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Abstract: Knowledge graphs equipped with graph network networks (GNNs) have led to a successful
step forward in alleviating cold start problems in recommender systems. However, the performance
highly depends on precious high-quality knowledge graphs and supervised labels. This paper argues
that existing knowledge-graph-based recommendation methods still suffer from insufficiently ex-
ploiting sparse information and the mismatch between personalized interests and general knowledge.
This paper proposes a model named Adaptive Knowledge Contrastive Learning with Dynamic
Attention (AKCL-DA) to address the above challenges. Specifically, instead of building contrastive
views by randomly discarding information, in this study, an adaptive data augmentation method
was designed to leverage sparse information effectively. Furthermore, a personalized dynamic at-
tention network was proposed to capture knowledge-aware personalized behaviors by dynamically
adjusting user attention, therefore alleviating the mismatch between personalized behavior and
general knowledge. Extensive experiments on Yelp2018, LastFM, and MovieLens datasets show
that AKCL-DA achieves a strong performance, improving the NDCG by 4.82%, 13.66%, and 4.41%
compared to state-of-the-art models, respectively.

Keywords: knowledge graph; recommender systems; dynamic attention; contrastive learning

1. Introduction

Recommendation systems (RS) alleviate the problem of information overload by pro-
viding personalized recommendations and have been extensively deployed in real-life
services, such as music platforms [1], video streaming websites [2], and e-commerce [3].
Traditional collaborative filtering (CF) methods [4,5] focus on mining similarities in histori-
cal interactions between users and items. These studies achieved significant success across
various recommendation services and significantly advanced the field.

Despite advancements from matrix factorization (MF) [6] to graph neural networks
(GNNs) [7] in capturing complex user behaviors, CF methods still face the persistent
problems of cold start and data sparsity because they rely solely on historical interactions.
To address these issues, numerous studies have incorporated knowledge graphs (KGs) [8]
into recommendation systems. KGs serve as an external auxiliary resource, providing
additional context and demonstrating strong capabilities in relational data modeling. This
integration helps enhance the accuracy and explanation of recommendations.

Knowledge-aware methods aim to fully leverage the graphical relationship in KGs
and collaborative signals from interaction graphs [9–12]. Early research [13–15] focused
on knowledge graph embedding (KGE) techniques, such as TransE [16] and TransH [17],
which learn item representations in an embedding space. However, these models often
fail to capture global graphical relationships and collaborative signals, as they learn each
item independently. Path-based approaches [1,18,19] subsequently utilized KG structural
information to elucidate user–item relationships. However, path-based methods are ham-
pered by path-selection issues, typically requiring domain-specific expertise and causing
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optimization challenges. Inspired by the strengths of graph neural networks (GNNs),
researchers have unified user–item interactions and knowledge graphs into heterogeneous
graphs [10,20,21] and adopted information propagation paradigms to capture user behavior
patterns. Although these methods achieve promising results, their performance heavily
relies on the quality of the KGs, which are often sparse and noisy [22].

Self-supervised contrastive learning (SSL) has shown promise in addressing data
sparsity by leveraging relationships within data [23]. However, current approaches to
generating contrastive views often rely on techniques such as randomly discarding infor-
mation, edge perturbation, and subgraph sampling. These methods often result in the
problem of insufficiently exploiting sparse information. In addition, existing knowledge
graph-based recommendation systems typically employ static attention mechanisms to
measure all nodes uniformly. This approach fails to account for the personalized charac-
teristics of different nodes, leading to a mismatch between individual interests and the
general knowledge in KGs.

The paper proposes a novel model named Adaptive Knowledge Contrastive Learning
with Dynamic Attention (AKCL-DA) to enhance recommender systems by addressing the
limitations of sparse information and personalized user behaviors. AKCL-DA employs an
adaptive data augmentation strategy on both user–item and item–entity graphs, where
hypothetical edges are added to expand the semantic associations within the knowledge
graph and comprehensively capture user interests. This method ensures that the contrastive
views are more representative of underlying data relationships. Furthermore, a dynamic
attention network, inspired by the GATv2 model [24], is designed to capture weight scores
between entities and relations, allowing for personalized attention allocation without
added computational complexity. This network dynamically adjusts user attention based
on personalized behaviors, bridging the gap between individual interests and general
knowledge. The essential contributions of this article are as follows:

1. An adaptive data augmentation strategy is proposed to expand semantic associations
and user behaviors in knowledge and interaction graphs by adding hypothetical edges.
This strategy effectively leverages sparse information, thereby ensuring contrastive
views are more representative of underlying data relationships.

2. A personalized dynamic attention network is proposed to bridge the gap between
individual interests and general knowledge by dynamically adjusting user attention
based on behaviors, alleviating the mismatch found in existing methods.

3. Extensive experiments are conducted on the Yelp2018, LastFM, and MovieLens
datasets, and the proposed AKCL-DA method shows significant improvements over
state-of-the-art recommendation methods.

2. Related Research
2.1. Knowledge-Aware Recommendation

The recommendation system uses the knowledge graph as supplemental data to
achieve good performance in resolving cold start and data sparse issues. The three primary
categories of knowledge-aware recommendation techniques now in use are GNN-based,
path-based, and embedding-based techniques.

