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Abstract: One of the significant advantages of technological evolution is the greater ease of collecting
and analyzing data. Miniaturization, wireless communication protocols and IoT allow the use of
sensors to collect data, with all the potential to support decision making in real time. In this paper,
we describe the design and implementation of a digital solution to guide the intensity of training or
physical activity, based on heart rate wearable sensors applied to participants in group sessions. Our
system, featuring a unified engine that simplifies sensor management and minimizes user disruption,
has been proven effective for real-time monitoring. It includes custom alerts during variable-intensity
workouts, and ensures data preservation for subsequent analysis by physiologists or clinicians. This
solution has been used in sessions of up to six participants and sensors up to 12 m away from the
gateway device. We describe some challenges and constraints we face in collecting data from multiple
and possibly different sensors simultaneously via Bluetooth Low Energy, and the approaches we
follow to overcome them. We conduct an in-depth questionnaire to identify potential obstacles and
drivers for system acceptance. We also discuss some possibilities for extension and improvement of
our system.

Keywords: e-health; exercise; sensor; BLE; IoT

1. Introduction

Digital solutions, the Internet of Things (IoT) [1], and Cyber–Physical Systems [2] have
been accompanying our way of life in an increasingly continuous and omnipresent way. We
have access to various decision support tools and software with intelligent features which
are based on data. Sensors (and actuators) form an interface between the physical world
and the digital realm. Through sensors, computerized systems receive data on various
parameters related to a person or a natural element, either for immediate verification
or for storage and later analysis. According to the World Health Organization, digital
health should be an integral part of health priorities [3]. Its strategy to promote health
and well-being emphasizes the importance of accelerating the development and adoption
of person-centered digital health solutions and developing infrastructure to use health
data. Chen et al. [4] proposed smart clothing as an innovative health monitoring system.
Using a new textile manufacturing technique, they tried to mitigate the shortcomings
of traditional wearable devices, such as discomfort during long-term wear and complex
operation. The authors also outlined several applications driven by this smart clothing
technology and big data clouds. Deng et al. [5] reviewed some achievements and recent
progress of wearable systems, from their materials and manufacturing process to how
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they are extensively used to monitor basic human physiological signals, such as oxygen
saturation, blood pressure, and heart rate (HR). In another publication on digital health,
the authors asserted that wearable sensors enable remote patient monitoring, helping to
reduce hospital visits, increasing convenience and reducing costs. The authors also stated
that sensors play an important role in personalized and accessible healthcare [6].

The primary goal of our work is to develop a monitoring solution for the real-time
analysis of training intensity through sensor data that applies to a group of people un-
dergoing physical activity, within the context of rehabilitation therapies or for healthy
individuals engaged in sports activities, particularly in nearby settings like within a gym
room. Although there is a diverse and growing supply of wearable sensors for monitoring
activity and health indicators, we find that the most accurate and least intrusive ones have
a higher price. In general, each of these sensors requires the setup of a connecting software
or device. When working with groups of people in the same space, one of the challenges
we aim to overcome is finding a solution that does not require a dedicated interconnection
device for each individual sensor or person.

Interoperability is crucial for reusing existing equipment, whether from the partic-
ipants or belonging to the institution hosting the physical activity. Therefore, another
challenge we set for ourselves was achieving multi-brand compatibility, avoiding the need
to acquire all sensors from the same model.

Section 2 provides an overview of some relevant existing studies and systems. We
present our approach in Section 3, detailing each component of the designed solution and
how users interact with the system. Section 4 covers the experiments conducted to validate
the system. Based on the findings and obtained results, Section 5 offers a discussion. Finally,
Section 6 provides general considerations about this work and outlines potential directions
for future improvements or extensions to the system.

2. Related Work

The scientific literature includes various works on the construction and use of HR
sensors. In [7], the authors demonstrated the feasibility of HR prediction using a smart pen.
In this study, data collection involved an experiment with eight volunteers who wrote the
alphabet continuously for five minutes. The authors compared the HR data extracted from
STABILO’s DigiPen’s accelerometer to standard ECG monitor readouts, for evaluation. To
reduce interference during data collection, both the smart pen and the ECG instruments
were connected to separate independent devices. The pen data allowed for accurate HR
determination for all participants, with a deviation of 0.76 bpm.

In 2015, Kakria et al. developed a real-time heart monitoring system featuring a two-
way communication interface between the doctor and remote patients using a smartphone
and wearable sensors [8]. Smartphones served as hubs for gathering data from various
sensors that measured heart rate, blood pressure, and body temperature. The information
was then transmitted by these handheld devices to a web server via GPRS/3G or Wi-Fi,
enabling physicians to diagnose patients’ conditions. The proposed system could monitor
multiple patients simultaneously. This approach was evaluated with 40 individuals using
Android devices, under the supervision of experts. The authors found that one physician
could monitor 15 to 25 remote patients if fully dedicated to this task, depending on the
complexity of the patients’ conditions.

In sports, wearable technology is important to improve performance through real-
time data analysis and tracking for both amateur and professional practitioners [9,10].
The usefulness of HR monitoring in physical exercise was described in [11]. The authors
claimed that it is essential for physicians (and other professionals) to use HR as an indicator
of physical effort. Manual HR measurement may yield inaccurate/miscalculated results,
or even require interrupting the exercise to take the measurement. Using devices to
simultaneously read multiple variables, both internal (heart rate, respiratory rate) as well
as external (accelerometry, speed, temperature, etc.), has enabled effective physical activity
monitoring. Such devices help to increase the confidence of those who engage in exercise.
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Measuring the HR of multiple individuals in close range is not very common. An
overview of the main strategies that have been proposed for non-invasive HR monitoring in
extramural and home settings was presented in [12]. Many of these approaches are sensitive
to signal interference, as well as the body positions and distances between individuals
when monitoring multiple people, or the distance between the subject and the (microphone
or camera) signal receiver.

