
Citation: Frasser, C.F.; Morán, A.;

Canals, V.; Font, J.; Isern, E.; Roca, M.;

Rosselló, J.L. Optimizing Artificial

Neural Networks to Minimize

Arithmetic Errors in Stochastic

Computing Implementations.

Electronics 2024, 13, 2846.

https://doi.org/10.3390/

electronics13142846

Academic Editors: Francisco Javier

González-Cañete, Martín González

García, Antonio J. Lopez-Martin and

Esteban Tlelo-Cuautle

Received: 17 June 2024

Revised: 5 July 2024

Accepted: 12 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Optimizing Artificial Neural Networks to Minimize Arithmetic
Errors in Stochastic Computing Implementations
Christiam F. Frasser 1 , Alejandro Morán 1,* , Vincent Canals 2 , Joan Font 1 , Eugeni Isern 1,3 ,
Miquel Roca 1,3,4 and Josep L. Rosselló 1,3,4

1 Electronics Engineering Group, Industrial Engineering and Construction Department, University of the
Balearic Islands, 07122 Palma, Spain; christian.franco@uib.es (C.F.F.); joan.font@uib.es (J.F.);
eugeni.isern@uib.es (E.I.); miquel.roca@uib.es (M.R.); j.rossello@uib.es (J.L.R.)

2 Energy Engineering Group, Industrial Engineering and Construction Department, University of the Balearic
Islands, 07122 Palma, Spain; v.canals@uib.es

3 Balearic Islands Health Research Institute (IdISBa), Son Espases University Hospital, 07120 Palma, Spain
4 Artificial Intelligence Research Institute (IAIB), Universitat de les Illes Balears, 07122 Palma, Spain
* Correspondence: a.moran@uib.es

Abstract: Deploying modern neural networks on resource-constrained edge devices necessitates a
series of optimizations to ready them for production. These optimizations typically involve pruning,
quantization, and fixed-point conversion to compress the model size and enhance energy efficiency.
While these optimizations are generally adequate for most edge devices, there exists potential for
further improving the energy efficiency by leveraging special-purpose hardware and unconventional
computing paradigms. In this study, we explore stochastic computing neural networks and their
impact on quantization and overall performance concerning weight distributions. When arithmetic
operations such as addition and multiplication are executed by stochastic computing hardware,
the arithmetic error may significantly increase, leading to a diminished overall accuracy. To bridge
the accuracy gap between a fixed-point model and its stochastic computing implementation, we
propose a novel approximate arithmetic-aware training method. We validate the efficacy of our
approach by implementing the LeNet-5 convolutional neural network on an FPGA. Our experimental
results reveal a negligible accuracy degradation of merely 0.01% compared with the floating-point
counterpart, while achieving a substantial 27× speedup and 33× enhancement in energy efficiency
compared with other FPGA implementations. Additionally, the proposed method enhances the
likelihood of selecting optimal LFSR seeds for stochastic computing systems.

Keywords: stochastic computing; edge computing; convolutional neural networks; LFSR seed;
quantization (signal)

1. Introduction

The increasing use of intelligent edge devices for inference tasks utilizing deep learning
(DL) models is largely due to their advantages in privacy, latency, bandwidth, energy
efficiency, and cost. This contrasts with the conventional method of transmitting sensor
data to the cloud for analysis [1]. In this scenario, real-time environmental monitoring
minimizes the need to send data to the cloud, thus reducing the burden on data centers.

In response to the growing technological trend, numerous companies are developing
specialized CPUs, DSPs, GPUs, and other processors to support general-purpose machine
learning (ML) and neural network (NN) capabilities at the edge [2,3]. These processors are
compatible with popular ML frameworks [4,5]. Meanwhile, some silicon companies are
exploring unconventional processing methods, like approximate computations, to surpass
the inherent limitations of silicon technology and achieve greater computational efficiency
per unit of power [6,7]. This study examines the digital implementation of DL models using

Electronics 2024, 13, 2846. https://doi.org/10.3390/electronics13142846 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142846
https://doi.org/10.3390/electronics13142846
https://doi.org/10.3390/electronics13142846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2753-9332
https://orcid.org/0000-0001-7628-0019
https://orcid.org/0000-0002-8394-4159
https://orcid.org/0000-0003-3463-0169
https://orcid.org/0000-0001-9332-794X
https://orcid.org/0000-0003-4648-5683
https://orcid.org/0000-0001-5390-2276
https://doi.org/10.3390/electronics13142846
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142846?type=check_update&version=1


Electronics 2024, 13, 2846 2 of 14

stochastic computing (SC), a unary computing method based on random and non-weighted
bitstreams [8].

