A Hybrid Contrast and Texture Masking Model to Boost High Efficiency Video Coding Perceptual Rate-Distortion Performance
<p>Default HEVC quantization weighting matrices.</p> "> Figure 2
<p>Contrast sensitivity function. The red curve represents the original CSF as defined by Equation (1), while the blue dashed curve represents the flattened CSF, with spatial frequencies below the peak sensitivity saturated.</p> "> Figure 3
<p>Proposed 4 × 4 quantization weighting matrices for intra- and interprediction modes.</p> "> Figure 4
<p>Rate-distortion curves comparing our proposed CSF with the default implemented in the HEVC standard using different perceptual metrics. (<b>a</b>,<b>b</b>) correspond to the BQTerrace sequence of class B, while (<b>c</b>,<b>d</b>) correspond to the ChinaSpeed sequence of class F.</p> "> Figure 5
<p>Samples of manually classified blocks (left-hand side) and their associated polar diagram of the MDV metric (right-hand side). From top to bottom: <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>32</mn> <mo>×</mo> <mn>32</mn> </mrow> </semantics></math> block sizes; from left- to right-hand side: plain, edge, and texture blocks.</p> "> Figure 6
<p>(<b>a</b>) Scatter plot of manually classified <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math> blocks (training dataset), and (<b>b</b>) the classification results provided by the trained SVM model (testing dataset).</p> "> Figure 7
<p>Example of block classification for the first frame of sequence BasketballDrill, using optimal SVM models for each block size.</p> "> Figure 8
<p>Box and whisker plot of the block energy (<math display="inline"><semantics> <mi>ε</mi> </semantics></math>) distribution by size and texture classification.</p> "> Figure 9
<p>Representation of Equation (6) for two sets of function parameter, (<b>red</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <msub> <mi>E</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <msub> <mi>E</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>Q</mi> <mi>S</mi> <mi>t</mi> <mi>e</mi> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and (<b>blue</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <msub> <mi>E</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <msub> <mi>E</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>Q</mi> <mi>S</mi> <mi>t</mi> <mi>e</mi> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>Q</mi> <mi>S</mi> <mi>t</mi> <mi>e</mi> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> is different for each set.</p> "> Figure 10
<p>Flowchart of candidate selection for brute-force analysis of perceptually optimal parameters. The Ps in energy range boxes refer to the percentile.</p> "> Figure 11
<p>BD-rate curves (MS-SSIM metric) for PeopleOnStreet video test sequence over the <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>Q</mi> <mi>S</mi> <mi>t</mi> <mi>e</mi> <mi>p</mi> </mrow> </semantics></math> parameter when modifying texture blocks of size 8. Each curve represents a different block energy range (<math display="inline"><semantics> <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>E</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>E</mi> </mrow> </semantics></math>).</p> "> Figure 12
<p>Rate-distortion curves of the first frame of the BQSquare sequence, comparing our proposed contrast masking (red line) and contrast and texture masking (yellow line) with the HM reference coding (blue line), using the (<b>a</b>) SSIM, (<b>b</b>) MS-SSIM, and (<b>c</b>) PSNR-HVS-M perceptual metrics.</p> "> Figure 13
<p>Visual comparison of the first frame of the BQSquare sequence encoded at <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>P</mi> <mo>=</mo> <mn>22</mn> </mrow> </semantics></math>. (<b>a</b>) HM reference-encoded frame; (<b>b</b>) frame encoded with contrast and texture masking.</p> "> Figure 13 Cont.