A recent study by Tran et al. [13] announced a non-invasive HR monitoring solution
for multiple individuals using a commodity speaker and microphone array. The authors
successfully measured the HR of two people sitting side by side, with an error of 0.6 bpm.
They claimed that the system can effectively monitor up to four people in close proximity.
Additionally, they noted a potential limitation related to acoustic-based methods: the
approach can be affected by body movement and motion noise.

In terms of commercial solutions with potential application for multiple sensors,
we identified SquadHR [14] in the Apple App Store (https://apps.apple.com/pt/app/
squad-hr/id6468002688, accessed on 19 July 2024). This application was developed by
Trackteam, a company specializing in creating coaching tools that leverage data insights
from smartphones and sensors. SquadHR can be run on an iPhone or an iPad. In the
personal use version, which is the only free option, this application allows tracking a single
heart rate sensor, recording sessions and viewing and sharing workout summaries. A
training score is calculated as the product of the training minutes for five heart rate zones
multiplied by a coefficient relative to each zone. It supports all Bluetooth HR sensors
compatible with iPhone, but it is not compatible with Android devices. For displaying real-
time HR from multiple sensors on one iPhone, the “Group Training” license type is required,
which involves a monthly payment, or annual payment alternative. The maximum number
of simultaneously connected sensors depends on the iOS device’s Bluetooth capabilities,
ranging from 7 on a 9th generation iPad to up to 14 on the latest model iPhone or iPad
with Bluetooth 5. SquadLink is a complementary application that runs on various iPhone
devices and which SquadHR can connect with, to extend the data sources up to a maximum
of 45 participants. In addition to requiring a uniform set of devices, it also needs a paid
“Team subscription” license, primarily designed for gyms or sports clubs.

Pulse Monitor (https://www.pulsemonitor.net/, accessed on 23 July 2024) is another
commercially oriented service designed to monitor the heart rates of participants in fitness
clubs and indoor cycling studios. Its core module is a monitoring application that runs
on a computer with a Windows operating system and an ANT+ receiver, allowing the
monitoring of up to 42 participants. The system requires participants to wear a chest heart
rate monitor with ANT+, a wireless technology designed for low-power, bidirectional
communication between devices. Pulse Monitor displays exercise intensity using a color-
coded system organized into five cardio zones, each representing a range of the percentage
of maximum HR. The system can operate in two modes: training session and open workout
mode. The former mode includes a setup for selecting participants, assigning sensor belts,
and setting the maximum HR. The open workout mode does not require a supervising
trainer but does not display participants’ names or personalized indicators, assuming a
maximum HR of 180 bpm [15]. This solution is available in several plans, and currently,
a subscription to one of the three paid plans is required for monitoring more than two
simultaneous participants.

3. Materials and Methods
3.1. Foundation and Purpose

This work addresses a specific need to support physiologists (or other professionals)
during training sessions involving multiple participants simultaneously using equipment
like exercise bikes or running treadmills. The solution is also applicable to other types of
equipment and exercises. Our approach combines real-time analysis, with programmable
alarms, and instantaneous and aggregated visualization of the effort level for the whole
group of session participants.

https://apps.apple.com/pt/app/squad-hr/id6468002688
https://apps.apple.com/pt/app/squad-hr/id6468002688
https://www.pulsemonitor.net/
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While collecting HR data, the system monitors the training intensity for each par-
ticipant and displays to the user a quantitative effort indicator, which can be in one of
the following forms:

1. The absolute HR value, and how it varies throughout the session;
2. Whether the HR remains within a target range, between the lower and upper thresholds;
3. The participant’s HR zone, and its correspondence or not with the target training zone

at that moment for sessions with multiple intensity levels.

The first two indicator forms are designed to monitor training intensity for each
participant individually, without inter-participant analysis. People with different levels
of physical fitness might exhibit the same HR value at times, but this may correspond to
distinct effort levels for each of them. The third indicator is recommended to compare
the effort between the participants, and is essential for sessions involving groups with
heterogeneous physical conditions. HR zones, from 1 to 10, are determined by the system
as ten consecutive intervals along the useful HR range, between the resting HR and the
maximum HR, inspired by the Karvonen formula [16]. Both resting and maximum HR
values are specific to each participant and must be entered into the system. For a healthy
participant, the maximum HR can be determined through specific exercise stress testing.
Alternatively, in less rigorous contexts, a general formula can also be used, where the
maximum HR is estimated as 220 minus the participant’s age.

3.2. System Operation and Interface

While the software is running, the system can be accessed through a web interface
using a notebook computer or tablet browser. Starting by describing the system user’s
perspective, after logging in, users will have the options corresponding to their profile,
which can be administrator or session coordinator. It is important to clarify the difference
between a system user and a training session participant. Only the first has an account
to perform actions in the system, or to perform analyses or consult records. The second
concept corresponds to each person participating in the training session, and who, with
consent, is being monitored by the system through data collected from wearable sensors.

