Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles
<p>UAV equipped with IGBT modules.</p> "> Figure 2
<p>UAV motor signal path.</p> "> Figure 3
<p>Cross-section of IGBT unit cell.</p> "> Figure 4
<p>Cross-section of IGBT module. Reprinted with permission from ref. [<a href="#B30-electronics-13-03664" class="html-bibr">30</a>]. 1999–2024 John Wiley & Sons, Inc. or related companies.</p> "> Figure 5
<p>Cross-section of IGBT module.</p> "> Figure 6
<p>Stray inductances of bond wires in IGBT module.</p> "> Figure 7
<p>Equivalent circuit of IGBT module. Reprinted with permission from ref. [<a href="#B37-electronics-13-03664" class="html-bibr">37</a>]. 2019 Springer Nature Switzerland AG.</p> "> Figure 8
<p>Typical gate charge.</p> "> Figure 9
<p>Waveforms of the gate voltage at different <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 10
<p>Waveforms of the gate current at different <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 11
<p>Sensitivity analysis of L and C.</p> "> Figure 12
<p>Experimental setup circuit (a).</p> "> Figure 13
<p>Experimental setup circuit (b).</p> "> Figure 14
<p>Gate charge current pre- and post- partial bond wires lift-off.</p> "> Figure 15
<p>Gate charge current versus <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math> post-six bond wires lift-off.</p> "> Figure 16
<p>Changes of gate voltage and current when <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math> = 200 V: (<b>a</b>) Description of waveform before the defect occurs. (<b>b</b>) Description of the waveform after the defect occurs. The yellow line is <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math>, the blue line is <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>G</mi> <mi>E</mi> </mrow> </msub> </semantics></math>, and the red line is <math display="inline"><semantics> <msub> <mi>i</mi> <mi>g</mi> </msub> </semantics></math>.</p> "> Figure 17
<p>Changes of gate voltage and current when <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math> = 420 V: (<b>a</b>) Description of waveform before the defect occurs. (<b>b</b>) Description of the waveform after the defect occurs. The yellow line is <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mi>E</mi> </mrow> </msub> </semantics></math>, the blue line is <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>G</mi> <mi>E</mi> </mrow> </msub> </semantics></math>, and the red line is <math display="inline"><semantics> <msub> <mi>i</mi> <mi>g</mi> </msub> </semantics></math>.</p> "> Figure 18
<p>Turn-on waveforms of the gate voltage according to different temperatures.</p> ">
Abstract
:1. Introduction
- (1)
- We elucidate the structural composition of the IGBT, highlighting the potential for bond wire lift-off due to the substantial disparity in thermal expansion coefficients of various materials within the module, which can lead to lift-off after long-term exposure to high temperatures.
- (2)
- We analyze the role of bond wires within the circuit and deduce that the lift-off of these wires results in changes to the maximum charge current. However, due to technical constraints, these changes are challenging to detect.
- (3)
- Focusing on the monitoring of peak current changes, we construct an equivalent model of the IGBT module and derive a simplified gate charge circuit equation based on this model. The equation theoretically demonstrates that the peak current is affected by bond wires lift-off.
- (4)
- To validate the theoretical findings, we simulate bond wires lift-off by manually severing the wires in an unpackaged IGBT module. We record the charge current waveforms post-severing and observe changes in the waveforms that corroborate the theoretical analysis. We also discuss how other conditions do not affect the turn-on waveform of the IGBT module, validating the feasibility of monitoring current deviations.
