
Academic Editors: He Cai, Domenico

Rosaci and Maobin Lv

Received: 18 December 2024

Revised: 12 February 2025

Accepted: 13 February 2025

Published: 19 February 2025

Citation: Liang, J.; Miao, H.; Li, K.;

Tan, J.; Wang, X.; Luo, R.; Jiang, Y.

A Review of Multi-Agent

Reinforcement Learning Algorithms.

Electronics 2025, 14, 820. https://

doi.org/10.3390/electronics14040820

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

A Review of Multi-Agent Reinforcement Learning Algorithms
Jiaxin Liang, Haotian Miao * , Kai Li, Jianheng Tan, Xi Wang, Rui Luo and Yueqiu Jiang *

College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;
liangjiaxin12_31@163.com (J.L.); loyalkid00@163.com (K.L.); tanjh0127@163.com (J.T.);
w1192010682@163.com (X.W.); lr110500@163.com (R.L.)
* Correspondence: mht@sylu.edu.cn (H.M.); yueqiujiang@sylu.edu.cn (Y.J.)

Abstract: In recent years, multi-agent reinforcement learning algorithms have demon-
strated immense potential in various fields, such as robotic collaboration and game AI.
This paper introduces the modeling concepts of single-agent and multi-agent systems: the
fundamental principles of Markov Decision Processes and Markov Games. The reinforce-
ment learning algorithms are divided into three categories: value-based, strategy-based,
and actor–critic algorithms, and the algorithms and applications are introduced. Based
on differences in reward functions, multi-agent reinforcement learning algorithms are
further classified into three categories: fully cooperative, fully competitive, and mixed
types. The paper systematically reviews and analyzes their basic principles, applications
in multi-agent systems, challenges faced, and corresponding solutions. Specifically, it
discusses the challenges faced by multi-agent reinforcement learning algorithms from four
aspects: dimensionality, non-stationarity, partial observability, and scalability. Additionally,
it surveys existing algorithm-training environments in the field of multi-agent systems
and summarizes the applications of multi-agent reinforcement learning algorithms across
different domains. Through this discussion, readers can gain a comprehensive understand-
ing of the current research status and future trends in multi-agent reinforcement learning
algorithms, providing valuable insights for further exploration and application in this field.

Keywords: reinforcement learning; multi-agent reinforcement learning; multi-agent system;
game theory

1. Introduction
Reinforcement learning (RL) [1] is a significant research direction in the field of ma-

chine learning, essentially concerning how an agent makes decisions through learning to
obtain rewards or achieve a certain goal while interacting with the external environment.
Unlike supervised learning, reinforcement learning does not provide specific processes for
behaviors but adjusts the selection of behaviors and strategies by evaluating their quality.
Therefore, reinforcement learning methods offer advantages such as low information con-
sumption and ease of design, making them suitable for more complex decision-making
problems. In recent years, with the widespread application of deep learning (DL) [2] across
multiple disciplines, deep reinforcement learning (DRL) [3], which combines deep neural
networks with reinforcement learning, has gradually garnered attention. It holds significant
potential for application in computer vision, robotic control, large-scale real-time strategy
games, and other areas.

Moving from single-agent reinforcement learning to multi-agent reinforcement learn-
ing marks an important leap in the field of machine learning. In a single-agent environment,
agents learn the optimal strategy through interaction with the environment to maximize

Electronics 2025, 14, 820 https://doi.org/10.3390/electronics14040820

https://doi.org/10.3390/electronics14040820
https://doi.org/10.3390/electronics14040820
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1629-4421
https://doi.org/10.3390/electronics14040820
https://www.mdpi.com/article/10.3390/electronics14040820?type=check_update&version=1


Electronics 2025, 14, 820 2 of 34

the cumulative rewards. However, many scenes in the real world involve multiple agents’
simultaneous decision-making and interaction, which promotes the birth of multi-agent
reinforcement learning. As a distributed decision system, multi-agent systems (MASs)
can efficiently complete complex tasks or achieve common goals through information
sharing, distributed computing and collaboration among agents [4]. Compared with the
single-agent version, the multi-agent reinforcement learning algorithm needs to consider
the interaction and dependence between agents, and how to achieve global optimization
through cooperation or competition strategy. With the continuous progress of deep learn-
ing technology, deep reinforcement learning algorithms have achieved remarkable results
in many fields, while multi-agent deep reinforcement learning has further expanded its
application scope, providing innovative ideas and effective methods for solving complex
multi-agent decision-making problems.

Since the 1970s, researchers have conducted extensive studies on multi-agent systems
to build a group intelligent decision-making system with a certain level of autonomy and
autonomous learning capabilities [5]. Multi-agent systems possess characteristics such as
information sharing, distributed computing, and collaboration, making them promising for
practical applications in various fields including military, industrial, and transportation [6].
MAS can effectively achieve tasks that require group autonomy [7]. Additionally, many so-
cial issues, such as resource scheduling, business competition, financial analysis, and group
psychology, can be addressed through multi-agent modeling.

Multi-agent reinforcement learning (MARL) is a method that introduces reinforcement
learning theories and algorithms into multi-agent systems. In the 1990s, Littman et al. [8]
proposed a concise and clear approach to solving multi-agent reinforcement learning
problems within the framework of Markov Decision Process (MDP), and conducted in-
depth research based on this foundation. In recent years, with the gradual maturation of
deep learning technology, an increasing number of deep reinforcement learning approaches
have been proposed and widely applied in practice. For instance, AlphaGo, developed
by DeepMind, defeated a top-level Go player with an overwhelming advantage in a Go
competition [9], causing great shock and inspiring numerous scholars to delve into in-depth
research on multi-agent reinforcement learning (MARL). In recent years, companies such
as DeepMind and OpenAI, along with various universities, have successively engaged in
and pursued in-depth studies of MARL in areas such as robotic systems [10,11], human–
computer games [12–14], autonomous driving [15], online advertising [16], and resource
utilization [17].

In multi-agent reinforcement learning, each agent evaluates its states and actions
through a value function, enabling the agent to dynamically adjust its behavior based
on external environmental information to maximize rewards. However, in a multi-agent
environment, since the actions of agents are mutually influential, the impact of other agents’
actions on the current agent must be considered when calculating the value function.
To address this, researchers have introduced cooperative learning into MARL. Cooperative
learning involves sharing information such as states, rewards, and actions to enable mul-
tiple agents to cooperate. The application of cooperative learning in multi-agent systems
aims to achieve overall optimization through cooperation among agents. Over the course
of several decades, experts in the field have introduced numerous methods for MARL. This
article briefly summarizes the development history of MARL methods based on relevant
research [18], as shown in Figure 1.

Through research, it has been found that the challenges faced by multi-agent sys-
tems include collaborative optimization, system instability and uncertainty, and effective
enhancement of learning performance. In addition, multi-agent reinforcement learning
(MARL) also faces a series of other complex and profound problems. Firstly, the collab-



Electronics 2025, 14, 820 3 of 34

orative optimization problem of the MARL algorithm in a multi-agent environment is
particularly prominent. Due to the interaction behavior between agents, the optimal strat-
egy of a single agent may change with the changes in other agents’ strategies, which makes
it difficult to determine the optimal strategy of the overall system. This dynamic interactive
environment makes the collaborative optimization problem complex and difficult to solve.
Secondly, the instability and uncertainty of the system are also important challenges faced
by the MARL algorithm. In a multi-agent system, the behavior of the agent and the state
of the environment may be random or uncertain, which may lead to unstable strategies
in the training process of the algorithm. In addition, factors such as communication de-
lay, noise and fault between agents may further aggravate the uncertainty of the system.
Moreover, how to effectively improve the learning performance of a multi-agent system
is an urgent problem to be solved. Because multi-agent systems usually have complex
dynamic characteristics and large-scale state space, the learning algorithm needs to deal
with a large number of data and calculations. At the same time, the cooperation and
competition between agents also make the learning problem more complex. Therefore, how
to design efficient algorithms to accelerate the learning process and improve the learning
accuracy and generalization ability is an important direction of MARL research. In addition,
the MARL algorithm also faces challenges such as how to balance individual and global
interests, how to deal with the heterogeneity and diversity between agents, and how to
design an extensible and maintainable algorithm framework. These challenges require
researchers’ in-depth thinking and exploration to promote the continuous development
and improvement of MARL technology. Therefore, classifying and reviewing MARL algo-
rithms is not only a highly meaningful task but also an important way to help researchers
understand the current research status and trends. Through the classification and compari-
son of existing algorithms, researchers can more clearly understand the advantages and
limitations of various algorithms, so as to carry out in-depth research, and provide new
ideas and methods to solve the challenges faced by multi-agent systems.

Figure 1. Development stages of MARL.

As time goes by, more and more innovative methods have emerged in the field of
MARL. Thus, it is necessary to conduct a more systematic and comprehensive review to
fill the research gap in this area and update the classification of past algorithms and their
practical applications. This paper first introduces the fundamental theoretical knowledge
of reinforcement learning algorithms, including Markov Decision Processes, and cate-
gorizes reinforcement learning algorithms into three types: value-based, policy-based,
and actor–critic algorithms. The advantages, disadvantages, and applications of these
three types of algorithms are discussed respectively. Next, the paper introduces multi-agent
reinforcement learning and classifies it into three categories based on different reward
functions: fully cooperative, fully competitive, and mixed types. The advantages, disadvan-
tages, and specific application examples of these three types of algorithms are presented
respectively. Finally, the paper discusses the challenges faced by multi-agent reinforcement
learning (MARL), testing platforms for reinforcement learning algorithms, and application
areas of MARL. This work contributes to enhancing understanding and fostering deeper
exploration in the field of MARL for scholars.