Embedding-based recommendation methods use knowledge-graph-embedding (KGE)
technology (for example translation distance model TransE [16] and semantic matching
model DistMult [25]) to preprocess KG, and then embedding entities into user and item
representations to enhance semantic representation in recommendations. To enter the
project’s structural, textual, and visual knowledge into the knowledge base embedding
module of the CF framework, CKE [12] uses TransR [26] coding. To model news, DKN [11]
combines the knowledge-level embedding of entities in news content using TransD, with the
text embedding of phrases learned by KCNN [27]. It integrates the representation of news
at the semantic and knowledge levels. KTUP [13] proposed joint learning recommendation
tasks and knowledge graph completion, using triples to jointly learn user preferences.
While embedding-based recommendation algorithms yield better recommendations, their
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main advantage is that they represent semantic relevance more accurately, which is more
helpful for edge prediction and knowledge graph completion than for recommendation.

Path-based approaches seek to mine possible information between items in the knowl-
edge graph for recommendations by investigating various connection patterns between
item entities in KG. Initially, Sun et al. [28] proposed PathSim to compute the path-connected
similarity between entities to assess the similarity of connected paths between different
entities of the knowledge graph. A Top-N recommendation mutual attention mechanism
based on meta-paths was created by MCRec [1] to characterize the contextual representa-
tion of users, items, and meta-paths. Using entity and relationship embedding, KPRN [29]
builds the extracted path sequence. LSTM is then used to model the extracted path, and a
fully connected layer is used to aggregate user preferences on each path. To enhance the
user’s preference matrix, HeteRec [30] builds several meta-paths for the recommendation
system using the knowledge graph and PathSim to extract the preference feature values
between users and products. Path-based methods inherently offer justifications for the
recommendations made along paths. Unfortunately, their design lacks flexibility when
dealing with complicated application circumstances and is heavily reliant on meta-paths,
making path selection optimization challenging. Additionally, creating precise pathways
calls for labor-intensive work, which requires specialized subject expertise.

The GNN-based method cleverly combines the advantages of embedding-based meth-
ods and path-based methods. It integrates multi-hop neighbors into node representation to
capture the characteristics and graph structure of nodes, models long-range connections,
and integrates the semantic representation of entities and relations with connectivity infor-
mation. The idea of preference propagation was initially presented by RippleNet [18]. It
utilizes the user’s past interest set as a seed within the knowledge graph (KG), grows along
the links to form multiple ripple sets (Ripple Sets), and then iteratively combines these rip-
ple sets to create the final user representation. Through embedding propagation, KGAT [20]
directly aggregates high-order links between users and items by combining interaction and
knowledge graphs into heterogeneous graphs. To enhance efficiency, KGIN [31] adds the
notion of intent, which discloses the user intent underlying KG interactions and inserts
relational embeddings into the aggregate layer. Currently, the most efficient approach is
the GNN-based approach since it can identify user preference patterns from KG. How-
ever, GNNs have always had a notorious over-smoothing problem, and a large amount
of redundant information in KG leads to excessive noise, which has a negative impact on
recommendations if it cannot be used reasonably.

2.2. Contrastive Learning

Contrastive learning (CL) has demonstrated promise in computer vision [32] and
natural language processing [33] for learning node representations by comparing positive
and negative pairs from various perspectives. Through the utilization of self-supervised
contrastive learning, several recent studies [34,35] have tackled the issue of data sparsity
inherent in recommendation systems.

For the contrastive recommendation method of graph collaborative filtering, to op-
timize the consistency of multiple views of the same node with other nodes, SGL [34]
introduces three operators—node dropout, edge dropout, and random walk—to generate
numerous views of a node; LightGCL [36] explores the utilization of global collaboration
relationship modeling to enhance the strength of singular values, thereby improving the
structure of the user–item interaction graph and achieving unconstrained structure re-
finement. In the knowledge-aware contrastive recommendation method, MCCLK [37]
introduces multi-level cross-view contrastive learning based on the global structure view,
local co-operation view, and semantic view to fully extract and integrate additional KG
data; KGIC [22] compares the layers of the CF and KG components; KGCL [4] proposes a
knowledge graph improvement mode to lessen KG noise in information aggregation and
generate a more dependable item knowledge-aware representation. Still, little research
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has been carried out to fully realize the enormous potential of contrastive learning in
knowledge-graph-based recommendation.

3. Preliminaries

In this section, we begin by introducing the user–item interaction graph and knowl-
edge graph, and then formalize related knowledge-aware recommendation tasks.

In a typical recommendation scenario, there is a user set U = {u1, u2, ..., uM} and an
item set V = {v1, v2, ..., vN}, where u and v represent a single user and item, respectively,
and M and N represent the number of users and items. This paper constructs a user–item
bipartite graph Gu = {u, yuv, v} based on the user’s historical interaction records with
items, where yuv is a binary number. If yuv = 1, it represents user u’s interaction with item
v (for example, Purchase, Browse or Click, etc.); otherwise, yuv = 0.