The accuracy of NNs in SC models is significantly affected by the stochastic nature of
bitstreams and the quantization of parameters and activations. To mitigate the accuracy
decline in SC models, we analyze the error introduced by SC multiplications and integrate
this analysis with the optimal selection of Linear Feedback Shift Registers (LFSRs) [9].
Additionally, we propose a novel training method that takes into account the approximate
arithmetic operations in SC NNs.

This approach produces an SC inference model with minimal accuracy loss compared
with its fixed-point counterpart. We demonstrate this method using the LeNet-5 model for
classifying the MNIST dataset [10,11], providing results that include both accuracy and
FPGA implementation metrics [12].

2. Stochastic Computing

Stochastic computing is a numerical representation methodology that deviates from
conventional representation in the digital domain. Instead of using binary digits (bits) to
represent numbers, SC utilizes a bitstream where the value is conveyed by the probability
of encountering a logic 1. This approach translates real numbers into probability distribu-
tions, where the number is embedded within the stochastic fluctuations of the bitstream.
For instance, the value 0.5 (50% probability of observing a 1) can be represented in SC
using various bitstrings, such as 01, 1100, 1001100110, or 01010101010101010101. These
examples demonstrate that the ordering of 1’s is inconsequential for representation; rather,
their proportion within the bitstream holds significance.

This unconventional numerical representation presents both advantages and limita-
tions. One drawback is the computational overhead associated with operations, as well
as the inherent loss of precision due to the stochastic nature of the bitstream. However,
SC also offers compelling benefits, including reduced area and energy consumption in
implementing computationally intensive tasks like multiplication and non-linear functions.

Two primary codifications exist within the SC framework: unipolarand bipolar. Unipo-
lar encoding represents numbers within the interval [0, 1], while bipolar encoding spans
the range to [−1, 1]. The conversion between these codifications can be accomplished
using the following equation: p∗ = 2p− 1, where p represents the unipolar representation
of the number and p∗ signifies the bipolar counterpart. As shown, employing the same
bitstream length to represent a single number in both codifications, bipolar exhibits half
the precision of unipolar coding. For instance, consider the scenario where a probability
value isrepresented using a bitstream with a length of 4. The attainable values for both
codifications are presented in Table 1. As observed, the unipolar representation exhibits
twice the precision of the bipolar encoding. This disparity in precision can lead to elevated
errors when employing bipolar coding, as elaborated in the following section.

Table 1. Comparison of unipolar and bipolar coding.

Pulses Unipolar Bipolar

0/4 0 −1
1/4 0.25 −0.5
2/4 0.50 0
3/4 0.75 0.5
4/4 1 1

3. Multiplication Error

Recent interest in the scientific and industrial realms has been directed towards SC
circuits due to their efficient execution of computationally intensive operations, notably
multiplication, while requiring minimal resources. In fact, SC multiplication requires a sin-
gle logic gate, either an AND gate for unipolar encoding or an XNOR gate for bipolar encoding,



Electronics 2024, 13, 2846 3 of 14

which facilitates a substantial reduction in both area and power consumption. However,
this comes at the expense of increased execution time and diminished arithmetic accuracy.

In order to analytically derive an expression for the mean squared error (MSE), con-
sider the i-th bit of two different bitstreams with activation probabilities of x and y that
are i.i.d. Bernoulli random variables denoted by Xi and Yi, respectively. These bitstreams
represent bipolar variables x∗ and y∗, so that the exact product is z∗ = x∗y∗, where z∗ is a
bipolar variable represented by a bitstream with activation probability z. This bitstream
with an activation probability z is obtained via a XNOR logic gate, i.e., the i-th bitstream bit
is given by (1).

Zi = XiYi + (1− Xi)(1−Yi) ∼ Bernoulli
(

x∗y∗ + 1
2

)
(1)

The activation probability of the resulting bitstream is approximated by counting the
number of activations. In general, accumulating the Bernoulli experiment result for N
iterations yields the binomial random variable Z, given by (2), so that the activation
probability is approximated as Z/N.

Z =
N

∑
i=1

Zi ∼ Bin
(

N,
x∗y∗ + 1

2

)
(2)

Therefore, MSE associated to the bipolar variable ẑ∗ = (Z/N)∗ w.r.t. the exact bipolar
product z∗ = (E[Z]/N)∗ is given by (3) and represented in Figure 1.

MSE[ẑ∗] = MSE
[

2
Z
N
− 1
]
= E

[((
2

Z
N
− 1
)
−
(

2
E[Z]

N
− 1
))2

]

=
4Var[Z]

N2 =
4z(1− z)

N
=

1− (x∗y∗)2

N

(3)

Figure 1. Mean squared error associated with the stochastic multiplication of two bipolar variables.