Less frequently used, the administration profile is dedicated to maintenance oper-
ations and also for user profile management, which involves creating or removing user
accounts or resetting a user’s password. However, each user can also autonomously change
the password. The most common access is performed with the session coordinator pro-
file, which is a type of user responsible for managing the creation and monitoring of a
training session.

After logging in, the home page shows a list of sessions held and a list of participants
as illustrated in Figure 1. For each known participant in a training session, a record is
kept with minimal personal data, but enough to distinguish them by name from other
participants during monitoring. The participant’s threshold HR values are stored in this
record to support monitoring and the calculation of personalized effort zones.

Figure 1. Home view for coordinators: history of sessions held and participant records lists.
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By opening the session details in the first grid, it is possible to consult an information
summary, including the session’s start and end times, the participants, and their sensors.
Additionally, graphs displaying the participant’s HR and HR zones can be viewed. Figure 2
illustrates the second option, with a graphical representation of the HR zones over time
(in dots) and the desired target zone (if a single line) or the zone thresholds (if two lines,
as at the beginning of Figure 2a, where the goal is an HR zone between 2 and 5). We can
see that at 17:40, the first participant was within the target zone, but remained almost the
entire time below the minimum intended intensity. On the other hand, Figure 2b indicates
a good correspondence between the effort level of the second participant and the intended
intensity over time.

(a) Poor performance. (b) Good performance.
Figure 2. Visual data representations: two participant HR zones. In (a), there is little alignment with
the training goal, whereas in (b) the participant stayed predominantly within the target zone.

To create a new session, the coordinator defines the session name. Some fields, such as
the session coordinator and the date, are automatically filled in. Afterward, it is necessary
to assign sensors to participants as illustrated in Figure 3. On the left (Figure 3a), we can see
how the system lists the names of the available HR sensors, meaning that they have been
automatically detected and have not yet been assigned to anyone. Each sensor is associated
to one participant who has not yet been selected as shown in the middle image (Figure 3b).
The resting and maximum HR values for that participant are pre-filled with default values
from the participant’s record but can be adjusted at this point and for this session’s scope.
Once all participants are registered, a confirmation grid displays all sensor/participant
pairs, including a preview of each sensor’s data as shown in the second column of Figure 3c.

(a) Sensor detection. (b) Sensor assignment. (c) List of connected sensors.
Figure 3. Session setup: sequence of steps to assign a sensor to a participant. (a) Listing two active
sensors not yet assigned. (b) Pairing a sensor with a participant (named Joaquim) and his lower and
upper HR limits. (c) Confirmation grid with the already activated sensor/participant pairs.

The coordinator can now start the session, at which point the system enters the
exercise monitoring mode and begins collecting and storing data from the sensors. At this
stage, the system displays a monitoring dashboard, showing real-time HR data from each
participant, along with a bar graph representing the HR trends over the last 30 s as depicted
in Figure 4. This allows the coordinator to have an accurate and easy readable perception
of the training intensity for each person in the group. When certain customized and rule-
defined circumstances occur, alerts are shown to immediately notify the coordinator, or
the group if they are watching the panel. Alerts are visual, with changes that stand out
from the regular panel, and can optionally include audible beeps. The typical alert criteria
are if the observed level of effort is too high, or when it diverges from the target training
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intensity. At the top right of Figure 4, we see an example of an alert indicating intensity
above the limit for participant Carlos.

Figure 4. Session monitoring dashboard with two participants.

In this same example, the time displayed below the participant’s name shows the most
recent timestamp of data received from his sensor, helping to confirm the recency and the
communications status.

For interval training, or sessions with variable intensity, the coordinator has a panel to
adjust the desired intensity levels over time as shown in Figure 5. The buttons on the right
(“Target Zone”) are used to increase or decrease the limits for the ideal HR zone in a given
phase of the activity.

Figure 5. Variable intensity mode: effort zone control widget.

In this operation mode, the monitoring dashboard will also display an indicator for the
participant’s HR zone, calculated based on their specific parameters. This zone indicator
allows us to compare the effort level between participants. Figure 6 shows the monitoring
panel including the HR zone (to the left, above the HR) across three scenarios: (a) the
participant’s effort is below the target intensity; (b) the participant’s zone is within the
intended range; (c) the HR zone exceeds the intended range.

(a) Blue notice: below target. (b) Green: proper zone level. (c) Red notice: beyond target.
Figure 6. Monitoring panel in variable intensity mode: zone indicator and color codes. (a) Zone
indicator below the training objective. (b) Participant zone indicator complies with the intended
effort level. (c) The HR zone value is very high considering the session objective.

On the right, the HR zone level 5.1 means that the HR value (102) is in the fifth decile
of the range [48, 178], with 48 and 178 being the resting and maximum HR values for
that participant.
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Throughout the session, notes can be entered regarding general occurrences, user-
specific remarks, or any complications. These textual records will help later in the subse-
quent analysis conducted by the session coordinator or other experts.

At the end of the physical activity, the session is marked as closed. The system records
the end time and stops storing the data streams coming from the sensors. After that,
participants may remove the sensors. The coordinator will see a session summary page
that includes the session duration, the coordinator’s name, the participants involved, and
which sensors were used as illustrated in Figure 7.

Figure 7. Session summary: time, duration, participants, sensors, and indicators.

Coordinator users with an active account can consult previously created session
records to analyze a participant’s history and to eventually adjust the training plan for the
next session.