In addition to historical interaction data, the knowledge graph (KG) stores a vast
amount of real-world structured information related to items in the form of heterogeneous
graphs or heterogeneous information networks, such as item attributes and other external
common sense [38]. Assume that Gk = (h, r, t) is a knowledge graph, where h, t ∈ E
represent the head entity and the tail entity, r ∈ R represents the relationship between h
and t, and E , R represent the entity set and relationship set in the knowledge graph. Here,
the entity set E contains the item set V and the non-item entity E/V . For instance, in the
movie recommendation scenario, the triplet (Forrest Gump, Directed by, Robert Zemeckis)
signifies that the director of the movie “Forrest Gump” is Robert Zemeckis. It is worth
noting that an item v ∈ V corresponds to an entity e ∈ E . For example, the item “Iron Man”
in the interaction graph also appears in the knowledge graph as an entity with the same
name. This allows this study to establish complex connections between the interaction
graph and the knowledge graph through the alignment between items and KG entities,
providing additional auxiliary information for interaction data to enhance the modeling of
user personalized preferences.

Taking interaction graph Gu = {u, yuv, v} and knowledge graph Gk =
{(h, r, t)|h, t ∈ E , r ∈ R} as input, this paper aims to learn a prediction function y(u, v),
whose output indicates the probability of user u interacting with item v.

4. Methodology

In this section, the knowledge contrastive recommendation framework (AKCL-DA)
based on a dynamic attention network will be introduced. Figure 1 shows the overall
workflow of AKCL-DA.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 16 
 

 

knowledge graph improvement mode to lessen KG noise in information aggregation and 
generate a more dependable item knowledge-aware representation. Still, little research 
has been carried out to fully realize the enormous potential of contrastive learning in 
knowledge-graph-based recommendation. 

3. Preliminaries 
In this section, we begin by introducing the user–item interaction graph and 

knowledge graph, and then formalize related knowledge-aware recommendation tasks. 
In a typical recommendation scenario, there is a user set 𝒰 =  {𝑢ଵ, 𝑢ଶ, . . . , 𝑢ெ} and an 

item set 𝒱 =  {𝑣ଵ, 𝑣ଶ, . . . , 𝑣ே}, where 𝑢 and 𝑣 represent a single user and item, respec-
tively, and 𝑀 and 𝑁 represent the number of users and items. This paper constructs a 
user–item bipartite graph 𝒢௨  =  {𝑢, 𝑦௨௩, 𝑣} based on the user’s historical interaction rec-
ords with items, where 𝑦௨௩ is a binary number. If 𝑦௨௩  =  1, it represents user 𝑢’s inter-
action with item 𝑣 (for example, Purchase, Browse or Click, etc.); otherwise, 𝑦௨௩  =  0. 

In addition to historical interaction data, the knowledge graph (KG) stores a vast 
amount of real-world structured information related to items in the form of heterogeneous 
graphs or heterogeneous information networks, such as item attributes and other external 
common sense [38]. Assume that 𝒢  =  (ℎ, 𝑟, 𝑡)  is a knowledge graph, where ℎ, 𝑡 ∈  ℰ 
represent the head entity and the tail entity, 𝑟 ∈ ℛ represents the relationship between ℎ 
and 𝑡, and ℰ, ℛ represent the entity set and relationship set in the knowledge graph. 
Here, the entity set ℰ contains the item set 𝒱 and the non-item entity ℰ/𝒱. For instance, 
in the movie recommendation scenario, the triplet (Forrest Gump, Directed by, Robert 
Zemeckis) signifies that the director of the movie “Forrest Gump” is Robert Zemeckis. It 
is worth noting that an item 𝑣 ∈ 𝒱 corresponds to an entity 𝑒 ∈ ℰ. For example, the item 
“Iron Man” in the interaction graph also appears in the knowledge graph as an entity with 
the same name. This allows this study to establish complex connections between the in-
teraction graph and the knowledge graph through the alignment between items and KG 
entities, providing additional auxiliary information for interaction data to enhance the 
modeling of user personalized preferences. 

Taking interaction graph 𝒢௨  =  {𝑢, 𝑦௨௩, 𝑣} and knowledge graph 𝒢  = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈  ℰ, 𝑟 ∈  ℛ} as input, this paper aims to learn a prediction function 𝑦(𝑢, 𝑣), 
whose output indicates the probability of user 𝑢 interacting with item 𝑣. 

4. Methodology 
In this section, the knowledge contrastive recommendation framework (AKCL-DA) 

based on a dynamic attention network will be introduced. Figure 1 shows the overall 
workflow of AKCL-DA. 

 
Figure 1. Overall framework of AKCL-DA. Figure 1. Overall framework of AKCL-DA.



Electronics 2024, 13, 3594 5 of 16

4.1. Adaptive Data Augmentation

Data augmentation is critical to contrastive learning because it allows the model to
explore more richly underlying semantic information. With this approach, several views
are produced by performing augmentations on the graph (such as the interaction and
knowledge graphs). In order to generate interaction and knowledge subgraphs, this study
reduces the number of edges on interaction and knowledge graphs in a specific ratio.
During this process, considering that important collaborative signals in the interaction
graph may be discarded, this paper adds a small number of hypothetical edges to the
interaction subgraph. This method can not only reduce the impact of important edge
discarding, but also alleviate the problem that users do not observe their favorite items in
some cases, resulting in no interaction records. This paper randomly adds hypothesis edges
to more comprehensively capture the user’s interests and hobbies to better characterize
the user’s personalized preferences. It should be noted that the knowledge graph itself
contains a lot of noise, and this paper does not add hypothetical edges to the knowledge
graph. Through edge dropping and adding hypothesis edge operations, this paper obtains
the interaction subgraph

(
Ĝu

)
and the knowledge subgraph

(
Ĝk

)
.