Moreover, during neural network (NN) inference, many multiplications are carried
out. So, rather than considering the MSE associated to a single bipolar multiplication, we
focus on the average MSE (AMSE), which depends on how inputs/activations and weights



Electronics 2024, 13, 2846 4 of 14

are distributed. In general, the AMSE of the bipolar multiplication error is given by (4),
where f and g are the probability density functions of the inputs and weights, respectively.

AMSE[ẑ∗] =
1
N

∫ +1

−1

∫ +1

−1

(
1− x2y2

)
f (x)g(y)dxdy (4)

In addition, for simplicity, it is considered that the inputs are uniformly distributed, i.e., f
is given by (5), which yields (6).

f (x) =

{
1
2 −1 ≤ x ≤ +1,
0 otherwise

(5)

AMSEu[ẑ∗] =
1

2N

∫ +1

−1

∫ +1

−1

(
1− x2y2

)
g(y)dxdy (6)

Taking (6) as the starting point, three different scenarios are covered:

• Normal–uniform: Weights are normally distributed with zero mean µ = 0 and
standard deviation σ, i.e., g is given by (7), which results in the AMSE given by (8),
where erf is the error function. Notice this is a good approximation for σ ⪅ 1/3, and
AMSE can be approximated to 1

N if σ is small.

g(y) =
1

σ
√

2π
e−

1
2 (

y−µ
σ )

2

(7)

AMSEnu[ẑ∗] ≈
1

4Nσ
√

2π

∫ +1

−1

∫ +1

−1

(
1− x2y2

)
e−

1
2 (

y−µ
σ )

2

dxdy

=
1

3N

((
3− σ2

)
erf
(

1
σ
√

2

)
− σ

√
2
π

e−
1

2σ2

) (8)

• Uniform–uniform: Weights are uniformly distributed between −1 and +1, i.e., f = g,
which results in the AMSE given by (9).

AMSEuu[ẑ∗] =
1

4N

∫ +1

−1

∫ +1

−1

(
1− x2y2

)
dxdy =

8
9N

(9)

• Custom–uniform : Weights follow a custom probability density function given by (10),
which results in the AMSE given by (11). Notice this is a good approximation for
σ ⪅ 1/3, and the AMSE can be approximated to 8

9N − α 2
9N if σ is small.

g(y) ≈


1−α

2 + α
σ
√

2π

(
e−

1
2

(
y+1

σ

)2

+ e−
1
2

(
y−1

σ

)2
)
−1 ≤ y ≤ +1,

0 otherwise

(10)

AMSEcu[ẑ∗] ≈ (1− α)
8

9N
+ α

1
3N

((
2 + σ2

)
erf

(√
2

σ

)
+

4√
2π

σ

)
(11)

These AMSE expressions and the corresponding weight distributions are represented
in Figure 2 using α = 0.5 and σ = 1/12 in (11). Using these numbers and N = 255 (8-bit
signal) results in an AMSE reduction of 19.7% for the custom–uniform case w.r.t. the
normal–uniform case with σ = 1/12. Moreover, under the small σ approximation, the
AMSE reduction is up to 22.2%. This multiplication error is further reduced using random
maximum length sequences (m-sequences) to minimize the representation error of the
bitstream w.r.t. the complement number representation of the two. So, using m-sequences
leads to exact multiplications by ±1. In addition, in the experiments, random sequences



Electronics 2024, 13, 2846 5 of 14

are generated by LFSRs, which are m-sequences, and also allow for fine tuning the final
neural network accuracy by trying different LFSR seed pairs, as described in Section 4.

As illustrated in the histogram of Figure 3 for the LeNet-5 case, weights typically
follow a normal or similar distribution. Therefore, in order to reduce the arithmetic error
associated with stochastic multiplications, it is proposed to modify the probability density
function of the weights during the training stage of a neural network. In particular, it is
proposed to modify it so that it is similar to (11), represented in Figure 2 (green dotted line),
with many more extreme values.

Figure 2. Average mean squared error associated with the bipolar multiplication considering the
several input and weight probability density functions.

Figure 3. Weight distribution for the CNN implemented in [12].