In the participant details view (accessible from the participants list on the home page),
we can see which sessions the participant has attended and access graphs showing their
corresponding HR data. Optionally, if there is an additional large monitor available for
visual monitoring for the entire group, the system offers a “Room View” option, which
opens a new browser window that can be placed on this second monitor. The same
dashboard is shown but without the operational control buttons. This setup also allows the
session coordinator to write notes in a separate control window, ensuring greater privacy.
To further increase visibility during session monitoring, it is also possible to enlarge the
interface using the browser’s zoom controls.

During a training session, it is typical for each participant to wear a single sensor.
However, it may be necessary to replace the sensor midway through, which is not expected
but accounted for in case of unforeseen events, such as battery drain. In this case, there
may be two sensor registrations for the participant, with the first one having a recorded
removal time. The HR data for this participant will be fully available, being optionally
separable for each sensor in two time series.

In the event that a sensor exchange operation occurs for a participant, the data collec-
tion (and monitoring in room view) for the remaining participants will continue without
interruption. This sensor reassignment operation can be completed in approximately 15 s
by the coordinator (including the physical placement of wearables).

If a participant moves too far away, the sensor data transmission will stop. Addition-
ally, if the sensor band falls off and the contacts are no longer properly positioned, the
sensor may also cease transmitting data. In both cases, either the participant’s return to a
distance within the communication range, or adjusting the sensor placement, respectively,
will be sufficient to automatically resume data collection and monitoring from that sensor.

In these special situations, to minimize gaps in sensor data, the system will display a
red alert for any sensor/participant whose last data transmission exceeds a configurable



Electronics 2024, 13, 3687 8 of 17

maximum period (e.g., 10 s). This allows the session coordinator to intervene if necessary,
ensuring that no participant remains unmonitored without detection.

If communication does not resume automatically, the coordinator can use a system
option to refresh the sensor association. This operation will attempt (a) device re-bonding
and (b) resetting the Bluetooth controller. The first action does not impact the other active
sensors. The second action, if applied, could inhibit data collection from other sensors for 5
to 10 s. If this action does not solve the issue, the coordinator can assign a new sensor to
that participant using the “Manage Sensors” operation during the session, and without
interrupting data collection from the other sensors.

3.3. Infrastructure and Technology

The sessions’ exercise can take place in a gym room, on a sports court, or, in a health-
care context, at a physical rehabilitation facility. Since participants are spread across the
space and can even move to a corridor, or switch between equipment, for instance, between
a treadmill and an exercise bike, we designed an IoT-based data collection solution. Figure 8
shows the general architecture of the developed system, from sensors to visualization com-
ponents. A sensor gateway module (GW) is deployed to collect data from nearby sources
and stream them upwards to the control module, the system’s central node responsible
for processing, analysis and storage management. In terms of platform, for the gateway
component, to which the sensors are paired, we use a mini-PC equipped with a Bluetooth
controller version 5.3, and a network interface (wired or wireless) to upstream data to the
control module. Currently, both the gateway and control modules run the Ubuntu Linux
operating system and use Java (JRE 17+) to execute the system software. We use BlueZ
(https://www.bluez.org/about, accessed on 6 June 2024) to interact with the Bluetooth
controller on Linux, and the blessed-bluez (https://github.com/weliem/blessed-bluez,
accessed on 6 June 2024) library for operations and communication with the sensors.

The control module is a Java application whose web component was developed with
Vaadin (https://vaadin.com, accessed on 6 June 2024), an open-source framework for the
development of interactive and responsive web applications.

Figure 8. Monitoring system architecture: modules and interconnections between them.

The received data are used for visualization and passed to the storage module (DB),
which relies on a Postgres database for persistence. Alternative databases can also be used,
provided they support high-speed data ingestion and complex data analysis capabilities.

From the beginning of this project, HR was chosen as the primary parameter to be
measured using sensors. Due to power constraints, the communication between such
sensors and the gateway node is based on a short-range and low-power wireless protocol:
Bluetooth Low Energy (BLE) [17]. Other options, such as ANT+ and Zigbee, were also
considered. Compared to BLE, ANT+ has a slight disadvantage in battery power consump-
tion, and apart from the fitness area, there is less equipment that supports it, which could
limit future vendor options if we want to associate complementary sensors. Zigbee is more

https://www.bluez.org/about
https://github.com/weliem/blessed-bluez
https://vaadin.com
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appropriate for communications over distances slightly greater than those of interest in this
work. It may be relevant for future extensions to this system, for communication with more
distant actuator devices, where messages are not as frequent. The BLE protocol proved
to be a good balance between the data transmission rate, power consumption, and broad
hardware compatibility, making it the chosen option. The gateway software implementa-
tion prioritized communication with this type of sensor, including those from Movesense
(https://www.movesense.com, accessed on 4 June 2024), which our partners already had.
But to meet our interoperability goal, we used a brand-independent communication form.

The maximum number of sensors we can connect to a single Bluetooth controller
depends on several factors, including the gateway device software and the Bluetooth
version. Under typical conditions, a Bluetooth controller version 5.x might handle 7 to
10 BLE active devices. Whenever the number of participants is greater than the maximum
supported by a single Bluetooth controller, we can activate another gateway component.
Therefore, the box on the left side (representing the Gateway and a small number of sensors)
of Figure 8 can be multiplied, depending on the number of participants.