2. Module Failure Mechanism and Gate Charge Exploration
3. Analysis and Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernet, S. Recent developments of high power converters for industry and traction applications. IEEE Trans. Power Electron. 2000, 15, 1102–1117. [Google Scholar] [CrossRef]
- Arai, J.; Iba, K.; Funabashi, T.; Nakanishi, Y.; Koyanagi, K.; Yokoyama, R. Power electronics and its applications to renewable energy in Japan. IEEE Circuits Syst. Mag. 2008, 8, 52–66. [Google Scholar] [CrossRef]
- Chen, Z.; Guerrero, J.M.; Blaabjerg, F. A Review of the State of the Art of Power Electronics for Wind Turbines. IEEE Trans. Power Electron. 2009, 24, 1859–1875. [Google Scholar] [CrossRef]
- O’Donnell, O.; Chan, A.; Wheele, P.; Castellazzi, A. Simulations and Measurement Analysis of SiC MOSFET and IGBT Gate Drive Performance in Power Modules for More Electric Aircraft Motor Drive Applications. In Proceedings of the EPE’19 ECCE Europe, Genova, Italy, 2–6 September 2019. [Google Scholar]
- Shahsavarian, T.; Zhang, D.; McGinnis, P.; Walker, S.; Zhang, Z.; Cao, Y. Altitude Readiness of High-Voltage IGBTs Subjected to the Partial Discharge at Harsh Environmental Conditions for Hybrid Electric Aircraft Propulsion. IEEE Trans. Power Electron. 2022, 37, 3733–3736. [Google Scholar] [CrossRef]
- Harikumaran, J.; Migliazza, G.; Buticchi, G.; Madonna, V.; Galea, M. Failure Modes and Reliability Oriented System Design for Aerospace Power Electronic Converters. IEEE Open J. Ind. Electron. Soc. 2021, 2, 53–64. [Google Scholar] [CrossRef]
- Khodaparastan, M.; Mohamed, A.A.; Brandauer, W. Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems. IEEE Trans. Intell. Transp. 2019, 20, 2831–2847. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Wang, M.; Wang, K.; Huang, Y.; Xu, Z. Power Sharing and Storage-Based Regenerative Braking Energy Utilization for Sectioning Post in Electrified Railways. IEEE Trans. Intell. Transp. 2024, 10, 2677–2688. [Google Scholar] [CrossRef]
- Martínez-heredia, J.M.; Colodro, F.; Mora-Jiménez, J.L.; Remujo, A.; Soriano, J.; Esteban, S. Development of GaN Technology-Based DC/DC Converter for Hybrid UAV. IEEE Access 2020, 8, 88014–88025. [Google Scholar] [CrossRef]
- Leuchter, J.; Boril, J.; Blasch, E. Practical considerations of SiC technology for UAV. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2019. [Google Scholar]
- Kurniawan, J.K.; Setiawarman, B.B.; Prisetya, D.A.; Cahyo, R.A.; Jenie, Y.I. Analysis and Simulation of Axial Flux Permanent Magnet Synchronous Motor for Hybrid UAV Propulsion. In Proceedings of the 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, 24–25 November 2022. [Google Scholar]
- Chen, M.; Xiong, Z.; Zhang, Y.; Zhu, E.; Zhao, Y.; Ma, Z. IGBT Overvoltage Protection Based on Dynamic Voltage Feedback and Active Clamping. Appl. Sci. 2023, 13, 795. [Google Scholar] [CrossRef]
- O’Donnell, S.; Wheeler, P.; Castellazzi, A. Reliability Analysis of SiC MOSFET Power Module for More Electric Aircraft Motor Drive Applications. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018. [Google Scholar]
- Golovanov, D.; Gerada, D.; Sala, G.; Degano, M.; Gerada, C. 4-MW Class High-Power-Density Generator for Future Hybrid-Electric Aircraft. IEEE Trans. Transp. Electrif. 2021, 7, 2952–2964. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Z. Regenerated Energy Absorption Methods for More Electric Aircraft Starter/Generator System. IEEE Trans. Power Electron. 2023, 38, 7525–7534. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P.; Zarębski, J. Measurements of Parameters of the Thermal Model of the IGBT Module. IEEE Trans. Instrum. Meas. 2019, 68, 4864–4875. [Google Scholar] [CrossRef]
- Yang, X.; Heng, K.; Dai, X.; Wu, X.; Liu, G. A Temperature-Dependent Cauer Model Simulation of IGBT Module with Analytical Thermal Impedance Characterization. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3055–3065. [Google Scholar] [CrossRef]
- Ren, H. Research on the Electro-Thermal–Mechanical Properties of IGBT Modules Under Different Bond Wire Failure Modes. IEEE Trans. Eletron Dev. 2024, 71, 4259–4266. [Google Scholar] [CrossRef]
- Ciappa, M. Selected failure mechanisms of modern power modules. Microelectron. Reliab. 2002, 42, 653–667. [Google Scholar] [CrossRef]
- Hamidi, A.; Beck, N.; Thomas, K.; Herr, E. Reliability and lifetime evaluation of different wire bonding technologies for high power IGBT modules. Microelectron. Reliab. 1999, 39, 1153–1158. [Google Scholar] [CrossRef]
- Sonnenfeld, G.; Goebel, K.; Celaya, J.R. An agile accelerated aging, characterization and scenario simulation system for gate controlled power transistors. In Proceedings of the 2008 IEEE AUTOTESTCON, Salt Lake City, UT, USA, 8–11 September 2008. [Google Scholar]