4. LFSR Seed Selection Error

The most cost-effective approach for generating stochastic bitstreams in a real SC
implementation involves utilizing a Linear-Feedback-Shift-Register (LFSR) [9,13–15]. Al-
though there are alternatives, such as random number generators (RNGs), LFSRs have
some crucial advantages: area saving (which is relevant in SC hardware, given the large
area overhead due to RNGs) and the fact of generating a uniformly distributed signal R(t)
in the interval of all possible values of X, the digital number which, after being compared
with R(t), will be converted into a stochastic sequence x(t) with an associated probability
x. An LFSR is a circuit based on a shift register and a linear function of its previous state
connected to its input. This linear function is implemented by connecting exclusive OR
gates to different taps in the state registers. The pseudorandom sequence is repeated
periodically, starting from the seed value. As outlined in the existing literature, it is crucial
to identify an appropriate LFSR seed pair capable of producing stochastic bitstreams with
minimal correlation. This is necessary to mitigate the correlation phenomenon in the multi-
plication operation [9,16]. Despite the significance of this requirement, devising an effective



Electronics 2024, 13, 2846 6 of 14

methodology for identifying optimal LFSR seeds, especially in the case of complex systems
like neural networks (NNs), remains a formidable challenge. The current state of the art
has yet to offer a reliable solution, and the predominant approach typically involves trial
and error. This can be a time-consuming process, given the various scenarios encountered.
For instance, consider Figure 4, illustrating diverse accuracies achieved when employing
all possible LFSR seeds for the 8-bit convolutional neural network (CNN) presented by C.
Frasser et al. [12]. The results reveal that more than 80% of the seeds yielded inaccurate
results (Acc < 0.95) due to accumulation errors in the zero region of multiplication (see
Figure 1) and the correlation effects of the seeds. This phenomenon poses a significant chal-
lenge that necessitates community attention. As systems grow in complexity, the difficulty
identifying LFSR seeds results in minimal AD increases.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0

5

10

15

20

Nu
m

be
r o

f S
ee

ds

SCFPGA22

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Cu
m

ul
at

iv
e

Acc = 0.95

Figure 4. Number of seeds generating different accuracy levels in the SC-CNN study presented
in [12]; 80% of seeds produce an accuracy smaller than 0.95.

5. Stochastic Computing Aware Training

To enhance the precision of SC hardware, several strategies are adopted. These
considerations are integral to refining the accuracy of SC-NN hardware:

• Weight clamping: Analogous to fixed-point representation, the technique of clamping
weights within a specific range [−nlim,+nlim] is employed. This method prevents the
emergence of extreme weight values in the distribution, which can otherwise escalate
linear quantization errors. By restricting the variance of the weight distribution,
smaller quantization errors are achieved.

• Weight distribution uniformization: Adjusting the weight distribution to be more
uniform can mitigate the relative errors associated with smaller quantized values.
Additionally, dispersing weights that are proximate to zero can diminish the incidence
of large relative errors during bipolar SC multiplications.

• Weight distribution binarization: To enhance the accuracy of multiplication outcomes
in stochastic circuits, increasing the proportion of weights represented by bipolar quan-
tities set to −1 and +1 is beneficial. In the bipolar encoding framework, these values
are correlated with activation rates of 0 and 1, respectively, thereby not contributing to
the arithmetic error.

Grounded in the aforementioned strategies, we introduce a methodology as delineated
in Algorithm 1, which incorporates an additional quantization phase. Typically, neural
network (NN) training employs iterative gradient descent methodologies, as outlined
in [17], consisting of three principal phases. The initial phase involves forward propagation
to ascertain intermediate and predicted outputs of the network. This is followed by the
backward propagation phase, wherein weight discrepancies are calculated based on a
predetermined cost function, with errors being propagated in reverse through the network.



Electronics 2024, 13, 2846 7 of 14

Subsequently, the weights are updated employing either basic gradient descent or more
advanced algorithms such as Adam [18]. The proposed framework introduces a novel,
independent fourth step that manipulates weights to enforce a pseudo-uniform distribution
of quantized values upon the culmination of the training regime, as depicted in Figure 5.

Algorithm 1 Stochastic computing aware weight distribution modification and quantization
steps

Require: WeightsW , width factor nσ, rounding rate ε, number of integer values nvalues
1: # calculate the limit for weight values based on the width factor and standard deviation
2: nlim ← nσ std(W )
3: # restrict the range of weight values
4: W ← clamp(W ,−nlim,+nlim)
5: # quantized weights
6: Wq ←

⌊
Wnvalues

nlim

⌉
nlim

nvalues

7: # step towards quantization
8: if this is the last quantization step then
9: # training is done, keep the quantized weights

10: W ← Wq
11: else
12: # put weights closer to its quantized version based on the rounding rate
13: W ← W + ε

(
Wq −W

)
14: end if
15: return W

Figure 5. Stochastic computing aware training flow chart.