The communication between the sensor gateway node(s) and the central control
module is based on standard networking using REST over HTTP. As an alternative, MQTT
can also be used. Depending on the number of sensors and the data volume, and also
on the frequency requirement for data recency in monitoring, the sensor gateway can be
adjusted to send batch transmissions of multiple readings for greater efficiency.

In a monitoring system, it is crucial to avoid losing communication with a sensor. At
least the system must be capable of detecting such a loss if it occurs during a training session.
It is known that in these wireless communication protocols with sensors, the signal can be
impacted by various factors, including the sensor’s battery level, the distance between the
antennas, obstacles or physical barriers in the signal path, and possible interference from
other wireless signals.

3.4. Validation Methods

For interoperability assessment, concerning wearable sensors and to verify brand-
independent capability, we tested the collection of HR data from distinct devices. In
addition to the Movesense sensors, which were available to us in greater number, the system
successfully worked with Polar H10 (https://www.polar.com/pt/sensors/h10, accessed on
4 June 2024) equipment and with sports smartwatches capable of HR transmission during
exercise, such as the Garmin Forerunner 255 (https://www.garmin.com/en-IE/p/780139
#specs, accessed on 4 June 2024) and others. We began with association tests to validate
sensor detection and effective data communication. Next, we measured the communication
range. For each sensor type, we progressively increased the distance from the gateway
until the data transmission was interrupted. Multiple repetitions were conducted in both a
typical indoor environment (a room with people and various devices) and an open outdoor
environment without barriers or interference. From each series of repetitions with the same
setup, we recorded the average distance value. The stored records, the session notes, and
the system logs were subsequently analyzed for complementary information regarding
special cases, such as eventual transmission losses.

To understand how users perceive the system we followed a Technology Acceptance
Model (TAM)-based approach, a widely used model in information systems and technology
adoption research [18]. An extended TAM-type questionnaire was prepared, having mostly
Likert scale-type closed-ended questions. It includes the two TAM base aspects, perceived
usefulness and perceived ease of use, as well as additional aspects such as peer influence,
facilitating conditions, user satisfaction, and usage intention. Please refer to Appendix A
for the full questionnaire.

We asked session coordinators, who use this system in partner entities, to respond.
To diversify the survey and obtain a reasonable number of responses, we broadened the
distribution of the questionnaire to other users, who, until then, were unaware of the
existence of this system. The inclusion criterion for this study was having prior experience

https://www.movesense.com
https://www.polar.com/pt/sensors/h10
https://www.garmin.com/en-IE/p/780139#specs
https://www.garmin.com/en-IE/p/780139#specs
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in using sensors and interpreting physical activity indicators, as well as the ability to
monitor activities involving multiple participants. Each questionnaire response was based
on two or more training sessions using the system. The first session served to explain the
system’s operation, while the subsequent sessions were controlled by the responding user.
In each experiment, in addition to the user, one or two researchers from this project were
present to demonstrate the procedures and ensure protocol compliance. Additionally, two
to six other people were required to wear sensors for 20 min or more during exercises of
varying intensity.

TAM questionnaires can reveal specific issues or concerns that may hinder users
from adopting a technology, such as perceived complexity or lack of perceived benefits.
Moreover, that is what we intend to analyze from the data: to identify possible barriers or fa-
vorable factors in the users’ perception of the system. We did not aim to assess the impact of
the exercise on session participants, nor to differentiate between questionnaire respondents.

We employed common TAM data analysis procedures, including descriptive statistics
and reliability analysis. The purpose of descriptive statistics is to understand the data
main features, such as central tendency and data dispersion. The reliability of the scale-
type questionnaire items was evaluated using Cronbach’s Alpha [19], a measure of
internal consistency.

The questionnaire was filled out via browser, using Google Forms. The data were ex-
ported to an XLSX spreadsheet format. Statistical analysis was conducted using Python, the
Pandas library (https://pandas.pydata.org/, accessed on 19 June 2024), and the Pingouin
open-source statistical package (https://pingouin-stats.org/, accessed on 19 June 2024) (the
files are available in Supplementary Material). After reviewing the initial results, a t-test
and a Mann–Whitney U test [20] were applied in an additional experiment to determine if
there were relevant differences in the perceived usefulness between two user types.

4. Results
4.1. Analyzing the Interaction with Sensors

The results of our experiments concerning the interaction between our system and
the sensors are as follows. In terms of spatial constraints, we noticed that the maximum
distance between the gateway component and the sensors worn by the participants was
sufficient for session monitoring. The gateway successfully received data from multiple
sensors up to 12 m away. Under favorable conditions, outdoors and without obstacles,
the communication with the sensor remained effective over greater distances as shown in
Table 1.

Table 1. Useful range observed in BLE communications between the system and the sensors.

Sensor Type Range Maximum Range/Ideal Setting

Movesense Active 12 m 15 m
Polar H10 12 m 16 m

Garmin Forerunner 255 12 m 25 m

For the tested smartwatch, in a favorable environment, the communication range more
than doubled. However, it became highly sensitive to the direction or alignment between
the watch and the gateway’s Bluetooth controller. The scenario with the highest system
load, observed on multiple occasions, involved approximately 1100 readings per minute
being processed by the system over a 45 min period.

The loss of transmission was not always related to the communication range limit
or to the sensor battery. In fact, about 90% of the cases of occasional interruption in data
collection had to do with sensor placement, or displacement of their contact points due to
body movements in training.

https://pandas.pydata.org/
https://pingouin-stats.org/
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4.2. Analyzing User Perception

In addition to the difficulty of recruiting volunteers who met the coordinator participa-
tion criteria, there was also the challenge of reserving the exercise space within the necessary
time frame and coordinating the schedules of everyone involved, which prevented us from
gathering more than ten respondents.