<p>Visual comparison of the first frame of the BQSquare sequence encoded at <math display="inline"><semantics> <mrow> <mi>Q</mi> <mi>P</mi> <mo>=</mo> <mn>22</mn> </mrow> </semantics></math>. (<b>a</b>) HM reference-encoded frame; (<b>b</b>) frame encoded with contrast and texture masking.</p> "> Figure A1
<p>Traffic 2560 × 1600 30 fps Class A.</p> "> Figure A2
<p>PeopleOnStreet 2560 × 1600 30 fps Class A.</p> "> Figure A3
<p>NebutaFestival 2560 × 1600 60 fps Class A.</p> "> Figure A4
<p>SteamLocomotiveTrain 2560 × 1600 60 fps Class A.</p> "> Figure A5
<p>Kimono 1920 × 1080 24 fps Class B.</p> "> Figure A6
<p>ParkScene 1920 × 1080 24 fps Class B.</p> "> Figure A7
<p>Cactus 1920 × 1080 50 fps Class B.</p> "> Figure A8
<p>BQTerrace 1920 × 1080 60 fps Class B.</p> "> Figure A9
<p>BasketballDrive 1920 × 1080 50 fps Class B.</p> "> Figure A10
<p>RaceHorses 832 × 480 30 fps Class C.</p> "> Figure A11
<p>BQMall 832 × 480 60 fps Class C.</p> "> Figure A12
<p>PartyScene 832 × 480 50 fps Class C.</p> "> Figure A13
<p>BasketballDrill 832 × 480 50 fps Class C.</p> "> Figure A14
<p>RaceHorses 416 × 240 30 fps Class D.</p> "> Figure A15
<p>BQSquare 416 × 240 60 fps Class D.</p> "> Figure A16
<p>BlowingBubbles 416 × 240 50 fps Class D.</p> "> Figure A17
<p>BasketballPass 416 × 240 50 fps Class D.</p> "> Figure A18
<p>FourPeople 1280 × 720 60 fps Class E.</p> "> Figure A19
<p>Johnny 1280 × 720 60 fps Class E.</p> "> Figure A20
<p>KristenAndSara 1280 × 720 60 fps Class E.</p> "> Figure A21
<p>BasketballDrillText 832 × 480 50 fps Class F.</p> "> Figure A22
<p>ChinaSpeed 1024 × 768 30 fps Class F.</p> "> Figure A23
<p>SlideEditing 1280 × 720 30 fps Class F.</p> "> Figure A24
<p>SlideShow 1280 × 720 20 fps Class F.</p> ">
Abstract
:1. Introduction
2. Related Work
- An improved contrast masking method that covers all HEVC available block sizes (4 × 4 to 32 × 32) that includes a new efficient quantization matrix;
- A new block classification method for block texture masking based on the MDV metric that efficiently classifies every block as a texture, edge, or plain block;
- A new QP offset calculator for the HEVC adaptive QP tool, based on the block texture energy and its classification.
3. Proposed HEVC Perceptual Quantizer
3.1. Proposed Contrast Sensitivity Function
3.2. Block Classification Based on Texture Orientation and SVM
3.3. Obtaining Optimal QP Offset
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Video Sequence Screenshots
References
- Gao, X.; Lu, W.; Tao, D.; Li, X. Image quality assessment and human visual system. In Proceedings of the Visual Communications and Image Processing 2010, Huangshan, China, 11–14 July 2010; International Society for Optics and Photonics, SPIE: San Francisco, CA, USA, 2010; Volume 7744, pp. 316–325. [Google Scholar] [CrossRef]
- Mannos, J.; Sakrison, D. The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 1974, 20, 525–536. [Google Scholar] [CrossRef]
- Nill, N. A visual model weighted cosine transform for image compression and quality assessment. IEEE Trans. Commun. 1985, 33, 551–557. [Google Scholar] [CrossRef]
- Daly, S. Subroutine for the Generation of a Two Dimensional Human Visual Contrast Sensitivity Function; Technical Report Y, 233203; Eastman Kodak: Rochester, NY, USA, 1987. [Google Scholar]
- Ngan, K.N.; Leong, K.S.; Singh, H. Adaptive cosine transform coding of images in perceptual domain. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1743–1750. [Google Scholar] [CrossRef]
- Chitprasert, B.; Rao, K.R. Human visual weighted progressive image transmission. IEEE Trans. Commun. 1990, 38, 1040–1044. [Google Scholar] [CrossRef]
- Tong, H.; Venetsanopoulos, A. A perceptual model for JPEG applications based on block classification, texture masking, and luminance masking. In Proceedings of the 1998 International Conference on Image Processing, Chicago, IL, USA, 7 October 1998; ICIP98 (Cat. No.98CB36269). Volume 3, pp. 428–432. [Google Scholar] [CrossRef]
- ISO/IEC 10918-1/ITU-T Recommendation T.81; Digital Compression and Coding of Continuous-Tone Still Image. ISO: Geneva, Switzerland, 1992.