Electronics 2025, 14, 820 4 of 34

2. Basic Theory
The common model for reinforcement learning is the standard Markov Decision

Process (MDP). Single-agent reinforcement learning is generally modeled using MDP,
which describes that an agent changes its state by executing actions in an environment and
receives rewards from the environment. Under this framework, the goal of the agent is
to find a strategy to maximize the long-term cumulative rewards. In multi-agent systems,
the situation becomes complex. Although each agent can still be regarded as acting in
an environment, the existence of other agents makes the environment no longer static or
deterministic. The actions of each agent will affect the status and rewards of other agents.
Therefore, the MDP model of single agent is no longer applicable, and stochastic game
(SG) can be used to describe the interaction and competition between multiple agents.
Random game is an extension of MDP in multi-agent scenarios. It allows each agent
to have its own strategies, and these strategies will jointly affect the state and rewards
of the system. In a random game, each agent should consider not only its own actions
and state transitions, but also the possible actions and strategies of other agents. This
makes the problem of multi-agent reinforcement learning more complex and challenging.
Reinforcement learning algorithms can be categorized based on the learning approach of
the agent into value-based methods, policy-based methods, and actor–critic algorithms.
They can also be classified based on whether they have an environmental model, into model-
based reinforcement learning (MBRL) and model-free reinforcement learning (MFRL). This
paper primarily categorizes reinforcement learning algorithms based on their learning
functions and provides a detailed introduction to the algorithms.

2.1. Markov Decision Process

In the context of a single agent, modeling is carried out using the MDP model. Typ-
ically, an MDP is defined by a five-tuple <S,A,R,f,γ>, where S represents the set of all
possible states the agent can be in, X represents the Cartesian product, used to combine
different set elements, and A represents the set of all actions the agent can take. The state
transition function f of the agent is described as:

f : S× A× S→ [0, 1] (1)

This determines the probability distribution of transitioning from state s ∈ S to the
next state s′ ∈ S given an action a ∈ A, with the reward function as:

R : S× A× S→ R (2)

This defines the instantaneous reward obtained by the agent from transitioning from state s
to state s′ through an action a.

From the starting time t to the end of the interaction at time T, the total reward from
the environment can be represented as:

Rt =
T

∑
t′=t+1

γt′−trt′ (3)

where γ ∈ [0, 1] is the discount factor, which is used to balance the impact of the agent’s
instantaneous reward and long-term reward on the total reward.

The agent’s learning strategy can be represented as a mapping from states to actions
π : S → A. The goal of solving an MDP is to find the optimal policy π∗ that maximizes



Electronics 2025, 14, 820 5 of 34

the expected reward, which is typically formalized using the optimal state-action value
function (Q-function) to represent the expected reward.

Q∗(s, a) = max
π

E[Rt | st = s, at = a, π] (4)

It follows the optimal Bellman Equation:

Q∗(s, a) = Es′∼S

[
r + γ max

a′
Q(s′, a′) | s, a

]
(5)

Almost all reinforcement learning methods adopt the form of an iterative Bellman
Equation to solve for the Q-function. As the number of iterations increases, the Q-function
eventually converges, leading to the optimal policy:

π∗ = arg max Q∗(s, a) (6)

The arg max function returns the action a that maximizes the Q value (i.e., expected
cumulative return) given the state s.

Q-Learning is the most classic RL algorithm; it uses a table to store the agent’s Q-values.
The update rule for the Q-table is as follows:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(7)

2.2. Markov Game

In the case of multi-agent systems, Markov games are used for modeling. A stochastic
game (SG) can be represented by the tuple <S, A1, A2, . . . , An, R1, R2, . . . , Rn, f, γ>, where
n is the number of agents in the environment, S is the state space of the environment,
Ai(i = 1, 2, . . . , n) is the action space for each agent, and A = A1 × A2 × . . .× An is the
joint action space of all agents. The joint state transition function is the same as Formula (1).

It determines the probability distribution of transitioning from s ∈ S to the next state
s′ ∈ S given the execution of a joint action a ∈ A. The reward function for each agent can
be represented as:

Ri : S× A× S→ R, i = 1, 2, . . . , n (8)

In a multi-agent environment, state transitions are the result of the joint actions of
all agents:

ak = [aT
1,k, aT

2,k, . . . , aT
n,k]

T , ak ∈ A, ai,k ∈ Ai (9)

Superscript T indicates the transpose symbol.
The individual policy for each agent is:

πi : S× Ai → [0, 1] (10)

They together constitute a joint policy π. Since the return ri,k+1 of the agent depends
on the joint action, the total return depends on the joint strategy. The formula Rπ

i (x)
represents the expected total reward obtained when the agent i follows the joint strategy π

under the initial condition x, that is, the initial test state:

Rπ
i (x) = E

{
∞

∑
k=0

γkri,k+1 | s0 = s, f

}
(11)



Electronics 2025, 14, 820 6 of 34

The Q-function for each agent, which depends on the joint actions, is denoted as
Qπ

i : S× A→ R, and the solution method is:

Qπ
i (s, a) = E

{
∞

∑
k=0

γkri,k+1 | s0 = s, a0 = a, f

}
(12)

The subscript i is used to distinguish different agents. In a multi-agent system, there are
multiple agents (for example, i = 1, 2, . . . , N), and each agent has its own Q-function. k is
the discrete time step counted from the initial time step. γk is the k-th power of the discount
factor γ, which is used to weigh the importance of immediate rewards and future rewards.
ri,k+1 represents the reward obtained by agent I at the end of time step k.

2.3. Reinforcement Learning

Reinforcement learning is another important research direction following supervised
learning and unsupervised learning. This algorithm, which draws on biological learning
principles, seeks strategies to maximize accumulated expected rewards through continuous
perception, analysis, and re-perception, along with persistent trial and error [19]. Its basic
framework is shown in Figure 2. The algorithm classification is shown in Figure 3.

Figure 2. Basic framework of reinforcement learning.

Figure 3. Classification of reinforcement learning algorithms.

2.3.1. Value-Based Reinforcement Learning Algorithms

The fundamental idea of value-based reinforcement learning algorithms is to utilize
a learned value function to estimate various states, aiming to achieve optimal decision-
making. They are commonly used to address competitive multi-agent problems, such as
adversarial games and traffic control. Value-based methods are more suitable for discrete
state and action spaces and are easy to implement and extend. Common algorithms include
Q-learning and SARSA (state–action–reward–state–action).



Electronics 2025, 14, 820 7 of 34

For example, in the field of autonomous driving, algorithms allow vehicles to con-
stantly try different driving strategies and adjust them based on reward mechanisms such
as safe driving distance, compliance with traffic rules, etc., in order to learn how to make
optimal driving decisions such as acceleration, deceleration, and turning to ensure safe and
efficient driving. In the medical field, value-based reinforcement learning algorithms are
used to develop dynamic treatment plans. By analyzing patients’ clinical observation and
evaluation data, the algorithm can determine the optimal treatment plan for patients at a
specific time, achieve time-dependent decision-making, and improve patients’ long-term
treatment outcomes.

Q-learning is a classic and model-free method in the field of reinforcement learning,
renowned for its excellent convergence performance and high scalability. By iteratively
updating the action–value function (Q-function), this method can learn optimal strate-
gies even with incomplete information. However, Q-learning also faces some challenges.
The algorithm tends to overestimate Q-values, especially when using the max operation
to select actions. This bias can lead to the selection of suboptimal strategies. Furthermore,
Q-learning is sensitive to the choice of initial policy, with different initial policies potentially
impacting learning outcomes differently. Nevertheless, Q-learning remains a powerful
and widely used reinforcement learning method, applicable to various types of problems
and extensible in multiple ways, such as combining with deep learning techniques to form
Deep Q-Networks (DQN).

Kröse is recognized as a pioneer of the Q-Learning algorithm, having first introduced
and successfully applied this classic method in the field of reinforcement learning [20]. He
elaborated on the basic principles and algorithm-update rules of Q-Learning, establishing
it as an effective means for addressing problems with delayed rewards and opening up a
new path for learning from delayed rewards in reinforcement learning. In Q-Learning algo-
rithms, balancing the relationship between exploration and exploitation has always been a
core challenge in action selection [21,22]. To address this challenge, PsGuo et al. [23] intro-
duced the basic principles of simulated annealing (SA) and proposed the SA-Q-Learning
algorithm. Experimental results demonstrate that, compared to traditional Q-Learning algo-
rithms or the Boltzmann exploration method, SA-Q-Learning not only converges faster but
also maintains performance without decline in the face of excessive exploration, showing
significant advantages.

The advantages of Q-learning in discrete action spaces are reflected in the following
aspects: firstly, it can handle problems with clear state and action definitions, such as
board games, robot path planning, etc; secondly, it can gradually approach the optimal
strategy through continuous iteration and updating of Q values, thereby making more
informed decisions; thirdly, it can be trained in offline learning mode, saving the cost and
time of interacting with the environment. Therefore, Q-learning has broad application
prospects in discrete action spaces, such as game AI, automation control, robot navigation,
and other fields.