The results of the questionnaire data analysis using descriptive statistics are presented
in Table 2.

Table 2. Descriptive statistics of the ETAM questionnaire responses. Scale responses range from 1
(Strongly Disagree) to 5 (Strongly Agree).

Questionnaire Item Descriptive Statistics

Respondent Data distribution
age 1× 18–25; 4× 26–35; 4× 36–45; 1× 46–55 yo
gender 3 Female, 7 Male
activity sector Health: 3; Sports: 4; Technology: 3
frequency of system use 6: up to 5 times; 2: more than 5 times; 2: weekly

Central tendency and variability of Likert scale answers

Perceived Usefulness mean std min max
improves my performance 4.40 0.84 3.0 5.0
increases my productivity 4.40 0.70 3.0 5.0
enhances my effectiveness 4.70 0.67 3.0 5.0

Perceived Ease of Use mean std min max
I find this technology easy to use 4.90 0.32 4.0 5.0
learning to operate this technology is/was easy 4.90 0.32 4.0 5.0
this technology is user friendly 4.70 0.48 4.0 5.0

Social Influence mean std min max
people who influence my behavior think I should use 3.60 0.84 3.0 5.0
people whose opinions I value prefer that I use 3.40 0.97 2.0 5.0
my peers use this technology 2.30 1.49 1.0 5.0

Facilitating Conditions mean std min max
I have the resources required 4.10 0.74 3.0 5.0
I have the necessary knowledge to use 4.80 0.42 4.0 5.0
this technology is compatible with other systems I use 4.00 0.94 3.0 5.0

User Satisfaction mean std min max
I am satisfied with the functionality 4.80 0.42 4.0 5.0
this technology meets my expectations 4.50 0.71 3.0 5.0
overall, I am pleased with this technology 4.60 0.52 4.0 5.0

Behavioral Intention to Use mean std min max
I intend to use this technology regularly 3.60 0.97 3.0 5.0
I will recommend this technology to others 4.50 0.53 4.0 5.0
I plan to continue using this technology in the future 4.10 0.99 3.0 5.0

Concerning the initial three questions related to perceived usefulness, we have all
scale answer values between three (Neutral) and five (Strongly Agree). The average
response value for the “enhances my effectiveness” item is 4.7, with a standard deviation
of 0.67. The answer average value equal to 4.9 in “easy to use” and “learning was easy”
items indicates that users find this system easy to use. Despite this, the higher standard
deviation in the next group’s item suggests that it may in fact improve in terms of user
friendliness. By examining the minimum and maximum columns, we observe that the
range of response values is broader for the items related to social influence. In the third
item of this group, responses range from 1 to 5, indicating that some respondents have
colleagues who use this system, while others do not. For the three questionnaire items
related to facilitating conditions, the average response values range between 4.0 and 4.8,
with a standard deviation of less than 1. The responses trend between Agree and Strongly
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Agree. User satisfaction items show a high average response. Within this block, satisfaction
with functionality has the highest mean of 4.8, and the lowest standard deviation of 0.42.
This suggests that satisfaction is more closely related to functionality than to the technology
involved. Regarding the intention to use the system regularly, there is a tendency between
Neutral and Agree, with an average scale value of 3.6. The lower values are not surprising,
as some questionnaire respondents were sporadic users. All respondents answered Agree
or Strongly Agree regarding recommending this solution to others. The response values for
this item range from a minimum of 4 to a maximum of 5. In the last item, regarding the
intention to continue using the technology in the future, responses range from 3 (Neutral)
to 5 (Strongly Agree), with 4.1 being the average value.

The second stage in analyzing the TAM questionnaire results involves assessing
reliability. A Cronbach’s Alpha value above 0.7 is typically considered a threshold for
acceptable reliability [19]. We applied this method to measure the internal consistency of
the 18 scale-type questionnaire items, and the result was 0.897, which is substantially above
the threshold. We concluded that the questionnaire data have a good reliability level.

In the opinions and suggestions conveyed by open-ended questions at the end of the
questionnaire, it was mentioned that the system interface is friendly and intuitive to use.

One user also mentioned that the gamification aspect, with the introduction of a
scoreboard (shown on the left side of Figure 5) related to time spent within the target
training zone, serves as a positive stimulus for exercise participants.

Revisiting the perceived usefulness items’ answers, ranging from Neutral as the
minimum to Strongly Agree as the maximum as seen in Table 2, we decided to reanalyze
the data for these three items according to the frequency of use variable. We sought to
find out if there are noticeable differences in the perception of usefulness between frequent
users and occasional users. In Table 3, we can see the mean value and standard deviation of
data in these questionnaire items by frequency of use. Reading the table from left to right,
it is clear that the average agreement in the three items increases with the frequency of use.

The table presents average values. It still remains to consider the weight of each
column (each category of frequency of use) within the entire dataset.

Table 3. Perceived usefulness scales’ data per frequency of use.

Questionnaire Item Frequency of Use
Up to 5 Times More than 5 Times Regular Weekly

mean std mean std mean std
improves my performance 4.17 0.98 4.50 0.71 5.0 0.0
increases my productivity 4.0 0.63 5.0 0.0 5.0 0.0
enhances my effectiveness 4.50 0.84 5.0 0.0 5.0 0.0

We divided the respondents into two groups based on their usage frequency:

• Occasional use—who responded that they had used the system up to 5 times;
• Frequent or intermediate use—who used the system weekly or had accumulated more

than five uses.

