.1. APD Amplitude Range
2.2. APD Phase Range
2.3. Impact of Diode Capacitance on APD Characteristics
2.4. Impact of Diode Series Resistance on APD Characteristics
2.5. Impact of Diode Ideality Factor on APD Characteristics
2.6. Model Validation
2.7. Diode Selection
3. Diode Modeling for APD Design
3.1. Diode Characterization
3.2. Diode Modeling
4. Linearizer Design and Characterization
4.1. Simulated APD with Measured HPA-in-the-Loop
- A simulation with an amplitude-modulated sine wave at the APD input is performed to generate the pre-distorted signal, Figure 17a. This simulation is a time-domain harmonic balance (APLAC Transient in MWO);
- The pre-distorted signal is transferred to the measurement setup and is then applied to the HPA input. An optimal diode bias of V is found by iterating between (1) and (2). For V, the APD+HPA output amplitude approximates the ideal sine wave amplitude, Figure 17b.
- The HPA gain with and without simulated APD is computed and reported in Figure 17c. As can be seen, the small-signal gain with APD at 19 GHz is reduced by approximately 4 dB, while at a large-signal, APD reduces the HPA gain compression (hence less distortion) for the same maximum output power.
4.2. Small- and Large-Signal APD Characterization
5. APD-HPA Performance Evaluation
5.1. Wideband Measurement Setup
5.2. Performance with APD
5.3. Estimated APD+HPA Efficiency Including Post-Amplifier
5.4. Comparison with State-of-the-Art
Ref. | Archi. | Nonlinearity Generator | (GHz) | BW (GHz) | Fractional BW (%) | Small-Signal Gain (dB) | Gain Expansion (dB) | Phase Expansion (°) |
---|---|---|---|---|---|---|---|---|
[6] | Single Branch APD | Two Shunt Schottky Diodes | 2 | 0.1 | 5% | 12 | 5 | 25 |
[9] | Single Shunt Diodes | 14 | 0.75 | 5% | - | 4 | 30 | |
[10] | Two Shunt Schottky Diodes | 60 | 2 | 3% | 16 * | 8 | 28 | |
[25] | Shunt Diodes | 6 | 0.4 | 7% | 17 | 6 | 20 | |
[26] | Schottky + Varactor Diodes | 5 | - | - | 20 * | 4 | 30 | |
[11] | Dual Branch APD | PIN Diodes | 30 | 2 | 7% | 20 * | 5 | 23 |
[13] | Schottky Diode (MMIC) | 29 | 4 | 14% | 14 * | 8 * | 40 * | |
[14] | Shunt Schottky Diode | 20 | 2 | 10% | 27 * | 4 * | 9 * | |
[28] | GaN Amplifier | 0.8 | 0.2 | 25% | - | 2 * | 10 * | |
[29] | GaAs Amp. + Diode (MMIC) | 26 | 2 | 8% | 10 | 4 | 40 | |
[12] | Schottky Diode | 19 | 3 | 16% | - | 13 | 50 | |
This | GaAs Schottky Diode | 18 | 6 | 33% | 8 | 3 | 8 |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katz, A.; Gray, R.; Dorval, R. Truly wideband linearization. IEEE Microw. Mag. 2009, 10, 20–27. [Google Scholar] [CrossRef]
- Katz, A.; Wood, J.; Chokola, D. The evolution of pa linearization: From classic feedforward and feedback through analog and digital predistortion. IEEE Microw. Mag. 2016, 17, 32–40. [Google Scholar] [CrossRef]
- UMS. CHA8252-99F—10W K-Band High Power Amplifier. 2021. Available online: https://www.ums-rf.com (accessed on 7 May 2023).
- Kenington, P.B. High-Linearity RF Amplifier Design; Artech House: London, UK, 2000. [Google Scholar]
- Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T. A microwave miniaturized linearizer using a parallel diode with a bias feed resistance. IEEE Trans. Microw. Theory Tech. 1997, 45, 2431–2435. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, C.; Liu, G.; Li, Q.; Wu, Y.; Xiao, G. A novel analog linearizer for solid-state power amplifier in satellite communication system. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; pp. 1–3. [Google Scholar]
- Yamauchi, K.; Mori, K.; Nakayama, M.; Itoh, Y.; Mitsui, Y.; Ishida, O. A novel series diode linearizer for mobile radio power amplifiers. In Proceedings of the 1996 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 17–21 June 1996; Volume 2, pp. 831–834. [Google Scholar]
- Nakayama, M.; Mori, K.; Yamauchi, K.; Itoh, Y.; Takagi, T. A novel amplitude and phase linearizing technique for microwave power amplifiers. In Proceedings of the 1995 IEEE MTT-S International Microwave Symposium, Orlando, FL, USA, 16–20 May 1995; Volume 3, pp. 1451–1454. [Google Scholar]
- Mallet, C.; Duvanaud, C.; Carré, L.; Bachir, S. Analog predistortion for high power amplifier over the ku-band (13,75–14,5 ghz). In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017; pp. 848–851. [Google Scholar]
- Jing, Y.; Xia, L.; Lv, S.; Liu, Y. A V-Band Diode-Based Analog Predistortion Linearizer for Traveling Wave Tube Amplifiers. In Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021. [Google Scholar]
- Gumber, K.; Rawat, M. Analogue predistortion lineariser control schemes for ultra-broadband signal transmission in 5g transmitters. IET Microwaves Antennas Propag. 2020, 14, 718–727. Available online: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-map.2019.0253 (accessed on 7 May 2023). [CrossRef]
- Liu, T.; Su, X.; Wang, G.; Zhao, B.; Fu, R.; Zhu, D. A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs. Electronics 2023, 12, 1503. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, D.; Lv, D.; Zhou, D.; Zhang, Y. Analog predistortion linearizer with independently tunable gain and phase conversions for ka-band twta. IEEE Trans. Electr. Devices 2019, 66, 1533–1539. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Feng, Z. A broadband analog predistortion linearizer based on tunable diodes for ka band power amplifier. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 September 2020. [Google Scholar]
- Zhang, L.; Shi, H.; Yu, F. A k-band hybrid analog predistortion linearizer for dual inflection amplifier. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020. [Google Scholar]
- Cappello, T.; Ozan, S.; Tucker, A.; Krier, P.; Williams, T.; Morris, K. Enhancing the output power and efficiency for a set noise-power ratio of a k-band power amplifier by means of analog pre-distortion. In Proceedings of the 2024 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Antonio, TX, USA, 21–24 January 2024; pp. 1–4. [Google Scholar]
- Cappello, T.; Ozan, S.; McDonald, L.; Tucker, A.; Krier, P.; Williams, T.; Morris, K. A low loss, 6 ghz large-signal bandwidth analog pre-distortion linearizer for k-band high power amplifiers. In Proceedings of the 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 368–371. [Google Scholar]
- Piacibello, A.; Rubio, J.J.M.; Quaglia, R.; Camarchia, V. Am/pm characterization of wideband power amplifiers. In Proceedings of the 2022 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Las Vegas, NV, USA, 16–19 January 2022; pp. 82–85. [Google Scholar]
- MACOM. MA4E1310—Gaas Flip Chip Schottky Barrier Diode. 2022. Available online: https://cdn.macom.com/datasheets/MA4E1310.pdf (accessed on 7 May 2023).