Subsequently, a graph augmentation strategy was designed in this study that aims
to retain relevant and important edges and remove edges that are irrelevant to recom-
mendations. Simply put, this article introduces a graph augmentation method that first
calculates the edge weights wu

e and wk
e in Ĝu and Ĝk, and then calculates the edge sampling

probabilities pu
e and pk

e based on the edge weights. The Gumbel–Max reparameterization
technique is then used [39] after the discrete sampling probabilities are distributed among
the continuous variables in [0, 1]. In this distribution, the probability value associated with
the category having the higher probability tends to be closer to 1, while the probability
value associated with the category having the lower probability tends to be closer to 0.
For example, edge e obtains the sampling probability pe by calculating edge weight we. If
pe = 1, the edge e will be retained; otherwise, it will be discarded.

For the interaction subgraph
(
Ĝu

)
, first calculate the edge weight according to the

following (Formula (1)):
wu

e = MLPu
([

e(0)u || e(0)v
])

(1)

where edge e = (u, v), wu
e represents the importance of the edge, MLP is the abbreviation

of multi-layer perceptron, e(0)u and e(0)v are the embeddings of users and items, respectively,
and the higher the score of wu

e , the more important the edge is. After obtaining the edge
weight wu

e , this paper uses Formula (2) to calculate the sampling probability pu
e :

pu
e = σ((log(ϵ)− log(1 − ϵ)) + wu

e /τu) (2)

where the temperature hyper-parameter is used to regulate the approximation, the Sigmoid
function is represented by σ(·), and the random variable ϵ ∽ Uniform(0, 1). To aid with
end-to-end training, the sampling probability is finally multiplied by the aggregation
function as an approximation. Consequently, the interactive subgraph undergoes edge
perturbation to produce an interaction-enhanced graph, as follows (Equation (3)):

φ
(
Ĝu

)
= (V , Mu ⊙ E) (3)

where Mu ∈ {0, 1} is the mask vector on the edge set E . Finally, this paper exploits
the GNN message-passing mechanism to obtain user and item embeddings from the
interaction-augmented graph.

For the knowledge subgraph
(
Ĝk

)
, entity information and relationship information

must be taken into account simultaneously since it has several various kinds of relation-
ships, each with a very distinct semantic meaning and relevance. Specifically, for a triplet
e = (h, r, t), this paper calculates its edge weight wk

e through Formula (4):

wk
e = MLPk

((
e(0)h || e(0)r || e(0)t

))
(4)
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where e(0)h , e(0)r and e(0)t are the embeddings of head entities, relationships, and tail en-
tities, respectively. Similarly, the higher the wk

e score, the more relevant the triplet is to
the recommendation. Next, this paper calculates the sampling probability pk

e through
Formulas (5) and (6) and uses the same processing method to enhance the knowledge subgraph.

pk
e = σ

(
(log(ϵ)− log(1 − ϵ)) + wk

e /τk

)
(5)

φ
(
Ĝk

)
= (V , Mk ⊙ E) (6)

where Mu ∈ {0, 1} is the masking vector that determines whether to retain the triplet.
Finally, this paper utilizes a graph neural network (GNN) message-passing mechanism to
obtain the representation of items from the knowledge-augmented graph.

4.2. Personalized Dynamic Attention Network

GAT (graph attention network) is one of the key models in recommendation systems
and graph neural networks, which focuses on effectively aggregating and updating the
feature representation of nodes. Traditional GAT has a limitation in that the attention
mechanism is static and cannot capture the dynamic contributions of different contextual
neighbor nodes to the target node. To address this issue, GATv2 [24] introduced a key
modification by swapping the order of applying the linear projection layer and the non-
linear function, making the attention score of each node more dynamic and personalized,
improving the network’s representation learning ability. This improvement improves
the model’s adaptability to changes in graph structure and its ability to resist noise, and
this structural enhancement does not incur additional computational costs. Influenced
by this, this paper designs a dynamic attention network (DAn) to model the long-range
connections between the interaction subgraph and the knowledge subgraph to obtain the
optimal representation of the nodes in the graph.

For interaction graphs, we first describe a single layer of (DAn) that first updates node
representations and then performs neighborhood aggregation. It is worth noting that each
initial node is a free parameter to be trained. In general, the representation vector of an
ego node is computed by recursively aggregating and transforming the representations
of its multiple neighbors. For node h, to characterize the first-order connectivity of entity
h, this paper uses Nh to represent all nodes connected to h. The linear combination of the
self-network of h can be calculated (Equation (7)):

eNh = ∑
j∈Nh

αhjej (7)

where ej stands for node j’s representation, and αhj denotes node h’s attention score toward
node j. The formula for calculating αhj is as follows (Equation (8)):

αhj =
exp

(
aT

u LeakyReLU
(
Wueh + Wuej

))
∑k∈Nh

exp(aT
u LeakyReLU(Wueh + Wuek)

(8)

where au and Wu are trainable parameters.
Next, this paper uses the representation of node h and its ego network representation

to aggregate into a new representation of h. Specifically, the new representation of node h
in layer l is (Calculated by Equation (9)):

e(l)h = σ
(
W(l)

u
(
e(l−1)

h + e(l−1)
Nh

))
(9)

where W(l)
u is the learnable weight matrix of the l-th layer, and σ is the activation function.