- Wuchen, W.; Held, M.; Jacob, P.; Scacco, P.; Birolini, A. Investigation on the long term reliability of power IGBT modules. In Proceedings of the ISPSD’95, Pacifico, Yokohama, Japan, 23–25 May 1995. [Google Scholar]
- Musallam, M.; Johnson, C.M.; Yin, C.Y.; Lu, H.; Bailey, C. In-service life consumption estimation in power modules. In Proceedings of the EPE/PEMC 2008, Poznan, Poland, 1–3 September 2008. [Google Scholar]
- Patil, N.; Celaya, J.; Das, D.; Goebel, K.; Pecht, M. Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics. IEEE Trans. Rel. 2009, 58, 271–276. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Cheng, X.; Shen, Z.J.; Mi, C.T.; Wu, H.J.; Garg, V.K. Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2268–2276. [Google Scholar] [CrossRef]
- Ginart, A.E.; Brown, D.W.; Kalgren, P.W.; Roemer, M.J. Online ringing characterization as a diagnostic technique for IGBTs in power drives. IEEE Trans. Instrum. Meas. 2009, 58, 2290–2299. [Google Scholar] [CrossRef]
- Musallam, C.; Johnson, C.M. Real-Time Compact Thermal Models for Health Management of Power Electronics. IEEE Trans. Power Electron. 2010, 25, 1416–1425. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, D.; Bryant, A.; Mawby, P.; Ran, L.; Tavner, P. Condition Monitoring for Device Reliability in Power Electronic Converters-A Review. IEEE Trans. Power Electron. 2010, 25, 2734–2752. [Google Scholar] [CrossRef]
- Bin, L.; Sharma, S.K. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind Appl. 2009, 45, 1770–1777. [Google Scholar] [CrossRef]
- Khanna, V.K. IGBT Circuit Applications. In Insulated Gate Bipolar Transistor IGBT Theory and Design; Wiley-IEEE Press: Piscataway, NJ, USA, 2003; pp. 545–608. [Google Scholar]
- Sheng, W.W.; Colino, R.P. Manufacturing of Power IGBT Modules. In Power Electronic Modules: Design and Manufacture; CRC Press: Boca Raton, FL, USA, 2004; pp. 103–204. [Google Scholar]
- Perpina, X.; Serviere, J.F.; Jorda, X.; Fauquet, A.; Hidalgo, S.; Urresti-Ibanez, J.; Rebollo, J.; Mermet-Guyennet, M. IGBT module failure analysis in railway applications. Microelectron. Reliab. 2008, 48, 1427–1431. [Google Scholar] [CrossRef]
- Trivedi, M.; Shenai, K. Failure mechanisms of IGBT’s under short-circuit and clamped inductive switching stress. IEEE Trans. Power Electron. 1999, 14, 108–116. [Google Scholar] [CrossRef]
- Hefner, A.R. A dynamic electro-thermal model for the IGBT. IEEE Trans. Ind Appl. 1994, 30, 394–405. [Google Scholar] [CrossRef]
- Hefner, A.R. Modeling buffer layer IGBTs for circuit simulation. IEEE Trans. Power Electron. 1995, 10, 111–123. [Google Scholar] [CrossRef]
- Xing, K.; Lee, F.C.; Boroyevich, D. Extraction of parasitics within wire-bond IGBT modules. In Proceedings of the APEC ’98 Thirteenth Annual Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 15–19 February 1998. [Google Scholar]
- Gordon, R. Detection and recording of acoustic emission in discrete IGBT transistors. In Mechatronics 2017-Ideas for Industrial Applications 4; Springer International Publishing: Cham, Switzerland, 2019; pp. 144–150. [Google Scholar]
- Fuji Electric Device Technology Co. Datasheet of 2MBI150U4H-170, 1st ed.; Fuji Electric Device Technology Co.: Shinagawa-ku, Japan, 2005. [Google Scholar]
Material | CET (ppm/°C) |
---|---|
Al | 22 |
Si | 3 |
Solder | Compliant |
Cu | Not relevant |
or AlN | 7 or 4 |
Cu | Compliant |
Solder | Compliant |
Cu or AlSiC | 17 or 8 |
Name | tm (nS) | im (A) |
---|---|---|
Non bond wire lift-off | 144 | 1.164 |
Three bond wires lift-off | 148 | 1.161 |
One chip failure | 116 | 1.044 |
Junction Temperature (°C) | 40 | 60 | 80 | 100 | 120 |
---|---|---|---|---|---|
State:before defect | 2.11 | 2.18 | 2.25 | 2.31 | 2.36 |
State:partial breakage | 2.13 | 2.22 | 2.29 | 2.36 | 2.41 |
State:chip failure | 2.20 | 2.27 | 2.38 | 2.42 | 2.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, Z.; Wang, J.; Wang, L.; Wang, C. Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles. Electronics 2024, 13, 3664. https://doi.org/10.3390/electronics13183664
Li Y, Zhou Z, Wang J, Wang L, Wang C. Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles. Electronics. 2024; 13(18):3664. https://doi.org/10.3390/electronics13183664
Chicago/Turabian StyleLi, Yuheng, Zhiquan Zhou, Jinlong Wang, Lina Wang, and Chenxu Wang. 2024. "Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles" Electronics 13, no. 18: 3664. https://doi.org/10.3390/electronics13183664
APA StyleLi, Y., Zhou, Z., Wang, J., Wang, L., & Wang, C. (2024). Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles. Electronics, 13(18), 3664. https://doi.org/10.3390/electronics13183664