The SARSA algorithm is a classic method in reinforcement learning, distinguished
by its model-free nature, allowing it to operate effectively in unknown or dynamically
changing environments. It adopts a strategy iteration approach, gradually optimizing the
current strategy by continuously simulating the sequence of states, actions, rewards, new
states, and actions (SARSA). The SARSA algorithm selects actions based on the current
strategy and updates the strategy based on the results of these actions, thus finding a
balance between exploration and utilization. Furthermore, the SARSA algorithm can
handle problems with large state spaces, demonstrating its potential for wide application
in complex environments. It also has strong extensibility and can be combined with
various techniques, such as function approximation and Monte Carlo methods, to enhance



Electronics 2025, 14, 820 8 of 34

its performance and applicability. Therefore, the SARSA algorithm holds an important
position in the field of reinforcement learning, providing powerful support for strategy-
optimization problems in various complex environments.

Aissani et al. [24] successfully applied the SARSA algorithm to solve the schedul-
ing problem of dynamic maintenance tasks in petroleum industrial production systems.
However, the experimental time frame of this method was relatively limited, leading to
limitations when facing more complex maintenance tasks and restricting its widespread ap-
plicability in practical applications. Derhami et al. [25] proposed an enhanced fuzzy SARSA
learning (EFSL) method that combines adaptive learning rates and fuzzy balancers to
improve upon fuzzy SARSA Learning (FSL). The introduction of fuzzy logic allows EFSL to
better handle uncertainty and noise in the environment. Fuzzy systems can smoothly han-
dle boundary cases, making the algorithm more robust. Additionally, adaptive adjustments
of fuzzy rules can help the algorithm converge to the optimal strategy more quickly.

The evaluation index of value-based reinforcement learning algorithm mainly focuses
on the expected return of the agent taking action in a given state, which is usually measured
by cumulative rewards. The cumulative reward reflects the total reward obtained by an
agent over a period of time and is the basic indicator to measure the performance of an agent.
In addition, the average reward is also used to evaluate the stability of the performance
of the agent, that is, the average value of the reward obtained by the agent over a long
period of time. Table 1 summarizes the algorithm, including the specific improvements
and contributions of the algorithm, and analyzes the limitations of the algorithm according
to the evaluation indexes, including convergence speed, sample efficiency, stability, and
generalization ability.

Table 1. Summary of value-based reinforcement learning algorithms.

Literature Algorithm Specific Improvement Contribution Limitations

[20] Q-Learning Introduced Q-Learning Limited by state and
action spaces

[23] Q-Learning SA-Q-Learning Faster convergence, handles
excessive exploration

Not suitable for continuous
action spaces

[24] SARSA
Solved dynamic maintenance

scheduling in
petroleum systems

Limited by complex
maintenance tasks

[25] SARSA Adaptive learning rates
and fuzzy balancer

Handles uncertainty and
noise better

Slow convergence for
complex/high-dim problems

2.3.2. Policy-Based Reinforcement Learning Algorithms

Policy-based methods achieve agent learning and improvement by optimizing policies,
with the primary advantage of effectively handling problems with continuous state and
action spaces and modeling stochastic policies and non-deterministic environments. These
methods avoid the challenges posed by estimation errors and approximations of value
functions, enabling agents to learn more robustly in complex environments. Furthermore,
policy-based methods can extensively explore the state space through exploratory poli-
cies, ensuring that the learned policies have broad coverage. For example, in the field
of game AI, policy-based reinforcement learning enables agents to optimize their game
strategies through continuous experimentation and learning, resulting in outstanding per-
formance in complex games such as Go and StarCraft. In terms of autonomous driving,
it enables autonomous vehicles to learn how to drive safely and efficiently through in-
teraction with the traffic environment, adjust strategies to adapt to different traffic and



Electronics 2025, 14, 820 9 of 34

road conditions, and improve the intelligence and safety of autonomous driving. Common
policy-based algorithms include policy gradient (PG), trust region policy optimization
(TRPO), and proximal policy optimization (PPO). These algorithms are widely used in the
field of reinforcement learning, demonstrating strong performance and flexibility, especially
in tasks requiring the handling of high-dimensional continuous action spaces. By directly
optimizing policies, they can more effectively find optimal behavioral strategies, thereby
enhancing agent performance. The PPO algorithm has significant advantages in continuous
action spaces. It ensures the stability of policy updates by limiting the differences between
new and old policies, thereby avoiding significant fluctuations during the training process
and increasing the robustness of the algorithm. PPO can efficiently handle continuous
action spaces and is suitable for complex tasks such as robot control and autonomous
driving. Its strategy gradient method enables agents to learn to take optimal continuous
actions in any given state. In addition, the PPO algorithm has high sample efficiency
and can achieve good performance in fewer iterations or data points. At the same time,
its implementation is relatively simple, and easy to understand and apply, reducing the
difficulty of adjusting parameters, making PPO a preferred algorithm in continuous action
space problems.

Proximal policy optimization (PPO) is a representative algorithm among policy-based
methods, widely applied in various reinforcement learning tasks [26]. As a model-free
reinforcement learning algorithm, PPO aims to improve sample efficiency and algorithm
stability by optimizing policy network parameters [27]. Compared to traditional policy
gradient methods, PPO employs proximal policy-optimization techniques [28], which
restrict the step size of each update to ensure that policy updates occur within a reason-
able range, thereby avoiding instability issues caused by excessively large updates. This
algorithm has received widespread attention and application in the field of reinforcement
learning due to its outstanding stability and efficiency. Despite limitations such as lower
sample efficiency and sensitivity to hyperparameters, PPO has demonstrated significant
practical value in areas such as robotic control [29], game AI [30], and decision-making
in simulated environments [31]. With the continuous advancements in deep learning (DL)
and reinforcement learning technologies, PPO and its variants are expected to solve more
complex practical problems in the future.

Ref. [32] proposes a dynamic path-planning method for robotic arms based on an im-
proved PPO algorithm. By introducing a long short-term memory (LSTM) network and an
artificial potential field reward function, it successfully addresses the issue of variable input
state space lengths in dynamic environments and enhances the algorithm’s adaptability to
such environments. Experimental results demonstrate that the improved PPO algorithm
outperforms traditional path-planning methods in terms of environmental adaptability,
real-time performance, flexibility, obstacle avoidance, and path smoothness, providing new
ideas and technical support for robotic path planning in dynamic environments. However,
the introduction of the LSTM network also increases model complexity and computa-
tional burden, potentially leading to longer training and inference times. In extreme cases,
the LSTM network may not adapt quickly enough to rapidly changing environments.

Ref. [33] presents an intelligent vehicle-control method based on deep reinforcement
learning PPO. By constructing a hierarchical control framework, introducing advantageous
distance definitions and state-screening methods, and designing a multi-objective reward
function, efficient highway driving is achieved. Experimental results indicate that this
method not only improves driving efficiency but also enhances system stability and safety.
Although the hierarchical control framework and multi-objective reward function can help
improve algorithm generalization, performance may be affected when facing entirely new
or unforeseen road conditions, weather conditions, traffic flow, etc.



Electronics 2025, 14, 820 10 of 34

Ref. [34] introduces a cluster multi-target fire-planning method based on the PPO
algorithm. Through the design of a multi-target reward function and an LSTM-based
actor–critic framework, efficient fire planning is achieved. Simulation results show that
the agent can implement multi-target fire planning in highly dynamic environments,
with computational efficiency significantly superior to other algorithms. This method not
only effectively addresses multi-target optimization problems in high-dynamic battlefield
environments but also exhibits high computational efficiency. In adversarial environments,
the enemy may attempt to interfere with or deceive the algorithm. If the algorithm lacks
sufficient robustness to resist these attacks, its effectiveness may be significantly reduced.

Ref. [35] proposes a human–machine interactive reinforcement learning method for
autonomous driving that combines a variational autoencoder (VAE) with the proximal
policy-optimization algorithm (PPO). The VAE is used to convert semantic images obtained
from the Carla simulator into low-dimensional state features, effectively reducing the
computational burden and enabling the handling of more complex scenarios. A driving
intervention mechanism is introduced to provide correct decision-making examples during
the early stages of training and when the model is stuck in local optima, helping the model
learn quickly and escape local optima. An experience-replay mechanism is established to
separately store driver driving experience and model exploration experience, and dynami-
cally adjust the priority of experience replay, allowing the model to better leverage driver
experience while maintaining exploration capabilities, thereby enhancing generalization.
The paper’s proposed multi-drone collaborative exploration method demonstrates good
exploration results in unknown environments, effectively addressing the shortcomings
of traditional methods and providing new ideas and approaches for multi-drone collab-
orative exploration. However, when the VAE compresses high-dimensional images into
low-dimensional features, some important information may be lost. While this reduces the
computational burden, if the lost information is crucial for decision-making, the overall
performance of the model may be affected. Additionally, both the VAE and PPO require a
large amount of training data to learn effective feature representations and policies. If the
dataset is not diverse enough, the model may not generalize to unseen scenarios, especially
in autonomous driving where high reliability is required.