After each optimizer step, we calculate new limits for the weight values. To do this, nσ

is defined as a new hyperparameter corresponding to the number of standard deviations
allowed in the previous weight distribution (width factor). Therefore, the actual absolute



Electronics 2024, 13, 2846 8 of 14

limit value is given by (12) and the weight values are restricted using a simple clamping
operation given by (13) for every weight value in a given weight tensorW , as denoted by
line 4 in Algorithm 1.

nlim = nσstd(W ) (12)

clamp(ω,−nlim, nlim) ≡


nlim if ω > nlim

−nlim if ω < −nlim

ω otherwise

(13)

For illustration purposes, Figure 6 demonstrates the evolution of the weight distri-
bution from a Gaussian distribution through three sequential iterations of the clamping
process across various nσ settings. Post clamping, the weight values achieve a more uni-
form distribution, with the exception of the extremities at −1 and +1 (it is noteworthy that
these extreme values are devoid of associated SC multiplication errors, rendering the resul-
tant weight distribution more advantageous than an ideally uniform distribution). This
uniformity enhances the accuracy of uniform quantization, particularly in comparison with
the normal distributions. Accordingly, we have implemented a straightforward uniform
symmetric quantization approach, given by (14).

Wq =

⌊
Wnvalues

nlim

⌉
nlim

nvalues
(14)

Figure 6. Weight distribution for several values of nσ after applying weight clamping three consecu-
tive times.

In the above expression, the operation ⌊·⌉ signifies rounding to the nearest integer.
For radix-2 data representation, it is pragmatic to select nvalues as a power of two minus
one; for instance, in the case of 8-bit weights, we set nvalues = 255. To facilitate a controlled
transition from continuous weight values to their quantized counterparts, we introduce
the rounding rate ε as a hyperparameter. This hyperparameter governs the incremental
adjustment of the weights W towards their quantized form Wq with each iteration, as



Electronics 2024, 13, 2846 9 of 14

detailed in (15). The hyperparameter is adjusted as a function that increases monotonically
with the number of training epochs, starting at ε = 0 and ending at ε = 1 towards the
conclusion of the training period.

Wnext = W + ε
(
Wq −W

)
(15)

Although this adaptive training strategy has proven to increase the accuracy for SC-NN
implementations, it requieres the careful management of two additional hyperparameters:
the width factor nσ and the rounding rate ε.

6. Experimental Results

Experimental outcomes detailed in this section stem from the dynamic adjustments
made to the additional hyperparameters nσ and ε, as visualized in Figure 7. Employing a
batch size of 64, we adhered to default Adam optimizer parameters (λ = 0.001, β1 = 0.9,
β2 = 0.999), and utilized a cross-entropy cost function. The width factor, initially set
to nσ = 6 with no constraints, underwent exponential reduction until approximately
nσ ≈ 2 across 60 epochs. Meanwhile, the rounding rate followed a logistic function
shape, commencing near 0 with negligible quantization and progressively ascending to 1
(W = Wq) upon training completion.

Figure 7. Width factor and rounding rate hyperparameter setup for our experiment.

To validate the efficacy of our training methodology, we executed a hardware (FPGA)
implementation [12] of the renowned CNN architecture, LeNet-5 [10], utilizing stochastic
computing. The network underwent training utilizing the MNIST handwriting dataset,
comprising 60 k training images and 10 k testing images [11]. Our implementation adhered
to the CNN architecture originally proposed by J. Lecun et al. [10], which includes two
convolutional layers, two max-pooling layers, and three fully connected layers. A compre-
hensive outline of the hardware design employed in this endeavor is delineated in Figure 8,
with further details provided in reference [12]. The implementation was executed on a
GIDEL PROC10A board [19], equipped with an Intel 10AX115H3F34I2SG FPGA operating
at 150 MHz.

The software model achieved an accuracy of 98.98% after training using the SC-aware
methodology. Meanwhile, the hardware accuracy with 8-bit precision stood at 98.97%, and
at 97.64% for 6-bit precision. The associated weight distribution following the proposed
training method is depicted in Figure 9.

120 84 10

28x28x1

SC
-C

on
v 

5x
5x

6

12x12x6

SC
-M

ax
Po

ol
 2

x2

SC
-C

on
v 

5x
5x

16

4x4x16

SC
-M

ax
Po

ol
 2

x2

MLP
Figure 8. Fully parallel stochastic CNN architecture [12].



Electronics 2024, 13, 2846 10 of 14

Table 2 illustrates the advancements achieved through the adoption of the training
methodology advocated in this research compared with utilizing the same hardware
architecture without such training. It is apparent that the implementation of this approach
facilitated a transition from 8 bits to 6 bits, resulting in a 4× increase in throughput and
performance, accompanied by a 17.4× improvement in energy efficiency and a 0.06%
enhancement in accuracy. It is noteworthy that despite only a 1.08× reduction in area, there
is a 4.3× decrease in power consumption. This phenomenon is attributed to the proposed
training method, which induces a significant reduction in signal switching, given that the
weights tend to approximate to 1 or −1 in SC.

Figure 9. Weight distribution after the arithmetic aware training.