- Zhang, X.; Lin, W.; Xue, P. Improved estimation for just-noticeable visual distortion. Signal Process. 2005, 85, 795–808. [Google Scholar] [CrossRef]
- Wei, Z.; Ngan, K.N. Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 337–346. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Kaithaapuzha, S. Visual Masking Model Implementation for Images & Video. In EE368 Spring Final Paper 2009/2010; Stanford University: Stanford, CA, USA, 2010. [Google Scholar]
- Ma, L.; Ngan, K.N. Adaptive block-size transform based just-noticeable difference profile for videos. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 4213–4216. [Google Scholar] [CrossRef]
- Othman, Z.; Abdullah, A. An adaptive threshold based on multiple resolution levels for canny edge detection. In Proceedings of the 2nd International Conference of Reliable Information and Communication Technology (IRICT 2017), Johor, Malaysia, 23–24 April 2017; pp. 316–323. [Google Scholar] [CrossRef]
- Gong, X.; Lu, H. Towards fast and robust watermarking scheme for H.264 Video. In Proceedings of the 2008 Tenth IEEE International Symposium on Multimedia, Berkeley, CA, USA, 15–17 December 2008; pp. 649–653. [Google Scholar] [CrossRef]
- Mak, C.; Ngan, K.N. Enhancing compression rate by just-noticeable distortion model for H. 264/AVC. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 609–612. [Google Scholar] [CrossRef]
- MPEG Test Model Editing Committee. MPEG-2 Test Model 5. In Proceedings of the Sydney MPEG Meeting, Sydney, Australia, 29 March–2 April 1993. [Google Scholar]
- Tang, C.W.; Chen, C.H.; Yu, Y.H.; Tsai, C.J. Visual sensitivity guided bit allocation for video coding. IEEE Trans. Multimed. 2006, 8, 11–18. [Google Scholar] [CrossRef]
- McCann, K.; Rosewarne, C.; Bross, B.; Naccari, M.; Sharman, K. High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Encoder Description. In Proceedings of the 18th Meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Sapporo, Japan, 30 June–7 July 2014. [Google Scholar]
- Prangnell, L.; Hernández-Cabronero, M.; Sanchez, V. Coding block-level perceptual video coding for 4:4:4 data in HEVC. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2488–2492. [Google Scholar] [CrossRef]
- Kim, J.; Bae, S.H.; Kim, M. An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1786–1800. [Google Scholar] [CrossRef]
- Wang, M.; Ngan, K.N.; Li, H.; Zeng, H. Improved block level adaptive quantization for high efficiency video coding. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 509–512. [Google Scholar] [CrossRef]
- Xiang, G.; Jia, H.; Yang, M.; Liu, J.; Zhu, C.; Li, Y.; Xie, X. An improved adaptive quantization method based on perceptual CU early splitting for HEVC. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; pp. 362–365. [Google Scholar] [CrossRef]
- Zhang, F.; Bull, D.R. HEVC enhancement using content-based local QP selection. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4215–4219. [Google Scholar] [CrossRef]