Ref. [36] presents a multi-drone collaborative exploration method based on an im-
proved multi-agent proximal policy optimization (LSTM-MAPPO), which introduces LSTM
neural networks and global boundary information into multi-drone collaborative explo-
ration and combines a shared MAPPO approach. This not only solves the issue of ex-
perience pool capacity, improves training efficiency, but also enables drones to better
understand the environmental scope, thereby increasing the exploration area per episode
and enhancing exploration efficiency. This method relies on global boundary information
to improve exploration efficiency. However, in practical applications, obtaining complete
global information may not be easy, especially in unknown or partially known environ-
ments, which may limit the algorithm’s effectiveness.

Policy-based methods are commonly used to address cooperative and competitive
multi-agent problems, particularly for optimizing continuous action spaces and stochastic
policies. Compared to value-based methods, policy-based methods exhibit stronger ex-
ploration capabilities, better coping with uncertain environments and unknown reward
structures, thereby demonstrating higher adaptability and robustness in complex tasks.

For the strategy-based reinforcement learning algorithm, the evaluation index also
includes cumulative reward and average reward, but it focuses more on the long-term effect
and optimization of the strategy. In addition, convergence speed and sample efficiency are
also important evaluation indicators, which measure the speed of the algorithm reaching



Electronics 2025, 14, 820 11 of 34

the stable strategy and the efficiency of using samples in the learning process. Table 2
summarizes the algorithms.

Table 2. Summary of policy-based reinforcement learning algorithms.

Literature Algorithm Specific Improvement Contribution Limitations

[32] PPO LSTM and Artificial
Potential Field

Resolved variable input state
space in dynamic envs

Increased model complexity
and computational cost

[33] PPO
Hierarchical Control,
Advantage Distance,

State Filtering

Improved driving efficiency
and system stability

Simulation–reality
gap, potential

performance degradation

[34] PPO LSTM Actor–Critic,
Multi-Objective Reward

Addressed multi-objective
optimization in

dynamic battlefields

High computational load,
may not suit real-time

fire planning

[35] PPO VAE and
PPO Combination

Reduced computational
burden for complex scenarios

Data feature loss and strong
model dependence on data

[36] PPO
LSTM and Global

Boundary Info
with MAPPO

Resolved experience pool
capacity, improved
training efficiency

Uncertainty in global info
acquisition

limits effectiveness

2.3.3. Actor–Critic Algorithms

Value-based and policy-based methods each have their unique characteristics in the
field of reinforcement learning, but they also come with their own limitations. Value-based
methods rely on predefined task values and require finding a balance between task values
and the number of agents. This can make it difficult to handle complex reward structures
and interactions between agents in multi-agent systems. On the other hand, policy-based
methods, while capable of handling continuous action spaces and stochastic policies, are
limited by the complexity of the policy space and search efficiency, making them prone to
falling into local optima and requiring significant computational resources.

To overcome these limitations, Actor–Critic (AC) methods [37] have become one of
the most widely used algorithms in multi-agent reinforcement learning. These methods
combine the advantages of value-based and policy-based approaches by simultaneously
learning a value function and a policy to optimize the decision-making process [38]. Specif-
ically, the actor component is responsible for generating action policies, while the critic
component assesses the worth of the current policy, thus directing the actor to learn more
efficiently. This two-pronged approach enables actor–critic algorithms to better handle con-
tinuous action spaces and high-dimensional state spaces, improving learning efficiency and
robustness [39]. For example, in the field of gaming, the actor–critic algorithm continuously
optimizes game strategies and enhances the gaming level of intelligent agents through their
interaction with the game environment, such as training and optimizing AI strategies in
games like Go and e-sports. In terms of robot control, it can control robots to complete vari-
ous complex tasks, such as motion control, object grasping, etc. By continuously learning
and adjusting strategies, robots can perform tasks more accurately and efficiently. There
are various extended algorithms based on the actor–critic method, each with its unique
advantages. For example, asynchronous advantage actor–critic (A3C) [40] significantly
improves training speed and sample efficiency by parallelizing the learning process of
multiple agents. Deep deterministic policy gradient (DDPG) [41] is an algorithm suitable
for continuous action spaces that combines deterministic policies and experience-replay
mechanisms to enhance learning stability and performance. Multi-agent deep deterministic
policy gradient (MADDPG) [42] can handle cooperation and competition issues in multi-



Electronics 2025, 14, 820 12 of 34

agent environments, improving the overall performance of multi-agent systems through
centralized training and decentralized execution.

Ref. [43] proposes a squeeze-and-excitation asynchronous advantage actor–critic (SE-
A3C) quantitative trading strategy based on an attention mechanism. By introducing a
self-attention mechanism module in the neural network, it extracts data features through
convolutional networks and attention mechanism modules to determine trading actions.
By combining distributed asynchronous training and an attention mechanism strategy, it
effectively enhances feature extraction and risk-control capabilities, resulting in superior
and stable returns in futures trading. Experimental results show that the SE-A3C strategy
outperforms in terms of return performance and risk-regulation ability in futures trading,
effectively increasing investors’ returns. However, due to the complex neural network
structure used in the SE-A3C strategy, there is a risk of overfitting. If the model focuses
too much on the details and noise of the training data during the training process, while
ignoring the overall trends and patterns of the data, it may perform poorly in actual trading.

Ref. [44] proposes a network defense strategy-selection method based on stochastic
games and A3C deep reinforcement learning. By constructing network attack–defense role
strategy networks and key value networks, it combines stochastic game models with deep
reinforcement learning to establish the overall architecture of a network attack–defense
decision model. Key value networks assist decision-making processes by learning and
representing the mapping relationship between states and values, and can be used to
estimate the value or probability of different attack or defense strategies in a given state.
The asynchronous advantage actor–critic (A3C) learning framework is introduced to design
the defense strategy-selection algorithm. Experimental results show that this method
outperforms existing methods in terms of strategy-calculation speed and considers the
cooperative relationships among attacker groups, analyzing their impact on defender
decisions. This makes defense strategy selection more targeted and expected to have
better defense effects. Although the A3C framework improves strategy-calculation speed,
real-time response requirements are very high in highly dynamic and rapidly changing
network environments. Whether this method can maintain efficient real-time response
in actual deployment needs further verification. Deep reinforcement learning methods
usually require a large amount of training data to achieve good performance. In actual
network attack–defense environments, obtaining high-quality data may be difficult, which
may limit the model’s training effectiveness.

Ref. [45] proposes an improved reinforcement learning algorithm called NoisyNet-
A3C, which increases the model’s exploration ability and improves training convergence
speed by introducing the NoisyNet mechanism. This algorithm is particularly suitable for
automated penetration testing scenarios, where penetration testing aims to simulate hacker
behavior and evaluate and discover security vulnerabilities in computer network systems,
applications, or networks. In automated penetration testing scenarios, the NoisyNet-A3C
algorithm can intelligently simulate attack behavior and continuously adjust and optimize
its strategy based on feedback. To verify its effectiveness, the literature compared the A3C
algorithm with the NoisyNet-A3C algorithm. The results indicate that the NoisyNet-A3C
algorithm not only converges faster, but also has a more stable convergence process, demon-
strating its superior performance in automated penetration testing. The noise parameters
in the algorithm have a significant impact on its performance. Improper setting of noise
parameters may lead to an imbalance between exploration and exploitation, affecting the
overall performance of the algorithm. Although the NoisyNet-A3C algorithm improves
training efficiency through multithreaded training, it still requires significant computational
resources to support the parallel operation of multiple actor–critic networks. This may
limit the application of the algorithm in scenarios with limited computational resources.



Electronics 2025, 14, 820 13 of 34

Ref. [46] proposes a reward guidance deep deterministic policy gradient (RG-DDPG)
algorithm. This algorithm helps intelligent vehicles fully utilize past effective information
to obtain stable control strategies by creating a set of excellent experiences. At the same
time, it adopts a reward-based priority experience-replay mechanism to improve data
utilization, reduce search blindness, and enhance the convergence stability of the algorithm.
Results show that, compared with the traditional DDPG algorithm, the improved algorithm
significantly improves the vehicle speed and reward acquisition of intelligent vehicles,
with better convergence stability. The performance of the algorithm heavily depends on the
design of the reward function. Improper design of the reward function may prevent intelli-
gent vehicles from learning optimal control strategies, and may even lead the algorithm
to fall into local optima. The RG-DDPG algorithm is designed for the field of intelligent
vehicle control, and its scalability and versatility may be limited. When applying it to other
fields or scenarios, significant modifications and adjustments may be required.

Ref. [47] proposes a mixed experienced deep deterministic policy gradient (ME-DDPG)
algorithm, which incorporates directional strategies calculated through game adversarial
numerical solutions into the explored learning policy set, effectively improving the training
efficiency of UAV pursuit strategies. Experiments tested the effectiveness of neural network
models for the ME-DDPG and DDPG algorithms across different training iterations. The re-
sults indicate that the ME-DDPG algorithm outperforms the DDPG algorithm in terms of
convergence speed and success rate in pursuit tasks. The ME-DDPG algorithm increases the
complexity of the algorithm by introducing directional strategies calculated through game
adversarial numerical solutions. This may lead to increased demands in computational
resources and time, especially when dealing with large-scale or high-dimensional states.
Therefore, in practical applications, the computational efficiency and resource consumption
of the algorithm may need to be considered.