Table 2. Enhancements in FPGA implementation compared to prior work (SCFPGA22 [12]).

Metric SCFPGA22 [12] This Work
Year 2022 2024

Architecture parallelism Parallel Parallel
Computing paradigm SC SC

Activation/Weight bits 8/8 6/6
FPGA platform Arria10 GX1150 Arria10 GX1150

Frequency (MHz) 150 150
Software Acc (%) 98.60 98.98

Hardware Acc (%) 97.58 97.64
Acc Degradation (%) 1.02 1.34

Throughput (Images/s) 294,118 1,190,476
Performance (Images/s/MHz) 1961 7937

Power (W) 21.0 4.9
Energy efficiency (Images/J) 14,006 243,171
Logic used K (LUT or ALM) 343 318

DSP (blocks) 0 0
Memory (Mbits) 0.00 0.00

Table 3 presents a performance comparison with other FPGA implementations, includ-
ing SC, BNN, and TC approaches. The table emphasizes the two most favorable outcomes
for the pertinent metrics. In comparison with the most accurate study (BNFPGA18 [20]),
our approach yields a four-fold increase in throughput, a four-fold improvement in per-
formance, and a 21.6× enhancement in energy efficiency, albeit with a marginal 0.88%
reduction in accuracy degradation (AD). Relative to a more recent investigation (SCF-
PGA24 [21]), our results exhibit a slightly inferior performance, characterized by a mere
0.61% reduction in accuracy degradation, a 1.44× slower processing speed, and a 1.97×



Electronics 2024, 13, 2846 11 of 14

decrease in performance. However, our approach showcases a mere 1.05× reduction in
energy efficiency.

When exclusively considering SC implementations of the LeNet-5 architecture docu-
mented in the literature, we juxtapose the accuracy degradation among them when using
the 8-bit approach (see Table 4). The row designated as “Test Platform” delineates the
methodology employed for accuracy assessment, with “Sim” indicating simulation and
“FPGA” indicating FPGA implementation. It is evident that accuracy degradation poses a
significant challenge for SC-CNN designers, with the most favorable scenario achieving an
AD of 0.14%. Conversely, in our study, we attained an AD of merely 0.01%, representing
a 14-fold enhancement over the best-performing scenario (SCCNN24 [21]), while concur-
rently achieving the highest accuracy (98.97%). These findings underscore the efficacy of
the proposed training approach, which systematically addresses SC-associated limitations
while preserving hardware integrity [22].

Table 3. FPGA LeNet-5 implementations comparison. Notice the results for SCFPGA24 are for the 64
bitstream length case.

Metric TCFPGA17 [23] BNFPGA18 [20] SCFPGA20 [24] SCFPGA24 [21] This Work

Year 2017 2018 2020 2024 2024
Architecture parallelism Sequential Sequential Semi-Parallel Parallel Parallel
Computing paradigm TC BNN SC SC SC
Activation/Weight bits 16/8 8/1 9/9 6/6 6/6
FPGA family Virtex7 Stratix V Zynq Kintex7 Arria 10
FPGA name VX690T 5SFSD8 XC7Z020 XC7K325T GX1150
Frequency (MHz) 100 150 60 110 150
Software Acc (%) 99.17 98.70 98.67 98.36 98.98
Hardware Acc (%) 98.16 98.24 98.13 97.63 97.64
Acc Degradation (%) 1.01 0.46 0.54 0.73 1.34
Throughput (Images/s) 10,617 294,118 170 1,718,800 1,190,476
Performance (Images/s/MHz) 106 1961 3 15,626 7937
Power (W) 25.2 26.2 3.7 6.8 4.9
Energy efficiency (Images/J) 421 11,226 46 254,373 243,171
Logic used K (LUT or ALM) 233 0.182 28 153 318
DSP (blocks) 2907 20 0 0 0
Memory (Mbits) 17.2 44.2 1.7 0.0 0.0

Table 4. Comparison with other SC LeNet-5 implementations.

Metric Year Software Acc (%) Hardware Acc
(%)

Acc Degradation
(%) Test Platform

SCCNN19 [25] 2019 98.47 97.94 −0.53 Sim
SCFPGA20 [24] 2020 98.67 98.13 −0.54 FPGA
SCCNN21 [26] 2021 98.75 97.50 −1.25 Sim
SCFPGA22 [12] 2022 98.60 97.58 −1.02 FPGA
SCFPGA24 [21] (8-bits) 2024 98.36 98.22 −0.14 FPGA
This work (8-bits) 2024 98.98 98.97 −0.01 FPGA

Figure 10 depicts a comparison of the number of LFSR seeds producing various accu-
racies across different bit precisions for two academic endeavors: the SCFPGA22 study [12]
and the present work under discussion. Remarkably, the training methodology introduced
in this study facilitates the identification of optimal seeds for LFSR implementation. As the
bit precision decreases, the extent of improvement becomes more pronounced. For the 8-bit
precision scenario, it is noted that 60% of the seeds in the present study yield accuracies
surpassing 98.5% (with an AD of merely 0.5%), while no seeds have been identified to
achieve a comparable absolute difference value in the SCFPGA22 study [12]. Furthermore,



Electronics 2024, 13, 2846 12 of 14

at 6-bit precision, the maximum accuracy achieved in the [12] study is 17.7%, whereas this
study achieves accuracies exceeding 95% with five different seeds.