The group sizes were six and four, respectively. To determine if there is a significant
difference between the two groups, we applied a t-test. To handle unequal lengths, we
truncated the longest set to match the length of the shortest one for t-test processing. Since
the elimination of instances in a small set can lead to information loss, we chose to carry
out a complementary analysis that considers all available records. A Mann–Whitney U
test [20], a non-parametric statistical test used to compare two groups for non-normal
data distribution cases, was applied using SciPy Stats (https://docs.scipy.org/doc/scipy/
reference/stats.html, accessed on 19 June 2024). Considering the p-value results for both
tests, displayed in Table 4, only for the “increases my productivity” item can we conclude
that the difference between the groups is statistically significant (p-value < 0.05). For

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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the other two questionnaire items, the p-value results do not allow us to make the same
conclusion statistically, despite this being our intuition.

Table 4. Assessing difference per group on perceived usefulness items.

Questionnaire Item t-Test p-Value Mann–Whitney U Test p-Value

improves my performance 0.391 0.397
increases my productivity 0.015 0.025
enhances my effectiveness 0.215 0.287

5. Discussion

Given that this project was initially driven by a real need, we consider that one
of its key outcomes is the achievement of an effective solution to address that need, a
system for monitoring the simultaneous physical exercise of a group of participants based
on HR sensors. The experiments conducted with three types of sensors from different
manufacturers demonstrate that the choice of BLE for edge communication was appropriate,
fostering compatibility, and thereby broadening the range of HR monitors or other sensors
we might use in the future. Based on the communication range experiments and the
results presented in Table 1, it turned out that 12 m is the safe distance we obtained for
simultaneous communications with the various sensors. With this diagnosis, we note that a
single gateway is sufficient for scenarios where the area to be covered does not exceed 24 m
in diameter, which is suitable for common exercise rooms. Other setups are still possible for
larger spaces, as previously mentioned, by activating another GW component coordinated
by the same control node and the sensors being split per GW.

All cases of transmission interruption between a sensor and the system are detectable
in the data recency check, which issues a warning when necessary. The participant is then
instructed to readjust the sensor. A few seconds later, the sensor readings reappear on
the dashboard.

From the analysis of the technology acceptance questionnaire answers, summarized
in Table 2, we see that respondents have a favorable perception of this system usefulness,
with a strong agreement with its performance/productivity/effectiveness benefits. On
user satisfaction, there was a greater focus on the system’s functionality rather than on
the technology itself or on how it meets expectations. In the questionnaire items relating
to behavioral intention to use, we emphasize the high level of agreement with “will
recommend this technology to others”. The intention to use the system regularly is a little
lower, at 3.6, which seems acceptable to us as there are occasional users. The high value in
the Cronbach’s alpha result indicates that the scale-type items in this questionnaire have
good reliability. From Table 3, we infer that the most frequent users are the ones who value
the system’s advantages the most. The statistical tests to compare between the “occasional
use” and “frequent or intermediate use” groups’ perceived usefulness have a high p-value
on the perceived improvements in performance and effectiveness. For the perception of
productivity gains, both tests suggest that the difference between the two groups of users is
statistically significant. The lack of a statistically significant difference for two of these items
may be due to the small sample size. As mentioned earlier, each questionnaire response
involves a complexity that made it difficult to increase the number of valid respondents.
Additionally, distinguishing between groups was not a primary objective of this study.

To the best of our knowledge, we found no non-commercial software providing the
exact same functionality: a unified monitoring dashboard with real-time analysis and
control of HR and HR zones for multi-participant sessions having a single coordinator.
Typical solutions involving a separate control application for each sensor would not be
compatible with the integrated monitoring of groups of people in the same exercise room.

We now present a brief comparison with the systems mentioned in Section 2. A
smartphone is required for each patient monitored by the system in [8], which we view
as a disadvantage, as it entails prerequisites and additional complexity for session setup.
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Furthermore, that system is designed for remote monitoring and not for participants in the
same physical space. The acoustic-based method in [13] can measure HR for two people
sitting side by side, but it is vulnerable to body movement and motion noise, which would
make it unfeasible for an exercise room where there is conversation and rotation between
stations/equipment.

The two commercial solutions, SquadHR and Pulse Monitor, although more compa-
rable to our project, fall short in their ability to monitor groups of six or more without
paid subscriptions. SquadHR supports BLE HR sensors compatible with iPhone, and easy
sensor management. Its training score is based on zones relative to maximum HR. We
found no information regarding custom alarm features or variable criteria for interval
training monitoring for use in color codes on the dashboard.

The Pulse Monitor system works with ANT+ compatible sensors. This has the ad-
vantage of facilitating the instant association of more than 7 sensors. But on the other
hand, BLE is a more generic protocol, compatible with a wider range of devices. ANT+
is energy efficient but has a slight disadvantage in battery power consumption during
data transmission, and its data transmission rates are typically slower than BLE. Battery
preservation is important in our case, as our system is mostly used in sessions in which the
same sensors are applied to different groups of people (although the participant’s particular
sensors may be used). The repeated use of sensors requires longer cycles of use between
recharging or battery replacement, and therefore, energy consumption is relevant. Pulse
Monitor has a user-friendly interface and shows an exercise intensity indicator based on
maximum HR. Just as for the previous system, this intensity indicator is different from the
one used in our system, as we considered not only the maximum HR but also the resting
HR. More relevant than the difference in the number of zones or intervals, considering this
lower threshold of the useful heart rate range is crucial for our work for monitoring that is
robustly adapted to the participant.