- Marzuki, I.; Sim, D. Perceptual adaptive quantization parameter selection using deep convolutional features for HEVC encoder. IEEE Access 2020, 8, 37052–37065. [Google Scholar] [CrossRef]
- Bosse, S.; Dietzel, M.; Becker, S.; Helmrich, C.R.; Siekmann, M.; Schwarz, H.; Marpe, D.; Wiegand, T. Neural Network Guided Perceptually Optimized Bit-Allocation for Block-Based Image and Video Compression. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 126–130. [Google Scholar] [CrossRef]
- Sanagavarapu, K.S.; Pullakandam, M. Object Tracking Based Surgical Incision Region Encoding using Scalable High Efficiency Video Coding for Surgical Telementoring Applications. Radioengineering 2022, 31, 231–242. [Google Scholar] [CrossRef]
- Girod, B. What’s Wrong with Mean-Squared Error? In Digital Images and Human Vision; MIT Press: Cambridge, MA, USA, 1993; pp. 207–220. [Google Scholar]
- Eskicioglu, A.M.; Fisher, P.S. Image quality measures and their performance. IEEE Trans. Commun. 1995, 43, 2959–2965. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Silvestri, F.; Egiazarian, K.; Carli, M.; Astola, J.; Lukin, V. On between-coefficient contrast masking of DCT basis functions. In Proceedings of the Third International Workshop on Video Processing and Quality Metrics, Scottsdale, AZ, USA, 25–26 January 2007; Volume 4. [Google Scholar]
- Martínez-Rach, M.O. Perceptual Image Coding for Wavelet Based Encoders. Ph.D. Thesis, Universidad Miguel Hernández de Elche, Elche, Spain, 2014. [Google Scholar]
- Bjontegaard, G. Calculation of average PSNR differences between RD-Curves. In Proceedings of the ITU-T Video Coding Experts Group—Thirteenth Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
- Haque, M.; Tabatabai, A.; Morigami, Y. HVS model based default quantization matrices. In Proceedings of the 7th Meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Geneva, Switzerland, 21–30 November 2011. [Google Scholar]
- Fraunhofer Institute for Telecommunications. HM Reference Software Version 16.20. 2018. Available online: https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.20 (accessed on 16 August 2024).
- Bossen, F. Common test conditions and software reference. In Proceedings of the 11th Meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Shanghai, China, 10–19 October 2012. [Google Scholar]
- Atencia, J.R.; Granado, O.L.; Malumbres, M.P.; Martínez-Rach, M.O.; Van Wallendael, G. Analysis of the perceptual quality performance of different HEVC coding tools. IEEE Access 2021, 9, 37510–37522. [Google Scholar] [CrossRef]
- Ruiz-Coll, D.; Fernández-Escribano, G.; Martínez, J.L.; Cuenca, P. Fast intra mode decision algorithm based on texture orientation detection in HEVC. Signal Process. Image Commun. 2016, 44, 12–28. [Google Scholar] [CrossRef]
- Kundu, D.; Evans, B.L. Full-reference visual quality assessment for synthetic images: A subjective study. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 2374–2378. [Google Scholar] [CrossRef]