Ref. [48] combines the deep deterministic policy gradient (DDPG) algorithm with
hindsight experience replay (HER) to address the issues of low learning efficiency and
unlearnability caused by sparse rewards. By using the HER algorithm, failed experiences
are converted into successful ones, thereby increasing the density of positive rewards
and significantly improving policy convergence speed and performance. Although the
HER algorithm can mitigate the problem of sparse rewards, it still requires a reasonable
reward function to guide learning. If the reward function is not properly designed, HER
may not be effective. Moreover, while HER can improve training efficiency, its additional
computational overhead may affect real-time response capabilities. Further validation
of the method’s performance in actual real-time environments is needed to ensure its
efficiency in dynamic and rapidly changing environments.

The actor–critic algorithm combines two processes of strategy evaluation and value
evaluation, so its evaluation indexes also cover cumulative reward, average reward, con-
vergence speed, and sample efficiency. At the same time, because the critical part of the
actor–critic algorithm is responsible for evaluating the performance of the actor and guiding
the next stage of action of the actor, the accuracy of the value function is also one of the key
indicators for evaluating the performance of the actor–critic algorithm. Table 3 summarizes
the algorithms.

The actor–critic method has been widely applied in addressing multi-agent problems,
particularly in domains such as team collaboration and competitive gaming. Compared
with traditional policy-based and value-based approaches, the actor–critic method demon-
strates significant advantages in sample efficiency, stability, flexibility, and the ability to
tackle high-dimensional continuous action spaces. Furthermore, the actor–critic method
supports parallelized learning, further enhancing training speed and performance. These
characteristics make it one of the widely used methods in the field of reinforcement learn-



Electronics 2025, 14, 820 14 of 34

ing. In summary, the actor–critic method and its extended algorithms have shown great
potential in solving complex reinforcement learning tasks, providing more flexible and
efficient solutions for multi-agent systems.

Table 3. Summary of actor–critic algorithm

Literature Algorithm Specific Improvement Contribution Limitations

[43] SE-A3C Distributed async.
training + attention mech.

Enhances feature extraction
and risk control Risk of overfitting

[44] A3C Stochastic game-based
defense strategy selection

Faster strategy calc.
and considers

attacker cooperation
Data quality challenges

[45] NoisyNet-
A3C

Introduction of the
NoisyNet mechanism

Faster, stable
algo. convergence

Depends on param.
settings and resources

[46] RG-DDPG Reward-based
prioritized exp. replay

Improves data util., reduces
blindness, stable convergence

Scalability and
generality limits

[47] ME-DDPG Mixed exp. module
Improves UAV pursuit

training and sparse
rewards handling

Increased algo. complexity
and resources

[48] DDPG Combination with
hindsight exp. replay

Addresses low learning
efficiency and unlearnability

from sparse rewards

Depends on reward
design and high

computational overhead

3. Classification and Research of Multi-Agent Reinforcement
Learning Algorithms

Multi-agent reinforcement learning algorithms can be classified into three main types
based on their reward functions: fully cooperative, fully competitive, and mixed [49].
In fully cooperative tasks, all agents share the same reward function, i.e., R1 = R2 = . . . = Rn.
This means that all agents work towards achieving a common goal. Representative
algorithms of this type include team Q-learning [50] and distributed Q-learning [51].
These methods maximize the common reward by coordinating the actions of multiple
agents. In fully competitive tasks, the reward functions of the agents are opposite, often
involving two completely antagonistic agents following the principle of zero-sum games,
i.e., R1 = −R2. Each agent aims to maximize its own reward while minimizing the oppo-
nent’s reward as much as possible. A typical algorithm is Minimax-Q, which optimizes
strategies to counter the opponent’s best response. In mixed tasks, there is no definitive pos-
itive or negative relationship between the agents’ reward functions. This model is suitable
for self-interested agents [52], where the goals of the agents may not be entirely cooperative
or competitive. Solving such tasks is often related to the concept of equilibrium solutions
in game theory, and when multiple equilibria exist in the environment, agents need to
consistently choose the same equilibrium. Typical algorithms include Nash Q-learning [53],
correlated Q-learning [54], and friend or foe Q-learning [55]. Table 4 provides a summary
of the classification of MARL algorithms. These methods are primarily used to handle
static tasks and find stable equilibrium strategies among agents. Each type of algorithm
has its applicable scenarios and characteristics. Fully cooperative algorithms are suitable
for tasks requiring agents to work together, fully competitive algorithms are suitable for
adversarial environments, and mixed algorithms are suitable for more complex tasks with
multiple interest relationships. The choice of algorithm depends on the specific problem
requirements and the interaction patterns among agents.



Electronics 2025, 14, 820 15 of 34

Table 4. Classification of multi-agent reinforcement learning algorithms.

Type Characteristics Representative Algorithms

Fully Cooperative All agents have the same reward values Team Q-learning, distributed Q-learning

Fully Competitive Opposing agents have opposite
reward values Minimax-Q

Mixed Reward values are not correlated Nash Q-learning, correlated Q-learning,
friend or foe Q-learning

3.1. Fully Cooperative

Fully cooperative multi-agent reinforcement learning (FC-MARL) is a learning method
in multi-agent systems where all agents collaborate to maximize the global reward of the
entire system. In FC-MARL, all agents share the same reward function, meaning that
each agent’s actions are aimed at maximizing this global reward. To achieve this goal,
agents need to work together through effective communication and coordination, avoiding
conflicts and redundant actions. The action choice of each agent not only affects its own
state and reward but also influences the states and rewards of other agents. Therefore,
the interaction between agents is crucial. To evaluate the value of joint actions of all agents
in the current state, FC-MARL typically uses joint value functions, such as Q-functions or V-
functions. These functions comprehensively consider the impact of joint actions of all agents
on the overall system. During the training phase, FC-MARL generally adopts a centralized
training approach, utilizing global information to optimize strategies. This method allows
agents to learn optimal behaviors from a global perspective, better understanding and
coping with complex situations in the environment. In the execution phase, agents make
decisions based on local observations, ensuring that they can operate independently in
practical applications without global information. By combining centralized training with
decentralized execution, FC-MARL can effectively handle complex collaborative tasks
and achieve efficient collaboration in multi-agent systems. Representative algorithms
include Team Q-learning [56] and distributed Q-learning [57], which demonstrate strong
performance in multi-agent collaboration tasks by coordinating the actions of multiple
agents to maximize their common rewards.

In fully cooperative stochastic games, where agents share the same reward function,
the learning objective can be expressed as:

Qt+1(st, at) = Qt(st, at) + α
[
rt+1 + γ max Qt+1(st+1, a′)−Qt(st, at)

]
(13)

where α is the learning rate, a is the action, at is the action taken in the time step T, and a′ is
a variable representing the action that may be taken in the next state st+1.

Similar to single-agent scenarios, agents will adopt a greedy strategy to maximize
returns, hi(x) is the maximum return that agent i can get under a given state x:

hi(x) = arg max
ai

max
ai ...an

Q∗(s, a) (14)

Ref. [58] proposes a novel deep multi-agent reinforcement learning algorithm called
OPTQTRAN, which improves upon the limitations of existing methods QTRAN and
QTRAN++ by introducing a dual joint action–value estimator structure, an adaptive net-
work module, and a multi-network structure. These enhancements significantly improve
the performance of multi-agent collaboration tasks. Extensive experimental results demon-
strate that OPTQTRAN excels in multi-scenario experiments on the StarCraft benchmark,
outperforming existing multi-agent reinforcement learning methods. However, its con-



Electronics 2025, 14, 820 16 of 34

vergence speed and training time may still pose challenges. Particularly in large-scale
or high-dimensional multi-agent systems, the algorithm may require longer periods to
converge to optimal strategies, potentially limiting its applicability in real-time or online
application scenarios.

Ref. [59] introduces a collaborative multi-agent model for database parameter tuning,
named database tuning–multi-agent deep deterministic policy gradient (DBT-MADDPG),
which tunes database parameters in stages. This model considers interactions between
parameters and designs three different training models for different stages, achieving
efficient parameter optimization. Experimental results indicate that the DBT-MADDPG
model not only matches but even surpasses the performance of existing mainstream
algorithms and demonstrates clear advantages in convergence speed. However, if training
data are insufficient or not representative, the model’s generalization ability may be limited,
making it difficult to adapt to new or unknown database parameter-tuning scenarios.

Ref. [60] proposes a multi-agent reinforcement learning algorithm called Comm-
MAPPO, which incorporates an inter-agent messaging system into the MAPPO framework
to enhance agents’ exploration abilities and improve model convergence speed and results.
Experiments show that, with the communication mechanism, agents can better coordi-
nate their actions and further mitigate the impact of environmental instability. However,
in practical applications, communication between agents may be affected by factors such
as network latency, device performance, and noise interference, leading to inaccurate or
incomplete information received by agents. This can disrupt agent coordination and affect
the overall performance of the algorithm.

Ref. [61] introduces an attention communication model (ACM) in multi-agent systems
to address the dynamic construction of communication protocols in multi-agent problems.
By combining reinforcement learning with a collaborative perception network, the strategy
network constructed by the reinforcement learning algorithm is integrated with the col-
laborative perception network to achieve collaboration among multiple agents. The use of
meta-learning accelerates the training process. After sufficient training, ACM demonstrates
excellent capabilities in collaboration tasks. However, the attention mechanism increases com-
putational complexity, requiring more computational resources, and the internal mechanisms
of ACM are difficult to understand, lacking interpretability in the decision-making process.
Table 5 summarizes the fully cooperative multi-agent reinforcement learning algorithms.