6. Conclusions

We described the purpose, operation, and preliminary validation of a system designed
for sensor-based workout guidance for in-person multi-participant sessions. When working
with a set of small pieces of equipment that may vary significantly in hardware and/or
protocols, the complexity of configuring them can sometimes be an obstacle to extracting
value from their operation. We believe that this work helps to mitigate the complexity
of working with sensors, particularly in scenarios involving groups of people in close
proximity. It simplifies the sensor pairing process by providing a single unified system for
all wearable devices, regardless of brand, along with an effective monitoring dashboard.
Thus, we successfully addressed the two challenges outlined in Section 1 by combining the
selection of independent protocols with the development of a new software module for our
gateway, designed to support multiple connections and universal compatibility.

We identified some distinctions in comparison to similar recent systems mentioned
in Section 2. The first relates to the calculation of the primary exercise intensity indicator,
which we believe is more rigorous in our system. By incorporating a stricter zone calculation
based on two HR thresholds, rather than the conventional maximum HR-based indicator,
our system offers greater potential for application in healthcare. Equally relevant to the
field of sports is the ability to dynamically manage the training target zone during the
session, as well as the option to export not only HR data but also information on whether
the training plan was followed. Additionally, our system provides dynamic, in-session
color-coded warnings for training with varying intensity, to gauge the alignment between
the current and planned intensities, rather than relying solely on static colors per HR zone.

The experiments carried out to analyze the technical aspects of the solution, along
with the feedback from system users, referred to in Section 4, lead us to conclude that
the project goals were successfully achieved. Although the number of questionnaire
respondents was limited due to the need for users to coordinate training sessions with
real monitored participants, the data analysis (Appendix A) points to a strong acceptance
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of our system, and recognition of its benefits. Statistical analysis also revealed that the
most frequent users are the ones who most strongly agree that the system increases the
coordinator’s productivity.

As future work, we have several development paths planned. Beginning with com-
munication with edge devices, we plan to support additional communication protocols to
enhance compatibility and convenience. Another idea is to develop an additional software
component for a remote gateway, which allows connecting to the control module. The
intention is to jointly monitor a participant from his home alongside the on-premises par-
ticipants group. Another experiment that we have not yet conducted, but which could be
very useful in practice, is adjusting the Movesense sensor settings to reduce the frequency
of HR readings transmission by half, with the aim of extending the device’s battery life.

From an exercise physiologist’s perspective, we could expand the monitoring to
include additional parameters, as a complement to HR. In the realm of cyber–physical
systems, just as we currently have rule-based alerts, we could also issue action orders to
actuators on exercise equipment. This would enable the system to automatically adjust the
exercise difficulty level, thereby completing the control loop. Lastly, we plan to explore
effective methods for extending the area within range to increase the participants’ free-
dom of movement. Although there are low-level adjustment techniques related to radio
frequency [21], we sought to test a method at a higher abstraction level and whose gateway
pairing approach is inspired by GSM hard handover.

Supplementary Materials: The questionnaire data and several statistical analysis files can be
downloaded at: https://magno.di.uevora.pt/jsaias/electronics-2651549/supplementaryMaterial.zip
(accessed on 12 September 2024).
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Appendix A. Extended Technology Acceptance Survey
Survey on users’ perception of the UE HeartFit monitoring solution. The form must be answered

by users with a coordinator/coach/therapist role.
User Characterization
Age: 18 to 25 yo; 26 to 35 yo; 36 to 45 yo; 46 to 55 yo; 56 to 65 yo; 66 years or older
Gender: Feminine; Masculine
Professional Activity Sector (scope of the access to this technology)

Health; Sport; Technology; Education; Other
How often have you used this software?

Occasional use (up to 5 times); Occasional use (more than 5 times); Regular monthly; Regular
weekly; Daily; Occasionally two or more times a month

Perceived Usefulness
Using this technology improves my performance.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
This technology increases my productivity.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
This technology enhances my effectiveness.

https://magno.di.uevora.pt/jsaias/electronics-2651549/supplementaryMaterial.zip
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1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Perceived Ease of Use
I find this technology easy to use.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Learning to operate this technology is/was easy for me.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
This technology is user-friendly.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Social Influence
People who influence my behavior think I should use this technology.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
People whose opinions I value prefer that I use this technology.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
My peers use this technology.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Facilitating Conditions
I have the resources required to use this technology. (technical resources or other requirements

identified by the user)
1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree

I have the knowledge necessary to use this technology.
1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree

This technology is compatible with other systems I use.
1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree

User Satisfaction
I am satisfied with the functionality of this technology.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
This technology meets my expectations.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Overall, I am pleased with this technology.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Behavioral Intention to Use
I intend to use this technology regularly.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
I will recommend this technology to others.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
I plan to continue using this technology in the future.

1-Strongly Disagree|2-Disagree|3-Neutral|4-Agree|5-Strongly Agree
Open-Ended Questions
Which feature(s) do you appreciate most about this solution? (Optional)

[Open text box]
Do you have other comments or suggestions for improvements? (Optional)

[Open text box]
Conclusion
Thank you for completing the survey.
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