- University of Southern California, Signal and Image Processing Institute. The USC-SIPI Image Database. Available online: https://sipi.usc.edu/database/ (accessed on 5 August 2024).
- Asuni, N.; Giachetti, A. TESTIMAGES: A large-scale archive for testing visual devices and basic image processing algorithms. In Proceedings of the Smart Tools and Apps for Graphics—Eurographics Italian Chapter Conference, Cagliari, Italy, 22–23 September 2014; Giachetti, A., Ed.; The Eurographics Association: Eindhoven, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Kodak. The Kodak Color Image Dataset. Available online: https://r0k.us/graphics/kodak/ (accessed on 16 August 2024).
- Sze, V.; Budagavi, M.; Sullivan, G.J. High Efficiency Video Coding (HEVC): Algorithms and Architectures; Integrated Circuits and Systems; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
Class | Sequence Name | Resolution | Frame Count | Frame Rate | Bit Depth |
---|---|---|---|---|---|
A | Traffic | 2560 × 1600 | 150 | 30 | 8 |
PeopleOnStreet | 150 | 30 | 8 | ||
Nebuta | 300 | 60 | 10 | ||
SteamLocomotive | 300 | 60 | 10 | ||
B | Kimono | 1920 × 1080 | 240 | 24 | 8 |
ParkScene | 240 | 24 | 8 | ||
Cactus | 500 | 50 | 8 | ||
BQTerrace | 600 | 60 | 8 | ||
BasketballDrive | 500 | 50 | 8 | ||
C | RaceHorses | 832 × 480 | 300 | 30 | 8 |
BQMall | 600 | 60 | 8 | ||
PartyScene | 500 | 50 | 8 | ||
BasketballDrill | 500 | 50 | 8 | ||
D | RaceHorses | 416 × 240 | 300 | 30 | 8 |
BQSquare | 600 | 60 | 8 | ||
BlowingBubbles | 500 | 50 | 8 | ||
BasketballPass | 500 | 50 | 8 | ||
E | FourPeople | 1280 × 720 | 600 | 60 | 8 |
Johnny | 600 | 60 | 8 | ||
KristenAndSara | 600 | 60 | 8 | ||
F | BaskeballDrillText | 832 × 480 | 500 | 50 | 8 |
ChinaSpeed | 1024 × 768 | 500 | 30 | 8 | |
SlideEditing | 1280 × 720 | 300 | 30 | 8 | |
SlideShow | 500 | 20 | 8 |
Sequence Class | SCL = 1 (HEVC Presets) | SCL = 2 (Ours) | ||||
---|---|---|---|---|---|---|
SSIM | MS-SSIM | PSNR-HVS-M | SSIM | MS-SSIM | PSNR- HVS-M | |
Class A | −0.66 | −0.33 | −0.62 | −1.06 | −0.82 | −1.58 |
Class B | −0.97 | −0.48 | −0.99 | −3.20 | −2.58 | −4.23 |
Class C | 0.26 | 0.08 | −0.08 | −4.82 | −5.36 | −7.39 |
Class D | 1.26 | 0.29 | −0.05 | −1.36 | −5.66 | −7.65 |
Class E | −0.74 | −0.50 | −0.75 | −1.78 | −1.39 | −1.98 |
Class F | −0.15 | −0.04 | −0.11 | −4.57 | −4.19 | −4.17 |
Average | −0.17 | −0.16 | −0.43 | −2.80 | −3.33 | −4.48 |
Model Parameters | Block Size | ||
---|---|---|---|
8 × 8 | 16 × 16 | 32 × 32 | |
Kernel function | linear | linear | linear |
Kernel scale | auto | auto | auto |
Box constraint level | 85 | 285 | 35 |
Multi-class method | One-vs.-All | One-vs.-One | One-vs.-All |
Standardize data | true | true | true |
Model accuracy | 93.9% | 95.4% | 94.5% |
Classification | Parameter | Block Size | ||
---|---|---|---|---|
8 × 8 | 16 × 16 | 32 × 32 | ||