0 20 40 60 80 100
Accuracy (%)

0

5

10

15

20

25

Fr
eq

ue
nc

y

6 bits
This Work
SCFPGA22

0 20 40 60 80 100
Accuracy (%)

0

10

20

30

Fr
eq

ue
nc

y

7 bits
This Work
SCFPGA22

0 20 40 60 80 100
Accuracy (%)

0

50

100

150

Fr
eq

ue
nc

y

8 bits
This Work
SCFPGA22

Figure 10. Number of LFSR seeds producing various accuracies for different bit precisions.

7. Conclusions

Stochastic computing (SC) emerges as a viable approach for overcoming the difficulties
of deploying neural networks (NNs) on hardware platforms. This research has concentrated
on resolving the accuracy degradation (AD) challenges inherent in SC when applied to
actual hardware systems by employing an arithmetic-aware training strategy. The outcomes
have shown considerable advancements, achieving a reduction in AD by a factor of 100
without necessitating any modifications to the hardware setup. In comparison with similar
studies, our method attains an exceptionally low AD rate of only 0.01%, which represents a
54-fold improvement over the best comparison case, while also delivering an enhanced
performance in terms of speed (27 times faster) and energy efficiency (33 times more
efficient). Furthermore, our training technique has aided in selecting LFSR seeds suitable
for SC hardware applications, where 60% of the seeds show an AD below 0.5% and 83%
maintain an AD under 5%. These results indicate that our method is more effective in
securing precise outcomes with minimal variations from the desired accuracy, all while
preserving the integrity of the hardware configuration. Finally, it is worth highlighting that
the proposed method has been tested with the hardware proposed in [27], with a baseline
MNIST test accuracy degradation of 1.02%, which is improved to 0.01%. Nevertheless, the
proposed technique is not limited to this particular accelerator. In fact, implementations
resulting in more precise SC multipliers like SCFPGA24 [21] are expected to improve in
terms of accuracy degradation for 8-bit and lower weight and activation precision, just by
modifying the way the NN is trained.

Author Contributions: Conceptualization, C.F.F., A.M., V.C., and J.L.R.; formal analysis, A.M. and
J.F.; methodology, C.F.F., A.M., and J.L.R.; software, C.F.F. and A.M.; validation, J.F.; investigation,
C.F.F. and A.M.; data curation, C.F.F.; writing—original draft preparation, C.F.F. and A.M.; writing—
review and editing, J.F., E.I., M.R., and J.L.R.; visualization, C.F.F., A.M., and J.L.R.; supervision,
V.C., J.F., M.R., and J.L.R.; resources, V.C., M.R., and J.L.R.; project administration, M.R. and J.L.R.;
funding acquisition, M.R. and J.L.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/
10.13039/501100011033) and the European Regional European Development Founds (ERDF) under
Grants PID2020-120075RB-I00 and PDC2021-121847-I00.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.



Electronics 2024, 13, 2846 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

AD Accuracy degradation
AMSE Average mean squared error
BNN Binarized neural network
CNN Convolutional neural network
FPGA Field Programmable Gate Array
LFSR Linear feedback shift register
ML Machine learning
MSE Mean squared error
NN Neural network
SC Stochastic computing

References
1. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
2. Suda, N.; Loh, D. Machine Learning on Arm Cortex-M Microcontrollers; Arm Ltd.: Cambridge, UK, 2019.
3. Google. Google Edge TPU. Available online: https://cloud.google.com/edge-tpu (accessed on 16 July 2024) .
4. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:

A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementatio, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283.

5. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in PyTorch. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 16 July 2024).

6. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.J.; et al.
Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

7. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

8. Gaines, B.R. Stochastic computing systems. Adv. Inf. Syst. Sci. 1969, 2, 37–172.
9. Frasser, C.F.; Roca, M.; Rosselló, J.L. Optimal stochastic computing randomization. Electronics 2021, 10, 2985. [CrossRef]
10. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
11. Lecun, Y. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on

16 July 2024).
12. Frasser, C.F.; Linares-Serrano, P.; de los Ríos, I.D.; Morán, A.; Skibinsky-Gitlin, E.S.; Font-Rosselló, J.; Canals, V.; Roca, M.;

Serrano-Gotarredona, T.; Rosselló, J.L. Fully Parallel Stochastic Computing Hardware Implementation of Convolutional Neural
Networks for Edge Computing Applications. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 10408–10418. [CrossRef] [PubMed]

13. Li, Z.; Chen, Z.; Zhang, Y.; Huang, Z.; Qian, W. Simultaneous area and latency optimization for stochastic circuits by D flip-flop
insertion. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 38, 1251–1264. [CrossRef]

14. Neugebauer, F.; Polian, I.; Hayes, J.P. Building a better random number generator for stochastic computing. In Proceedings of the
2017 Euromicro Conference on Digital System Design (DSD), Vienna, Austria, 30 August–1 September 2017; pp. 1–8.

15. Morán, A.; Parrilla, L.; Roca, M.; Font-Rossello, J.; Isern, E.; Canals, V. Digital Implementation of Radial Basis Function Neural
Networks Based on Stochastic Computing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 257–269. [CrossRef]

16. Anderson, J.H.; Hara-Azumi, Y.; Yamashita, S. Effect of LFSR seeding, scrambling and feedback polynomial on stochastic
computing accuracy. In Proceedings of the 2016 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden,
Germany, 14–18 March 2016; pp. 1550–1555.

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
18. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
19. Gidel Company. PROC10A Board Image. Available online: https://gidel.com/product/proc10a/ (accessed on 10 June 2020).
20. Liang, S.; Yin, S.; Liu, L.; Luk, W.; Wei, S. FP-BNN: Binarized neural network on FPGA. Neurocomputing 2018, 275, 1072–1086.

[CrossRef]
21. Lee, Y.Y.; Halim, Z.A.; Ab Wahab, M.N.; Almohamad, T.A. Stochastic Computing Convolutional Neural Network Architecture

Reinvented for Highly Efficient Artificial Intelligence Workload on Field-Programmable Gate Array. Research 2024, 7, 0307.
[CrossRef] [PubMed]

22. Costoya, A.M. Compact Machine Learning Systems with Reconfigurable Computing. Ph.D. Thesis, Universitat de les Illes
Balears, Palma, Spain, 2022.

http://doi.org/10.1109/JPROC.2019.2921977
https://cloud.google.com/edge-tpu
https://openreview.net/forum?id=BJJsrmfCZ
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.3390/electronics10232985
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1109/TNNLS.2022.3166799
http://www.ncbi.nlm.nih.gov/pubmed/35452392
http://dx.doi.org/10.1109/TCAD.2018.2846660
http://dx.doi.org/10.1109/JETCAS.2022.3231708
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://gidel.com/product/proc10a/
http://dx.doi.org/10.1016/j.neucom.2017.09.046
http://dx.doi.org/10.34133/research.0307
http://www.ncbi.nlm.nih.gov/pubmed/38439995


Electronics 2024, 13, 2846 14 of 14

23. Li, Z.; Wang, L.; Guo, S.; Deng, Y.; Dou, Q.; Zhou, H.; Lu, W. Laius: An 8-Bit Fixed-Point CNN Hardware Inference Engine. In
Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December
2017; pp. 143–150. [CrossRef]

24. Muthappa, P.K.; Neugebauer, F.; Polian, I.; Hayes, J.P. Hardware-Based Fast Real-Time Image Classification with Stochastic
Computing. In Proceedings of the 2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA,
18–21 October 2020; pp. 340–347.

25. Zhang, Y.; Zhang, X.; Song, J.; Wang, Y.; Huang, R.; Wang, R. Parallel Convolutional Neural Network (CNN) Accelerators Based
on Stochastic Computing. In Proceedings of the 2019 IEEE International Workshop on Signal Processing Systems (SiPS), Nanjing,
China, 20–23 October 2019; pp. 19–24. [CrossRef]

26. Sadi, M.H.; Mahani, A. Accelerating Deep Convolutional Neural Network base on stochastic computing. Integration 2021,
76, 113–121. [CrossRef]

27. Frasser, F.; Camilo, C. Hardware Implementation of Machine Learning and Deep-Learning Systems oriented to Image Processing
Ph.D. Thesis, Universitat de les Illes Balears, Palma, Spain, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISPA/IUCC.2017.00030
http://dx.doi.org/10.1109/SiPS47522.2019.9020615
http://dx.doi.org/10.1016/j.vlsi.2020.09.008

	Introduction
	Stochastic Computing
	Multiplication Error
	LFSR Seed Selection Error
	Stochastic Computing Aware Training
	Experimental Results
	Conclusions
	References