Table 5. Fully cooperative multi-agent reinforcement learning algorithms.

Literature Algorithm Specific Improvement Contribution Limitations

[58] OPTQTRAN

Introduces dual joint
action–value estimator

structure, adaptive
network module,

and multi-
network structure

Significantly improves
performance in multi-agent

collaboration tasks

Longer training times and
slower convergence in

large-scale
multi-agent systems

[59] DBT-MADDPG
Designs three different

training models (SA,
JAM, JAPM)

Achieves efficient
parameter optimization
with clear advantages in

convergence speed

Generalization ability
depends on data

[60] Comm-MAPPO
Adds a communication

mechanism between agents
to MAPPO

Enhances agent
coordination and mitigates

the impact of
environmental instability

Does not consider the
impact of communication
delays, noise interference,

etc., on the algorithm



Electronics 2025, 14, 820 17 of 34

Table 5. Cont.

Literature Algorithm Specific Improvement Contribution Limitations

[61] ACM

Combines reinforcement
learning with a
collaborative

perception network

Achieves collaboration
among multiple agents and

accelerates the
training process

3.2. Fully Competitive

Fully competitive multi-agent reinforcement learning (FC-MARL) refers to a reinforce-
ment learning setting in a multi-agent system where all agents are in a state of complete
competition. In this setting, each agent aims to maximize its own reward, often at the
expense of other agents’ interests. In fully competitive stochastic games, especially in the
case of two agents, the minimax principle can be applied. Specifically, it is assumed that
one agent tries to maximize its return while the other agent always strives to minimize
the opponent’s return. In this scenario, the reward functions of the agents are opposite,
R1 = −R2. The minimax-Q algorithm employs the minimax principle to compute strate-
gies and value functions in the game. This algorithm optimizes the agent’s strategy by
considering the worst-case behavior of the opponent [62]. The algorithm for Agent 1 is
given below:

h1,t(st, ·) = arg m1(Qt, xt) (15)

Qt+1(st, a1,t, a2,t) = Qt(st, a1,ta2,t) + α[rk+1 + γm1(Qt, at+1)−Qt(st, a1,t, a2,t)] (16)

where m1 represents the minimax reward of Agent 1.

m1(Q, s) = max
h1(s,·)

min
a2

∑
a1

h1(x, a1)Q(s, a1, a2) (17)

where the stochastic policy of Agent 1 in state s is denoted by h1(s,·), with the dot represent-
ing action parameters. The optimization problem can be solved by linear programming.

Ref. [63] proposes a multi-agent deep deterministic policy gradient algorithm with
attention and prioritized experience replay (AP-MADDPG), which introduces prioritized
experience replay and a multi-head attention mechanism to improve multi-agent reinforce-
ment learning algorithms. This enables faster convergence in complex adversarial environ-
ments, better achieving cooperation and competition among agents, and obtaining higher
rewards. Experiments show that this algorithm outperforms traditional reinforcement
learning methods in terms of convergence speed, stability, episode rewards, and multi-agent
strategy learning, making it more suitable for solving decision-making problems in complex
multi-agent environments. Although the prioritized experience-replay mechanism can
accelerate algorithm convergence, it may also lead to oversampling of certain experiences
while neglecting other important but less frequent ones. This can affect the algorithm’s
comprehensive understanding of the environment and strategy optimization. Balancing
sampling efficiency and fairness of experiences is an issue that needs to be addressed.

Ref. [64] presents a differential privacy multi-agent actor–critic framework (DP-MA2C)
for multi-agent competitive environments, which incorporates a differential privacy mech-
anism in the updating of policy networks, uses domain randomization to enhance agent
generalization, and adopts a shared-parameter attention mechanism to improve network
stability. Experimental results demonstrate that the DP-MA2C framework integrates
privacy-protection capabilities suitable for competitive environments without compro-



Electronics 2025, 14, 820 18 of 34

mising agent utility, thereby enhancing the robustness and security of multi-agent com-
petitive reinforcement learning models. Although the DP-MA2C framework uses domain
randomization to enhance agent generalization, this method may not cover all possible
scenarios and variations. In practical applications, agents may encounter environments
that are untrained or insufficiently explored, leading to performance degradation. Table 6
summarizes the fully competitive multi-agent reinforcement learning algorithms.

Table 6. Fully competitive multi-agent reinforcement learning algorithms.

Literature Algorithm Specific Improvement Contribution Limitations

[63] AP-MADDPG

Introduces multi-head
attention mechanism and

prioritized experience-
replay mechanism

Faster convergence in
complex adversarial
environments; better

cooperation and
competition among agents

Unable to avoid
oversampling of

certain experiences

[64] DP-MA2C Incorporates a differential
privacy mechanism

Enhances agent
generalization and
network stability

Lower
generalization ability

3.3. Mixed

The mixed mode no longer restricts the goal relationships between agents; each agent
has its own objectives, which may conflict with those of other agents. Such scenarios can
encompass both cooperative and competitive modes. For instance, two teams can be set
to compete against each other in a zero-sum game, while within each team, agents fully
cooperate. Specifically, in mixed stochastic games, agent behaviors are neither purely
cooperative nor purely competitive. Each agent optimizes its strategy based on its own
interests, and these strategies may lead to conflicts or cooperation with other agents.
Equilibrium concepts from game theory, such as Nash equilibrium, become key tools for
solving these problems. Typical algorithms include Nash Q-learning, correlated Q-learning,
and friend or foe Q-learning. These methods aim to find a stable strategy combination
where all agents can reach a certain equilibrium state in a given environment. By combining
elements of cooperation and competition, mixed stochastic games better simulate complex
real-world interactions, providing more flexible and practical solutions.

In the scenario of cloud computing resource allocation, multiple tasks need to be
assigned to different servers, and each server has limited resources. Nash Q-learning
enables tasks to act as independent agents, learning optimal resource allocation in competi-
tion, balancing their respective interests, such as reducing computation time or increasing
throughput, and achieving a stable state of resource sharing. Related Q-learning is suitable
for collaboration between tasks, improving overall efficiency and optimizing resource
utilization through collaborative work. Friend or enemy Q learns to distinguish between
cooperative and competitive tasks, with the former sharing resources to enhance common
goals, while the latter maximizes its own resource utilization and reduces opponent re-
sources. This method is particularly effective in mixed nature task allocation, such as in
large projects where there are both collaborative and competitive teams.

Ref. [65] proposes an experience-replay-optimization model based on simple duplex
dueling network (SimERO) and an exploration model based on weighted random network
(RNE) to train and enhance multi-agent cooperative and competitive capabilities. Experi-
mental results show that the SimERO-RNE model outperforms the individual SimERO and
RNE models in multi-agent cooperative tasks and demonstrates significant performance
improvements in multi-agent cooperative and competitive tasks, validating the effective-
ness of the model improvements. The SimERO-RNE model is optimized for multi-agent



Electronics 2025, 14, 820 19 of 34

cooperative and competitive tasks, which may result in poor performance in other types of
tasks. The model’s generalization ability needs further verification and improvement.

Ref. [66] introduces the delayed double critics DDPG for N-agents population (N-D2C)
algorithm, which combines the DDPG and DC3 structures and incorporates improvements
such as delayed population strategy updates and target network smoothing. By reducing
overestimation errors, lowering variance and disturbance noise, and improving learn-
ing efficiency and convergence speed, the algorithm helps agents better adapt to mixed
cooperative–competitive environments, achieving effective group collaboration and compe-
tition. The N-D2C algorithm integrates multiple advanced techniques, resulting in higher
computational resource requirements, including memory, processor speed, and storage
space. Especially when dealing with large-scale multi-agent systems, the algorithm’s
computational burden may significantly increase.

Ref. [67] presents a goal-based hierarchical group communication (GHGC) multi-agent
reinforcement learning method. By grouping agents and maintaining cognitive consistency
within groups, and introducing inter-group communication and value decomposition,
the method simplifies the strategy-learning process and improves learning efficiency. Ex-
perimental results demonstrate that the GHGC method can effectively address instability
and simplify the strategy-learning process in multi-agent cooperative and competitive
environments, outperforming existing methods in terms of strategy performance, general-
ization ability, and scalability. The GHGC method introduces inter-group communication
to coordinate behaviors between different groups. However, as the number of agents
increases and communication frequency rises, communication overhead also significantly
increases. This may reduce the algorithm’s efficiency in practical applications.

Ref. [68] proposes a multi-agent decision-making algorithm based on fused imitation
learning and reinforcement learning (GAIL-MADDPG). This algorithm combines gen-
erative adversarial imitation learning (GAIL) and multi-agent deep deterministic policy
gradient (MADDPG) and introduces a reward function-design method using generative
adversarial networks (GANs). The discriminator provides rewards to agents, avoiding
the difficulty of manually designing reward functions. In experimental validations, the al-
gorithm was deployed on the Robomaster 2019 AI Challenge platform and achieved
performance superior to existing algorithms. However, in practical applications, agents
may face various uncertainties and interference factors, such as sensor noise and actuator
failures. These factors may affect the algorithm’s stability and robustness, impacting agent
performance and reliability. Table 7 summarizes the hybrid multi-agent reinforcement
learning algorithms.