Texture | MinE | 2864 | 9712 | 29,952 |
MaxE | 26,256 | 26,800 | 216,880 | |
MaxElevation | 1.3 | 1.2 | 2.2 | |
Edge | MinE | 1520 | 4320 | 14,320 |
MaxE | 5424 | 52,016 | 63,504 | |
MaxElevation | 1.2 | 1.3 | 1.2 |
Class | Metric | Texture Blocks | Edge Blocks | ||||
---|---|---|---|---|---|---|---|
8 × 8 | 16 × 16 | 32 × 32 | 8 × 8 | 16 × 16 | 32 × 32 | ||
A | SSIM | −1.04 | −0.98 | −1.01 | −0.67 | −1.07 | −1.05 |
MS-SSIM | −0.87 | −0.76 | −0.80 | −0.46 | −0.80 | −0.82 | |
PSNR-HVS-M | −1.69 | −1.44 | −1.52 | −1.26 | −1.52 | −1.57 | |
B | SSIM | −3.74 | −3.14 | −3.15 | −3.03 | −3.21 | −3.19 |
MS-SSIM | −3.02 | −2.47 | −2.52 | −2.34 | −2.56 | −2.57 | |
PSNR-HVS-M | −4.58 | −4.05 | −4.17 | −3.90 | −4.16 | −4.21 | |
E | SSIM | −2.12 | −1.74 | −1.77 | −1.48 | −1.87 | −1.78 |
MS-SSIM | −1.68 | −1.35 | −1.40 | −0.98 | −1.50 | −1.39 | |
PSNR-HVS-M | −2.14 | −1.89 | −1.96 | −1.17 | −2.02 | −1.99 |
Class | Sequence Name | Contrast Masking | Contrast and Texture Masking | ||||
---|---|---|---|---|---|---|---|
SSIM | MS-SSIM | PSNR- HVS-M | SSIM | MS-SSIM | PSNR- HVS-M | ||
A | Traffic | −1.00 | −0.93 | −1.77 | −2.25 | −1.89 | −2.05 |
PeopleOnStreet | −1.23 | −1.27 | −1.95 | −3.38 | −2.98 | −2.54 | |
Nebuta | −1.22 | −0.39 | −1.64 | −2.40 | −1.70 | −1.85 | |
SteamLocomotiveTrain | −0.80 | −0.67 | −0.98 | −0.05 | −0.04 | −0.36 | |
Average | −1.06 | −0.82 | −1.58 | −2.02 | −1.65 | −1.70 | |
B | Kimono | −0.50 | −0.41 | −0.89 | −0.53 | −0.35 | −0.81 |
ParkScene | −2.26 | −1.67 | −3.11 | −3.82 | −2.91 | −3.75 | |
Cactus | −2.97 | −2.26 | −4.06 | −5.10 | −3.94 | −4.83 | |
BQTerrace | −6.68 | −5.44 | −7.82 | −9.61 | −8.09 | −8.89 | |
BasketballDrive | −3.61 | −3.11 | −5.27 | −5.05 | −4.31 | −5.66 | |
Average | −3.20 | −2.58 | −4.23 | −4.82 | −3.92 | −4.79 | |
C | RaceHorses | −4.80 | −5.60 | −7.62 | −7.60 | −8.21 | −9.07 |
BQMall | −3.28 | −3.53 | −4.96 | −5.09 | −5.26 | −5.58 | |
PartyScene | −6.51 | −7.45 | −9.89 | −8.22 | −9.19 | −10.75 | |
BasketballDrill | −4.70 | −4.86 | −6.58 | −7.46 | −7.66 | −7.86 | |
Average | −4.82 | −5.36 | −7.26 | −7.09 | −7.58 | −8.31 | |
D | RaceHorses | −0.63 | −3.00 | −5.71 | −2.43 | −5.67 | −6.91 |
BQSquare | −2.81 | −9.24 | −10.12 | −6.25 | −14.24 | −12.30 | |
BlowingBubbles | −0.28 | −6.16 | −9.39 | −1.33 | −7.74 | −9.87 | |
BasketballPass | −1.74 | −4.25 | −5.39 | −3.65 | −7.07 | −6.84 | |
Average | −1.36 | −5.66 | −7.65 | −3.41 | −8.68 | −8.98 | |
E | FourPeople | −1.54 | −1.27 | −1.81 | −2.75 | −2.25 | −1.98 |
Johnny | −1.65 | −1.00 | −1.87 | −2.98 | −2.25 | −1.85 | |
KristenAndSara | −2.15 | −1.88 | −2.26 | −4.42 | −3.87 | −2.98 | |
Average | −1.78 | −1.39 | −1.98 | −3.38 | −2.79 | −2.27 | |
F | BasketballDrillText | −4.74 | −4.89 | −5.97 | −7.88 | −8.08 | −7.64 |
ChinaSpeed | −6.25 | −5.41 | −5.34 | −9.94 | −8.84 | −7.26 | |
SlideEditing | −1.85 | −1.57 | −1.51 | −3.51 | −3.08 | −2.89 | |
SlideShow | −5.45 | −4.88 | −3.84 | −8.78 | −7.93 | −5.32 | |