Finally, this paper employs an aggregation mechanism [40] to fuse the representations from
multiple graph attention network (GAT) layers into a single vector, thereby obtaining the
final representation of the user or item.
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Although DAn shows powerful modeling capabilities in interaction graph encoding,
it does not take relationship types into consideration in modeling, so it is not suitable for
encoding knowledge graphs. To put it simply, this paper extends the original attention
mechanism, considers the impact of different relationship types on entities, and obtains an
encoder relation-aware DAn specifically suitable for heterogeneous graphs. Formally, for a
triplet (h, r, t), the attention score of the head entity h to the tail entity t under the influence
of the relationship r(<h,r>) is calculated as follows (Equation (10)):

αhj =
exp

(
aT

k LeakyReLU
(
Wkeh + Wrer(<h,t>)

+ Wket
))

∑v∈Nh
exp

(
aT

k LeakyReLU
(
Wkeh + Wrer(<h,t>)

+ Wkev
) (10)

where Wk and Wr are both trainable parameters; eh, et, and er(<h,t>) are the head entity
embedding, tail entity embedding, and the embedding of the relationship r(<h,t>) respec-
tively; r(<h,t>) is the relationship type between h and t. It is worth noting that except for
the calculation of attention scores, other modules of knowledge graph encoding are the
same as interaction graph encoding.

4.3. Adaptive Contrastive Learning

In this study, a contrastive learning strategy is designed that aims to coherently
use collaboration signals and knowledge graph information after acquiring the different
embeddings of item v in the interaction graph and the knowledge graph.

Given that the representation spaces of the two views are different, in this study item
v’s embedding of ev

u in the interaction graph and embedding of ev
k in the knowledge graph

are fed into an MLP with hidden layers, which are then projected into the same space.
Then, we obtain the following (Equations (11) and (12)):

zv
u = MLP(ev

u) (11)

zv
k = MLP(ev

k) (12)

Subsequently, this paper treats the same item in the two views as a positive pair
(
zv

u, zv
k
)
.

On the contrary, embedding other items, such as j and v, is regarded as negative samples,
such as

(
zv

u, zj
k
)
,
(
zj

u, zv
k
)
. A contrastive learning method aims to maximize consistency

between positive pairs and minimize consistency between negative pairs, following the
definitions of positive pairs and negative pairs provided in this study. Formally, this article
adopts the approach from SimCLR [41], and the contrastive loss is defined as follows
(Equations (13)):

LCL = −log
es(zv

u ,zv
k )/τcl

∑j∈N∪v es(zv
u ,zj

k)/τcl + es(zj
u ,zv

k )/τcl
(13)

where τcl is the temperature hyperparameter, N is the negative sample set, and s(·) is the
cosine similarity of the two vectors.

4.4. Model Prediction

The embeddings of the users and items on the original interaction graph, hu and hv, can
be obtained by this work after optimization by GNN aggregation and contrastive learning,
and the embeddings of users and items on the interaction-augmented graph, namely ĥu and
ĥv

u. Similarly, this paper obtains the embedding ĥv
k of the item on the knowledge-augmented

graph. ĥv, which is used for the final prediction, is obtained through the contrastive learning
of ĥv

u and ĥv
k . The final user and item representations are obtained by concatenating these
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embedding representations, and inner products are utilized to predict the matching scores
of the resulting representations (Equations (14)):

eu = hu ∥ ĥu

ev = hv ∥ ĥv

ŷ(u, v) = eT
u ev

(14)

4.5. Multi-Task Training

This article uses the proposed TransR [26] method to incorporate joint training to
further capture the semantic information of entities under various relationships. To ef-
fectively capture the semantic linkages between things and relationships throughout the
representation learning process, the basic idea is to model entities and relationships through
relationship-specific mapping matrices. According to TransR, there are several relation-
ship spaces, and in each relationship space, head and tail entities are represented differ-
ently. Specifically, for a given triplet (h, r, t), its score function can be defined as follows:
f (h, r, t) =

∣∣∣∣∣∣Wreh + er − Wret

∣∣∣|22, eh, et ∈ Rd, er ∈ Rk , representing h, t and r in the triplet

(h, r, t). Wr ∈ Rk×d is the relationship space’s transformation matrix; it maps from the
d-dimensional entity space to k-dimensional relational space. The lower the score of this
function f (h, r, t) =

∣∣∣∣∣∣Wreh + er − Wret||22 , the greater the authenticity of the triplet(h, r, t).
The regularization loss LKG of the knowledge graph is as follows (Equation (15)):

LKG = ∑
(h,r,t,t‘)∈Gk

− ln σ( f (h‘, r, t
′
))− f (h, r, t) (15)

where h‘ and t‘ are entities other than h and t in the knowledge graph, respectively.
This study proposes a multi-task training approach that combines the recommendation

task with contrastive learning loss. Specifically, it focuses on reconstructing historical
data using the Bayesian Personalized Ranking (BPR) recommendation loss [22], which
aims to prioritize higher prediction scores for users’ historical items compared to the
unobserved ones:

LBPR = ∑
(u,i,j)∈O

− ln σ
(̂
yui − ŷuj

)
(16)

where O =
{
(u, i, j) | (u, i) ∈ O+, (u, j) ∈ O−} represents the training data containing the

observed interaction O+ and the unobserved interaction O+, and σ is the sigmoid function.
In addition, to capture the semantics under different relations in KG and encode KG, this
paper adds an auxiliary regularization to KG, and its loss function is LKG. Finally, this
paper utilizes multi-task training techniques to jointly optimize the recommendation loss,
contrastive learning loss, and knowledge graph regularization term by minimizing the
following objective function, thereby learning the model parameters (Equations (17)):

Ltotal = LBPR + λ1LCL + λ2LKG (17)

where λ1 and λ2 are hyperparameters that balance different terms. In practice, λ1 and λ2
are fixed to 0.1 and 1, respectively.

5. Experiment
5.1. Experimental Settings
5.1.1. Datasets

To validate the effectiveness of AKCL-DA, this paper utilizes three datasets— Yelp2018,
LastFM, and MovieLens—each representing different levels of sparsity. For instance,
LastFM exhibits high sparsity, where despite having numerous interactions, the user–item
interaction ratio is relatively low compared to its rich set of entities and relations. In
contrast, MovieLens has fewer items and interactions, showing a more pronounced sparsity.
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These variations in data sparsity provide a diverse experimental setting, allowing for a
comprehensive evaluation of the model’s performance under different levels of sparsity.

1. Yelp2018: It mostly makes recommendations for merchants, including eateries, pubs,
and their locations. Users and items with fewer than ten interactions were removed
from the dataset using a 10-core setting.

2. LastFM: These data are collected from the LastFM online music system, containing
the listening history of 23,566 users.

3. MovieLens: It is a movie recommendation benchmark dataset containing interaction
records from 37,385 users.

For the fairness of the experiment, this article directly uses the dataset partitioning
results in KGAT [20]. This study creates a training set and a test set for each dataset
by randomly extracting 80% and 20% of each user’s interaction history. To update the
hyperparameters, this article uses a validation set consisting of 10% randomly selected
interactions from the training set. Table 1 displays the fundamental statistical findings for
the three datasets.

Table 1. Statistics of experimented datasets.

Stats. # Users # Items # Interactions # Entities # Relations # Triplets

Yelp2018 45,919 45,538 1,183,610 47,472 42 869,603
LastFM 23,566 48,123 3,034,763 106,389 9 464,567

MovieLens 37,385 6182 539,300 24,536 20 237,155

5.1.2. Baselines

This research compares DAKCL with the following models to demonstrate the efficacy
of the proposed model.

• BPRMF [5]: It enhances pairwise matrix factorization for implicit feedback by opti-
mizing through Bayesian Personalized Ranking (BPR) loss, enabling the learning of
implicit feature representations between users and items.

• FM [21]: Every characteristic is represented as a latent vector, and the inner product of
the latent vectors is then calculated to determine the interaction between the features

• NFM [42]: It represents features as latent vectors and learns the interactions between
these latent vectors through neural networks.

• CKE [12]: It is an embedding-based method that uses TransR to encode item semantic
information and combines collaborative filtering and item knowledge embedding.

• KGCN [10]: It is a GCN-based method, which addresses the high-order dependent
context encoding of semantic information in KG.

• LightGCN [7]: By simplifying the graph neural network structure, a lightweight
recommendation method based on GCN learns the embedding vectors of users
and items.

• KGAT [20]: A propagation-based approach builds a collaborative knowledge graph
(CKG) using KG and user–item graphs as building blocks and employs an attention
mechanism to generate user and item representations.

• CKAN [43]: A propagation-based method combines collaborative filtering represen-
tation space with knowledge graph embedding to further expand KGCN by taking into
account the user–item graph and utilizing various neighborhood
aggregation algorithms.

• KGIN [31]: A cutting-edge GNN-based method that uses auxiliary item information
to try and understand the meaning underlying user–item interactions and gives
recommendation interpretability.

• KGCL [44]: A state-of-the-art recommendation system based on contrastive learning
proposes a knowledge graph augmentation approach to mitigate KG noise during
information aggregation, resulting in a more dependable representation of item knowl-
edge awareness.
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5.1.3. Evaluation Metrics

Recall@K and NDCG@K, two commonly used metrics, are employed in this study to
completely analyze the performance of this method, with K set to 20. One recall statistic
that is utilized to assess recommendation systems is Recall. It calculates the proportion of
successfully recommended, genuinely interesting items in a given recommendation list.
The normalized discounted cumulative gain of K points is denoted as NDCG@K. It is
capable of more precisely assessing the sorting quality performance of the recommendation
system by accounting for the relevancy and ordering of suggested items. To compute the
metric, this study ranks every item in the training dataset that the user did not interact
with. Both approaches have an acceptable range of 0 to 1. The performance of the model
recommendation is better the higher the values of the two indicators.