When dealing with mixed motivation scenarios involving partial cooperation and
adaptive strategies based on dynamic changes in context, the mixed type can be further
divided. To solve the problem of mixed motivation scenarios, the mixed-type MARL can
be further divided according to the objectives, behavior, and interaction characteristics of
agents. First, based on the goal consistency, it is divided into the following. 1. Partially
consistent goals: The goals of agents are consistent on some tasks, but may conflict on other
tasks. This division helps to identify the cooperation and competition between agents, so as
to design more effective cooperation strategies. 2. Dynamic change target: The target of the
agent may change with time or the change of environmental state. This kind of partition
requires that the algorithm can adapt to the change of the target and dynamically adjust the
strategy of the agent. Secondly, based on the behavior mode, it is divided into the following.
1. Active collaboration: Agents actively seek cooperation with other agents to achieve
common goals. Such agents usually have strong communication skills and willingness to
cooperate. 2. Passive adaptive: Agents adjust their strategies according to the behavior
and environmental state of other agents to maximize their own interests. Such agents may



Electronics 2025, 14, 820 20 of 34

pay more attention to individual interests, but they will also cooperate when necessary.
Finally, based on the interaction characteristics, it is divided into the following. 1. Explicit
communication type: Agents collaborate through explicit information transmission. This
division helps to design effective communication protocols and information-transmission
mechanisms to improve the efficiency of cooperation. 2. Implicit collaboration: Agents do
not directly transfer information, but infer their intentions and strategies by observing the
behavior and environmental state of other agents, so as to achieve collaboration. This kind
of agent usually has strong learning and reasoning ability.

Table 7. Fully cooperative multi-agent reinforcement learning algorithms.

Literature Algorithm Specific Improvement Contribution Limitations

[65] SimERO-RNE

Introduces an experience-
replay-optimization model
and an exploration model

based on a weighted
random network.

Demonstrates significant
performance

improvements in
multi-agent cooperative
and competitive tasks,

validating the effectiveness
of model improvements.

The model is trained for
specific tasks, and its
generalization ability
needs enhancement.

[66] N-D2C

Combines DDPG and DC3
structures and introduces

delayed population
strategy updates.

Improves the algorithm’s
robustness, convergence

speed, and generalization
ability, better adapting to
complex environments.

The algorithm has higher
computational

resource requirements.

[67] GHGC
Introduces inter-group

communication and
value decomposition.

The algorithm shows
significant improvements
in strategy performance,

generalization ability,
and scalability.

Increased communication
frequency leads to
significantly higher

communication overhead,
reducing the

algorithm’s efficiency.

[68] GAIL-
MADDPG

Combines generative
adversarial imitation

learning and deep
deterministic

policy gradient.

Validates the algorithm’s
effectiveness in practical

applications,
with significant theoretical

and practical value.

The algorithm’s stability
and robustness

need improvement.

4. Challenges Faced
In recent years, multi-agent deep reinforcement learning has achieved remarkable

success in numerous fields. However, in practical applications, this domain still faces a
series of critical challenges that urgently need to be addressed, primarily manifested in four
aspects: the curse of dimensionality, system instability, partial observability, and scalability.
These challenges significantly limit the performance of multi-agent deep reinforcement
learning in terms of efficiency improvement, convergence guarantee, and performance
optimization. Therefore, research on these challenges not only constitutes a current research
hotspot but also represents a difficult point for future exploration.

4.1. Dimensionality Curse

The curse of dimensionality refers to a series of anomalies that often occur when
analyzing high-dimensional data [69]. In the framework of multi-agent deep reinforcement
learning, the dimensionality of data is closely related to the number of agents, and the
size of the action space typically grows exponentially with the increase in the number of
agents. Therefore, when attempting to directly apply single-agent reinforcement learning



Electronics 2025, 14, 820 21 of 34

algorithms to multi-agent environments, a significant issue may arise: sample efficiency
can drop sharply, showing an exponential decay trend, as the number of agents increases
specifically in a setting where each agent randomly selects one of two actions, a or b,
with equal probability, and all agents only receive a reward together when they all choose
the same action. In this case, it can be shown that if a single-agent policy gradient algorithm
is directly applied, the resulting empirical gradient and the actual gradient will satisfy the
following relationship:

P(
〈
∇̂J ,∇J

〉
> 0) ∝ (0.5)N (18)

where ∇̂J represents the empirical policy gradient obtained from sampled data, ∇J repre-
sents the true policy gradient, and N represents the number of agents. Equation (18) shows
that sample efficiency decreases exponentially with the increase in the number of agents.

To enhance the scalability of multi-agent reinforcement learning with respect to the
number of agents, researchers have introduced value function decomposition [70]. By de-
composing a complex joint value function into the sum (or other forms such as product)
of multiple simple local value functions, the dependencies between agents are simplified,
and computational complexity is reduced.

The key to such methods lies in assuming what structure to use for combining indi-
vidual value functions. Value decomposition networks (VDNs) [71] assume that the joint
action–value function is the sum of individual action–value functions. Quality function
decomposition for cooperative multi-agent learning (QMIX) [72], tailored for cooperative
multi-agent learning, is based on the individual global max (IGM) assumption, decompos-
ing the joint action–value function into a monotonic function of individual value functions.
This means that the optimal action combination chosen by each agent based on its individ-
ual value function constitutes the globally optimal action combination. However, many
Markov decision processes (MDPs) in the real world that satisfy the IGM assumption
do not conform to the aforementioned decomposition forms. To address this issue, re-
searchers have proposed various improvement methods. For example, WQMIX (weighted
QMIX) [73] introduces a weighting mechanism to correct potential performance issues of
QMIX in handling complex cooperative tasks, thereby improving algorithm stability and ac-
curacy. QTRAN (query-based transformation for multi-agent reinforcement learning) [74]
leverages affine transformations to obtain a truly decomposable joint action–value func-
tion under the IGM assumption, achieving more precise decomposition. Additionally,
the QPLEX (Q-value path decomposition for deep multi-agent reinforcement learning)
method utilizes a dual structure to transform the IGM assumption for value functions into
an IGM assumption for advantage functions, proving the equivalence between the two,
thus achieving a complete representation of the IGM assumption.

In multi-agent systems, such as robot swarms, each robot may need to make decisions
based on its own observations and action history. When the number of robots increases
and each robot has its own state, observation, and action space, the state space of the entire
system will grow exponentially. This high-dimensional state space can lead to extremely
sparse data, making it difficult to model and predict the interactions and collaborations
between robots. VDN and QMIX are suitable for solving such problems. The VDN method
is concise and easy to implement and is suitable for simple collaborative tasks. It decom-
poses the team reward signal into the reward signals of each agent through value function
decomposition, and the joint Q function can be approximated as the sum of the Q functions
of individual agents. This decomposition enables intelligent agents to achieve distributed
execution based on local observations and action-selection strategies. VDN utilizes func-
tion approximation (such as neural networks) to handle high-dimensional state spaces
and cope with complex environments. The QMIX method has stronger representation
ability and better generalization performance, making it suitable for handling complex



Electronics 2025, 14, 820 22 of 34

collaborative tasks. QMIX also adopts the method of function approximation when dealing
with high-dimensional state spaces, and ensures the monotonicity of the residual function
by restricting the weights of the mixed network to be positive. This monotonicity ensures
that the global argmax operation performed on the joint Q function produces the same
result as a set of individual argmax operations performed on each individual agent’s Q
function. However, the QTRAN method, due to the introduction of additional conversion
networks and constraints, suffers from complexity and training stability issues, which may
not be as intuitive and easy to implement as VDN and QMIX in some cases.

4.2. Non-Stationarity

Due to multiple agents training in parallel, the dynamics of the environment each
agent faces change. Specifically, an agent’s actions not only affect its own rewards but
also alter the rewards of other agents and the global environment state. This interaction
results in non-continuity in environmental state transitions when an agent executes the
same action in the same state due to interference from other agents [75,76], violating the
Markov assumption in reinforcement learning.

To effectively address the convergence challenges posed by non-stationary environ-
ments to reinforcement learning algorithms, researchers have actively explored and pro-
posed a series of solutions. Among them, the introduction of the experience replay mech-
anism is a key innovation. This mechanism stores experiences generated by interactions
between agents and the environment and replays them during training, significantly en-
hancing learning stability and efficiency. This mechanism not only helps agents learn from
past experiences but also breaks temporal correlations to some extent, making the learning
process more stable and controllable.

Furthermore, to further enhance agents’ adaptability in non-stationary environments,
researchers have introduced adaptive learning mechanisms. This mechanism allows agents
to dynamically adjust their strategies based on changes in the environment or the behavior
of other agents. For example, by combining online learning with continuously updated
models, agents can perceive changes in environmental states in real time and fine-tune
their strategies based on the latest information. This ability to dynamically adjust enables
agents to better adapt to various uncertainties and changes in the environment, thereby
improving their learning efficiency and performance in non-stationary environments.

4.3. Partial Observability

In practical applications, agents often can only observe partial information about
the environment, meaning they cannot obtain complete state information related to the
environment during interactions. This limitation requires agents to make optimal decisions
at each time step based on limited environmental observations. To address such problems,
partially observable Markov decision processes (POMDPs) are used as modeling tools.