Average | −4.57 | −4.19 | −4.17 | −7.52 | −6.98 | −5.78 | |
Class average | −2.80 | −3.33 | −4.48 | −4.71 | −5.27 | −5.30 |
Class | Sequence Name | Constrast Masking | Contrast and Texture Masking | ||||
---|---|---|---|---|---|---|---|
SSIM | MS-SSIM | PSNR- HVS-M | SSIM | MS-SSIM | PSNR- HVS-M | ||
A | Traffic | −1.60 | −1.30 | −2.41 | −4.12 | −3.87 | −4.07 |
PeopleOnStreet | −0.98 | −0.81 | −1.30 | −6.38 | −5.95 | −4.36 | |
Nebuta | −2.16 | −1.19 | −1.55 | −3.53 | −2.17 | −1.05 | |
SteamLocomotiveTrain | −0.92 | −0.74 | −0.93 | −0.79 | −0.63 | −0.51 | |
Average | −1.42 | −1.01 | −1.55 | −3.71 | −3.15 | −2.50 | |
B | Kimono | −0.39 | −0.30 | −0.64 | −0.75 | −0.60 | −0.62 |
ParkScene | −2.72 | −1.86 | −3.30 | −5.02 | −4.11 | −4.68 | |
Cactus | −3.19 | −2.60 | −4.75 | −5.52 | −4.65 | −5.84 | |
BQTerrace | −12.00 | −10.32 | −12.82 | −15.89 | −13.59 | −14.28 | |
BasketballDrive | −3.21 | −3.20 | −5.33 | −6.15 | −5.91 | −6.59 | |
Average | −4.30 | −3.66 | −5.37 | −6.67 | −5.77 | −6.40 | |
C | RaceHorses | −4.48 | −4.89 | −6.88 | −8.66 | −9.00 | −9.39 |
BQMall | −3.31 | −3.37 | −4.98 | −6.71 | −6.76 | −7.13 | |
PartyScene | −5.67 | −5.87 | −9.10 | −8.56 | −8.67 | −10.54 | |
BasketballDrill | −1.61 | −1.90 | −3.84 | −5.80 | −6.01 | −6.00 | |
Average | −3.77 | −4.01 | −6.20 | −7.43 | −7.61 | −8.26 | |
D | RaceHorses | 0.60 | −2.45 | −4.38 | −4.16 | −7.38 | −7.39 |
BQSquare | −1.57 | −8.85 | −10.49 | −6.29 | −14.72 | −13.04 | |
BlowingBubbles | 2.21 | −5.30 | −9.32 | −0.36 | −8.32 | −10.83 | |
BasketballPass | −1.15 | −3.49 | −4.60 | −5.67 | −8.19 | −7.30 | |
Average | 0.02 | −5.02 | −7.20 | −4.12 | −9.65 | −9.64 | |
E | FourPeople | −1.44 | −1.07 | −1.80 | −3.33 | −2.75 | −2.82 |
Johnny | −1.90 | −1.25 | −2.11 | −3.72 | −2.81 | −2.74 | |
KristenAndSara | −2.37 | −2.06 | −2.52 | −4.98 | −4.42 | −3.84 | |
Average | −1.90 | −1.46 | −2.15 | −4.01 | −3.32 | −3.13 | |
F | BasketballDrillText | −1.83 | −2.15 | −3.65 | −6.26 | −6.43 | −5.90 |
ChinaSpeed | −6.52 | −5.88 | −5.40 | −11.12 | −10.31 | −8.08 | |
SlideEditing | −1.30 | −0.86 | −2.09 | −2.19 | −2.19 | −3.66 | |
SlideShow | −4.93 | −4.35 | −3.89 | −9.72 | −8.82 | −6.69 | |
Average | −3.64 | −3.31 | −3.76 | −7.32 | −6.94 | −6.08 | |
Class average | −2.50 | −3.08 | −4.37 | −5.54 | −6.08 | −6.00 |
Class | Sequence Name | Constrast Masking | Contrast and Texture Masking | ||||
---|---|---|---|---|---|---|---|
SSIM | MS-SSIM | PSNR- HVS-M | SSIM | MS-SSIM | PSNR- HVS-M | ||
A | Traffic | −1.37 | −1.13 | −2.40 | −5.03 | −4.85 | −4.92 |
PeopleOnStreet | −0.66 | −0.72 | −1.24 | −6.07 | −5.93 | −4.33 | |
Nebuta | −2.29 | −1.20 | −1.52 | −2.52 | −1.37 | −0.90 | |
SteamLocomotiveTrain | −0.71 | −0.56 | −0.83 | −0.44 | −0.07 | −0.11 | |
Average | −1.26 | −0.90 | −1.50 | −3.51 | −3.05 | −2.56 | |
B | Kimono | −0.21 | −0.16 | −0.32 | −0.03 | 0.05 | 0.02 |
ParkScene | −1.93 | −1.55 | −2.67 | −3.99 | −3.63 | −4.06 | |
Cactus | −2.11 | −1.59 | −3.68 | −4.39 | −3.61 | −4.79 | |