5.1.4. Parameter Settings

This article tunes the critical parameters of each model and implements AKCL-DA
and all baseline models in Pytorch (v 1.12.0). To ensure a fair comparison, all models in
this study have their embedding dimensions set to 64, their optimizer set to Adam [45],
and their embedding parameters initialized using the Xavier method [46]. Every baseline
model’s parameters are set in accordance with the parameters stated in their paper. Pre-
trained MF embeddings are used in this paper to stabilize and expedite model training,
in line with earlier research [31]. In this article, the batch size is 4096, the learning rate is
10−4, and the number of GNN layers is fixed at 2; the graph edge discarding rate ρ = 0.3.
In our AKCL-DA, τu and τcl are tuned at {0.01, 0.05, 0.1, 0.5, 0.7} and {0.5, 0.6, 0.7, 0.8, 0.9},
respectively; τk is fixedly set to 0.5; and the proportion of added hypothetical edges in {0.01,
0.02. . . , 0.05} (hypothetical edge ratio = number of hypothetical edges/total number of
edges) is adjusted. This study also employs L2 regularization (with coefficients set to 10−3 )
and dropout (with a dropout rate of 0.1) at each layer to prevent over-fitting.

5.2. Performance Comparison

In this section, the paper analyzes the performance results of all models. The following
observations can be summarized from the results in Table 2:

Table 2. Performance comparison on Yelp2018, LastFM, and MovieLens datasets in terms of Recall@20
and NDCG@20.

Model
Yelp2018 LastFM Movielens

Recall NDCG Recall NDCG Recall NDCG

FM 0.0307 0.0206 0.0736 0.0627 0.4175 0.2599

NFM 0.0418 0.0258 0.0673 0.0538 0.3903 0.2357
BPR-MF 0.0499 0.0324 0.0715 0.0618 0.4052 0.2609

CKE 0.0686 0.0431 0.0746 0.0652 0.4106 0.2669
KGCN 0.0532 0.0338 0.0819 0.0705 0.4237 0.2753

LightGCN 0.0682 0.0443 0.0765 0.0686 0.4486 0.3054
KGAT 0.0653 0.0423 0.0877 0.0749 0.4532 0.3007
CKAN 0.0698 0.0441 0.0812 0.0690 0.4314 0.2891
KGIN 0.0712 0.0462 0.0967 0.0847 0.4661 0.3120
KGCL 0.0736 0.0493 0.0899 0.0793 0.4516 0.2967

AKCL-DA 0.0762 0.0518 0.1113 0.0981 0.4742 0.3264

Improv% 3.41% 4.82% 13.12% 13.66% 1.71% 4.41%

In general, AKCL-DA achieves the best performance across all datasets, with improve-
ments of 3.41%, 13.12%, and 1.71% in the Recall@20 metric, respectively. These results
verify the superiority of the AKCL-DA method, which is mainly due to the following
aspects: (1) By adding an appropriate proportion of hypothetical edges to the interaction
graph, we can positively predict items that users may like but have not observed, and also
enhance the collaborative signal; (2) The dynamic attention network proposed in this paper
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can effectively distinguish the importance of neighbors to improve the embedding of nodes.
By aggregating information from the interaction graph and the knowledge graph, it can
better capture collaborative signals and semantic feature information; (3) The contrastive
view augmentation strategy designed in this paper can identify and keep important and
recommendation-related edges unchanged while removing edges that may be unimportant,
which can provide high-quality embeddings for contrastive learning.

KGCL, KGIN, CKAN, KGAT, LightGCN, KGCN, and CKE are all graph-based GNN
(GAT) models. Evidently, they perform better than BPR-MF, NFM, and FM, which shows
that using graph neural networks to aggregate contextual information and model long-
range connections can provide better performance for recommendations.

In all datasets, AKCL-DA outperforms FM, NFM, BPR-MF, CKE, KGCN, LightGCN,
KGAT, CKAN, and KGCL by 38.89%, 41.04%, 31.50%, 22.85%, 26.17%, 16.99%, 16.62%,
18.65%, and 11.02% on average in NDCG@20 metrics, respectively.

These results illustrate that self-supervised learning provides insights into overcoming
data sparsity and cold start by extracting information from unlabeled data. Given the
results achieved by KGCL and AKCL-DA, we can find that the item knowledge extracted by
contrastive learning can guide the interaction data augmentation mode of self-supervised
information. With the help of contrastive learning, the two graph augmentation modes can
obtain more robust item knowledge-aware representations; in addition, since contrastive
learning only encodes the shared information between the interaction graph and the
knowledge graph, it can alleviate the dominance of collaborative signals and suppress noise
that is irrelevant to recommendations. However, while AKCL-DA demonstrates significant
performance gains, the increased model complexity may lead to higher computational
costs, especially in large-scale datasets where efficiency could become an issue. Moreover,
when dealing with highly sparse domain-specific data, further optimization of the model’s
robustness might be necessary. These potential issues will be analyzed in depth in future
work, and optimizing the model’s performance and efficiency will also be a focus of
further research.

5.3. Sensitivity Analysis

In this section, this article will explore the hyperparameter research results of AKCLDA
in MovieLens. The trends of Yelp2018 and LastFM are similar to MovieLens, and this article
will not go into detail. It is worth noting that this article analyzes one parameter while
keeping other vital parameters unchanged.