- Luo, H.; Hu, W.; Guo, Y. Parameter extraction and modeling of schottky diodes: An extension of the resonance based inductance extraction method. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- NASA. EEE Parts Derating. Available online: https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/1201.pdf (accessed on 7 May 2023).
- Cappello, T.; Popovic, Z.; Morris, K.; Cappello, A. Gaussian pulse characterization of rf power amplifiers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 417–420. [Google Scholar] [CrossRef]
- Cappello, T.; Duh, A.; Barton, T.W.; Popovic, Z. A dual-band dual-output power amplifier for carrier aggregation. IEEE Trans. Microw. Theory Tech. 2019, 67, 3134–3146. [Google Scholar] [CrossRef]
- UMS. CHA4253aQQG—17–24GHz Medium Power Amplifier. 2020. Available online: https://www.ums-rf.com/product/cha4253aqqg/ (accessed on 7 May 2023).
- MACOM. MAAM-011132—16.4–23.6 GHz Driver Amplifier. Available online: https://cdn.macom.com/datasheets/MAAM-011132.pdf (accessed on 7 May 2023).
- Qorvo. CMD291—16–24 GHz Driver Amplifier. 2022. Available online: https://www.qorvo.com/products/p/CMD291 (accessed on 7 May 2023).
- Deng, H.; Lv, D.; Zhang, Y.; Zhang, D.; Zhou, D. Compact analog predistorter with shape tuning capability using power-dependent impedance matching network. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1705–1709. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, D.; Ma, J.; Yan, M.; Bian, C. Reflective adjustable analog predistorter for dual inflection point amplifiers. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Hu, Y.; Boumaiza, S. Doherty power amplifier distortion correction using an rf linearization amplifier. IEEE Trans. Microw. Theory Tech. 2018, 66, 2246–2257. [Google Scholar] [CrossRef]
- Villemazet, J.-F.; Yahi, H.; Lefebvre, B.; Baudeigne, F.; Maynard, J.; Soubercaze-Pun, G.; Lapierre, L. New ka-band analog predistortion linearizer allowing a 2.9 ghz instantaneous wideband satellite operation. In Proceedings of the 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 8–10 October 2017; pp. 302–305. [Google Scholar]
Diode ID | BV | n | ||||
---|---|---|---|---|---|---|
Diode 1 | 7 V | 0.2 pA | 1.2 | 6 | 40 fF | 663 GHz |
Diode 2 | 7 V | 3.0 pA | 1.4 | 4 | 50 fF | 765 GHz |
Case | NPR | Frequency | |||||
---|---|---|---|---|---|---|---|
HPA Only | 28 dB | 19 GHz | 31.0 dBm | 9.0 W | - | 14% | 14% |
APD + HPA | 28 dB | 19 GHz | 34.2 dBm | 11.4 W | 0.7 W | 23% | 22% |
HPA Only | 24 dB | 19 GHz | 33.5 dBm | 10.7 W | - | 21% | 21% |
APD + HPA | 24 dB | 19 GHz | 36.0 dBm | 13.7 W | 0.7 W | 29% | 27% |
HPA Only | 20 dB | 19 GHz | 35.8 dBm | 14.1 W | - | 27% | 27% |
APD + HPA | 20 dB | 19 GHz | 37.1 dBm | 15.9 W | 0.7 W | 32% | 31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappello, T.; Ozan, S.; Tucker, A.; Krier, P.; Williams, T.; Morris, K. Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier. Electronics 2024, 13, 3818. https://doi.org/10.3390/electronics13193818
Cappello T, Ozan S, Tucker A, Krier P, Williams T, Morris K. Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier. Electronics. 2024; 13(19):3818. https://doi.org/10.3390/electronics13193818
Chicago/Turabian StyleCappello, Tommaso, Sarmad Ozan, Andy Tucker, Peter Krier, Tudor Williams, and Kevin Morris. 2024. "Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier" Electronics 13, no. 19: 3818. https://doi.org/10.3390/electronics13193818