BQTerrace | −10.42 | −8.93 | −13.03 | −16.13 | −14.36 | −16.37 | |
BasketballDrive | −3.11 | −3.08 | −4.92 | −6.27 | −6.00 | −6.52 | |
Average | −3.56 | −3.06 | −4.92 | −6.16 | −5.51 | −6.34 | |
C | RaceHorses | −4.27 | −4.67 | −7.05 | −8.42 | −8.82 | −9.39 |
BQMall | −3.36 | −3.48 | −5.02 | −7.93 | −8.01 | −7.94 | |
PartyScene | −7.37 | −7.40 | −10.70 | −11.57 | −11.60 | −13.24 | |
BasketballDrill | −1.13 | −1.33 | −2.76 | −5.51 | −5.69 | −5.38 | |
Average | −4.03 | −4.22 | −6.38 | −8.35 | −8.53 | −8.99 | |
D | RaceHorses | −0.31 | −2.21 | −4.13 | −4.99 | −7.58 | −6.99 |
BQSquare | −8.30 | −14.38 | −15.77 | −15.26 | −22.89 | −20.48 | |
BlowingBubbles | −2.97 | −7.26 | −10.74 | −6.55 | −11.54 | −13.17 | |
BasketballPass | −2.64 | −4.31 | −5.53 | −7.49 | −9.55 | −8.75 | |
Average | −3.56 | −7.04 | −9.04 | −8.57 | −12.89 | −12.35 | |
E | FourPeople | −0.20 | 0.01 | −0.79 | −2.03 | −1.54 | −1.20 |
Johnny | −0.71 | −0.35 | −1.24 | −4.01 | −3.38 | −2.99 | |
KristenAndSara | −1.22 | −0.88 | −1.45 | −2.82 | −2.40 | −1.60 | |
Average | −0.71 | −0.41 | −1.16 | −2.95 | −2.44 | −1.93 | |
F | BasketballDrillText | −1.31 | −1.52 | −2.66 | −6.28 | −6.41 | −5.46 |
ChinaSpeed | −6.25 | −5.73 | −5.36 | −10.81 | −10.10 | −7.54 | |
SlideEditing | −1.35 | −1.48 | −0.72 | −3.91 | −3.45 | −1.99 | |
SlideShow | −5.59 | −5.34 | −5.05 | −10.28 | −9.75 | −7.92 | |
Average | −3.62 | −3.52 | −3.45 | −7.82 | −7.43 | −5.73 | |
Class average | −2.79 | −3.19 | −4.41 | −6.23 | −6.64 | −6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atencia, J.R.; López-Granado, O.; Pérez Malumbres, M.; Martínez-Rach, M.; Coll, D.R.; Fernández Escribano, G.; Van Wallendael, G. A Hybrid Contrast and Texture Masking Model to Boost High Efficiency Video Coding Perceptual Rate-Distortion Performance. Electronics 2024, 13, 3341. https://doi.org/10.3390/electronics13163341
Atencia JR, López-Granado O, Pérez Malumbres M, Martínez-Rach M, Coll DR, Fernández Escribano G, Van Wallendael G. A Hybrid Contrast and Texture Masking Model to Boost High Efficiency Video Coding Perceptual Rate-Distortion Performance. Electronics. 2024; 13(16):3341. https://doi.org/10.3390/electronics13163341
Chicago/Turabian StyleAtencia, Javier Ruiz, Otoniel López-Granado, Manuel Pérez Malumbres, Miguel Martínez-Rach, Damian Ruiz Coll, Gerardo Fernández Escribano, and Glenn Van Wallendael. 2024. "A Hybrid Contrast and Texture Masking Model to Boost High Efficiency Video Coding Perceptual Rate-Distortion Performance" Electronics 13, no. 16: 3341. https://doi.org/10.3390/electronics13163341
APA StyleAtencia, J. R., López-Granado, O., Pérez Malumbres, M., Martínez-Rach, M., Coll, D. R., Fernández Escribano, G., & Van Wallendael, G. (2024). A Hybrid Contrast and Texture Masking Model to Boost High Efficiency Video Coding Perceptual Rate-Distortion Performance. Electronics, 13(16), 3341. https://doi.org/10.3390/electronics13163341