5.3.1. Effect of Hypothesis Edge Ratio r

This study plots the Recall@20 and NDCG@20 scores to assess the effect of the hypo-
thetical edge ratio on AKCL-DA. The value varies from 0.01 to 0.05. From Figure 2a, we
can easily observe that the model achieves the best performance when r is 0.04. Adding
hypothetical edges to the interaction graph does improve the recommendation perfor-
mance to a certain extent, but only an appropriate proportion of hypothetical edges can
expand the semantic associations of the knowledge graph and capture user preferences
more comprehensively.

5.3.2. Effect of Layer Number L of DAn

Figure 2b shows the Recall@20 and NDCG@20 scores of stacked GNN layers from 1
to 4, and we can observe that the model reaches the best performance when L is 2. As L
rises, the model’s performance falls, as seen in Figure 2b. This suggests that the model is
impacted by the notorious over-smoothing of graph neural networks.

5.3.3. Effect of τcl

In Figure 2c, this paper plots the effect of the value of τcl on model Recall@20 and
NDCG@20. It is easy to determine that the model performs best at a value of 0.7, indicating
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that the performance of the model is especially dependent on determining the proper
contrast learning temperature hyperparameter.

5.3.4. Effect of Edge Dropout ρ

In Figure 2d, the effect of the edge dropout rate on the model is shown. This paper
changes the dropout rate from 0.5 to 0.9, and the results show that the model reaches the best
performance when ρ is 0.3. This demonstrates that excessively high or low edge dropout
rates during the construction of interaction and knowledge subgraphs will negatively affect
the model’s performance. Each round of model training will lose crucial information if
the edge dropout rate is too high, whereas each training round will contain more noisy
information if the edge dropout rate is too low.
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5.4. Ablation Studies

To verify the effectiveness of the AKCL-DA component, this paper designs two vari-
ants to analyze its performance.

• AKCL-DAw/o Assumed edge: In this variant, we do not add hypothetical edges to
the interaction graph and keep other parts consistent with the full model, observing
the impact of the results on the entire model.

• AKCL-DAw/o Att: This variant does not use dynamic attention to calculate the
importance between nodes but uses the original version of GAT to calculate the
attention score.

Table 3 shows the results of the two variants and AKCL-DA. Observing the results
reveals the following: (1) Removing hypothetical edges in the interaction graph will affect
the performance of the recommendation. Adding hypothetical edges in the interaction
subgraph has a certain positive effect on fully capturing user preferences; (2) The dynamic
attention network used can effectively capture the relationship between nodes and con-
tribute greatly to improving the embedding of nodes, ensuring high-quality embedding
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input for contrastive learning. Ultimately, these results show that by fully leveraging
collaborative supervision signals and successfully reducing noise in knowledge graphs,
recommendation systems can perform noticeably better.

Table 3. Experimental results for the variants of AKCL-DA.

Model
Yelp2018 LastFM MovieLens

Recall NDCG Recall NDCG Recall NDCG

w/o Assumed edge 0.0743 0.0487 0.1103 0.0977 0.4733 0.3257
w/o Att 0.0712 0.0475 0.1092 0.0948 0.4298 0.3228

AKCL-DA 0.0762 0.0518 0.1113 0.0981 0.4742 0.3264

5.5. Benefits of AKCL-DA in Alleviating Knowledge Noise

We evaluate the performance of AKCL-DA on noisy knowledge graphs in this section.
To create a large number of entities that are irrelevant to recommendations, 10% noisy triples
are to the current knowledge graph while leaving the test set unchanged. Models KGAT,
KGCL, and AKCL-DA use knowledge graphs for recommendations after introducing noise.
Table 4 presents the study results.

Table 4. Experimental results for mitigating knowledge noise.

Model
Yelp2018 LastFM MovieLens Avg. Dec

Recall NDCG Recall NDCG Recall NDCG

KGAT 0.0623 0.0406 0.0796 0.0692 0.4489 0.2983 4.54%
KGCL 0.0736 0.0472 0.0856 0.0762 0.4503 0.2923 2.89%

AKCL-DA 0.0759 0.0512 0.1109 0.0976 0.4726 0.3257 0.43%

The data in Table 4 demonstrate that, compared with KGAT and KGCL, AKCL-DA
has the best average performance in suppressing knowledge graph noise. In general, the
method used in this article can effectively capture user preferences and further improve
the suppression of knowledge graph noise.

6. Conclusions

This paper focuses on incorporating self-supervised contrastive learning into the rec-
ommendation system, using sparse collaborative signals and knowledge graph semantic
information naturally. Based on the limitations of existing methods, a new framework
AKCL-DA is designed to better achieve dynamic and personalized attention allocation
by using a dynamic attention network. Additionally, a graph augmentation strategy is
proposed to suppress edge and intra-graph noise irrelevant to the recommendation, to
input high-quality graph data for contrastive learning. In addition, to utilize information
and guide recommendations in a more balanced way, this study adopts a multi-task learn-
ing method to train the model. Extensive experiments on real-world datasets show that
AKCL-DA has clear advantages in recommendation performance metrics recall (Recall) and
normalized discounted cumulative gain (NDCG). In future research, we will explore other
graph augmentation strategies to help the model introduce richer underlying semantic
information, such as graph feature transformation, graph structure transformation, and
random sampling transformation. In addition, this paper is also interested in exploring
more powerful GNNs to more reasonably encode enhanced views. Therefore, future re-
search will continue to explore more effective self-supervised contrastive learning methods
to make greater efforts to generate more accurate recommendations.
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