Currently, several methods have been proposed to solve POMDP problems. For ex-
ample, ref. [77] proposes a collision-avoidance decision-making model based on POMDP
and trains it using a fast proximal policy-optimization algorithm. By simulating different
multi-ship encounter scenarios, the model demonstrates the potential to improve learn-
ing efficiency and safe navigation capabilities in situations with incomplete information.
However, this method still has some limitations and requires further research. When
constructing decision-making models, it is also necessary to consider the unpredictability
of target behavior and dynamic and kinematic constraints. Ref. [78] proposes a multi-
state driving intention POMDP model that integrates behavioral decision-making and
motion planning and designs a time-dependent deep reinforcement learning algorithm,
recurrent deterministic policy gradient (RDPG), to solve the problem of optimal driving



Electronics 2025, 14, 820 23 of 34

strategies and trajectory generation in partially observable environments. Ref. [79] mod-
els the multi-user distributed dynamic spectrum access (DSA) problem in multi-channel
cognitive radio networks as a decentralized POMDP problem and proposes a centralized
training and decentralized execution (CTDE) framework based on multi-agent reinforce-
ment learning (MARL). This framework uses deep recurrent Q-networks to address the
partial observability of each cognitive user’s state and verifies the convergence speed and
effectiveness of the proposed method in various environmental settings while reducing
communication overhead.

4.4. Scalability

In multi-agent collaborative learning scenarios, as the number of agents increases,
multi-agent systems (MASs) may face challenges such as performance degradation, com-
putational resource constraints, significant communication overhead, and communication
delays. These issues constitute the scalability problem of multi-agent reinforcement learning
(MARL). To address these challenges, the centralized training and decentralized execution
(CTDE) framework has received widespread attention due to its ability to effectively elimi-
nate non-stationarity during the learning process [80] and ensure system scalability during
the execution phase. By combining advanced single-agent reinforcement learning algo-
rithms with the CTDE paradigm [81], researchers have developed multiple efficient MARL
algorithms that demonstrate excellent learning performance in tasks such as multi-robot
navigation and formation control.

However, under limited local observations, it is difficult for agents to find optimal
strategies through existing algorithms. To overcome this challenge, graph neural networks
(GNNs) have proven to be an effective method. GNNs coordinate agent actions by ag-
gregating local information and demonstrate excellent performance in maintaining the
scalability and robustness of multi-agent systems. Nevertheless, GNN-based training
algorithms have limitations in handling continuous action spaces and sampling efficiency.
To address this issue, ref. [82] proposes the graph soft actor–critic (G-SAC) algorithm,
which leverages GNN’s information-extraction capabilities to train distributed coordinated
decision-making on graphs and combines value-decomposition techniques to achieve high
sampling efficiency and scalability in large-scale multi-robot coordination problems. Future
research can focus on maintaining the coordination performance of GNN-based policies
with advanced technologies under imperfect communication and exploring the practical
application of these policies in real-world large-scale multi-robot coordination tasks.

Furthermore, communication is also a crucial aspect of the scalability problem in MAS.
In MAS, agents need to exchange information to coordinate actions and learning strategies,
involving the transmission of state information, reward signals, or learning parameters.
Therefore, effectively managing the communication process and minimizing communica-
tion overhead is essential to ensure system scalability. To address this issue, researchers
are working on communication-optimization algorithms for distributed learning systems.
Ref. [83] proposes a graph-based proximal policy-optimization (GPPO) algorithm that
leverages a graph topology matrix to enhance the learning capability of reinforcement
learning decision policies and solves the communication challenges of conventional PPO
algorithms among multiple agents. In the future, researchers can further develop hetero-
geneous GPPO algorithms to control more diversified UAV formation systems, thereby
further enhancing the scalability and performance of MAS.



Electronics 2025, 14, 820 24 of 34

5. Research on Experimental Platforms and Application Domains
5.1. Experimental Platforms

The core of reinforcement learning lies in its continuous interaction and trial-and-error
process with the environment, constantly exploring and seeking optimal strategies. In this
journey, open-source experimental platforms play a pivotal role. These platforms not only
provide researchers with a standardized and reproducible experimental environment but
also significantly lower the barriers to research, enabling both academia and industry to
innovate and validate within a unified experimental framework. In recent years, with tech-
nological advancements, a series of open-source experimental platforms specializing in
multi-agent reinforcement learning have emerged. These platforms support experiments
ranging from basic collaboration and competition tasks to interactions among agents in
complex dynamic environments. Notable experimental environments include OpenAI
Gym, Unity ML-Agents Toolkit, DeepMind Lab, MuJoCo, Roboschool, Ray RLlib, Tensor-
Flow Agents, and Horizon. As shown in Figure 4, these platforms collectively provide a
solid foundation for research and applications in the field of reinforcement learning. The
advantages and disadvantages of each platform are shown in Table 8.

Figure 4. Summary of experimental platform

Table 8. Comparison of experimental platforms.

Platform/Toolkit Supported Algorithms Simulation
Complexity Application Areas Experimental Cases

OpenAI Gym
Reinforcement

Learning Algorithms
(DQN, PPO, A3C, etc.)

Diverse, ranging from
simple to complex

environments,
including classic

control tasks, robotic
control, Atari

games, etc.

Reinforcement
Learning Research,

Education,
Development

CartPole, MountainCar,
Pong

Unity ML-Agents
Toolkit

Reinforcement
Learning, Imitation

Learning, etc.

High, supports 2D, 3D,
and VR/AR games and
simulators as training

environments

Game Development,
Intelligent Agent

Training

Controlling NPC
behavior, automated

testing of game builds

DeepMind Lab Reinforcement
Learning Algorithms

High, based on Quake
III Arena for 3D
navigation and

puzzle-solving tasks

AI Research, Game
Development

3D navigation tasks,
puzzle-solving tasks



Electronics 2025, 14, 820 25 of 34

Table 8. Cont.

Platform/Toolkit Supported Algorithms Simulation
Complexity Application Areas Experimental Cases

MuJoCo Reinforcement
Learning, Robotics, etc.

High, accurate
simulation of robots

and physical systems
with complex

physical interactions

Robotics,
Reinforcement

Learning, Computer
Graphics

Testing robot control
algorithms, path

planning, grasping
strategy validation

Roboschool Reinforcement
Learning Algorithms

High, based on Bullet
Physics Engine for

physical simulations

Robot Simulation,
Robotic Arm Control

InvertedPendulum,
Hopper.

Ray RLlib

Mainstream
Reinforcement

Learning Algorithms
(DQN, PPO, A3C, etc.)

High, supports
large-scale

parallel training

Reinforcement
Learning Model

Development
and Evaluation

Large-scale parallel
reinforcement learning
training experiments

TensorFlow Agents Reinforcement
Learning Algorithms

Diverse, depending on
user-defined

environments

Reinforcement
Learning Tasks, such as

Game AI,
Robotic Control

Using RNNs to process
sequential data,

building and training
reinforcement

learning models

Horizon
Deep Q-Network

(DQN), Policy Gradient
Methods, etc.

High, an end-to-end
platform for applying

reinforcement learning,
supporting data

processing,
model training,

and deployment

AI Application Practice,
Machine Learning

Project Development “

Training intelligent
agents to play Atari

games, such
as “Breakout”

5.1.1. OpenAI Gym

OpenAI Gym, a widely popular open-source library, offers a rich array of test envi-
ronments for reinforcement learning algorithms. These environments span multiple levels,
from simple control tasks to complex Atari games, catering to the needs of different re-
search stages. Its design emphasizes ease of use, simplifying algorithm implementation and
comparison through standardized interfaces (such as step, reset, render, etc.). Furthermore,
strong community support provides users with abundant resources and assistance, further
promoting its application and development in the field of reinforcement learning.

5.1.2. Unity ML-Agents Toolkit

The Unity ML-Agents Toolkit is a reinforcement learning tool package tailored for the
Unity3D engine by Unity Technologies. It allows developers to directly train agents within
Unity’s 3D environment, eliminating the need for additional environment setup. The toolkit
provides numerous predefined environments and supports multiple reinforcement learning
algorithms, offering great convenience to developers. Additionally, leveraging Unity’s
graphical capabilities, developers can easily create complex simulation environments to
meet the needs of different research scenarios.

5.1.3. DeepMind Lab

DeepMind Lab, a first-person 3D game platform specifically designed for researching
artificial intelligence and machine learning, boasts high customizability. It supports complex
visual perception and decision-making tasks, providing rich experimental scenarios for
deep learning research. By adjusting game settings and difficulty levels, researchers can
flexibly design experiments to explore agent learning behaviors under different conditions.



Electronics 2025, 14, 820 26 of 34

5.1.4. MuJoCo

MuJoCo, a professional physics engine, has wide applications in robotics and biome-
chanics research. Its integration with OpenAI Gym allows researchers to conveniently use
MuJoCo for simulating complex physical systems such as robotic arms and walking robots.
With high precision in physical simulation and computational efficiency, MuJoCo provides
strong support for tasks requiring precise physical modeling.

5.1.5. Roboschool

Roboschool is an open-source project based on the Bullet physics engine, offering
environments similar to OpenAI Gym but with a focus on robotics research. This toolkit is
free and license-free, reducing usage costs for researchers. It also supports rapid iterative
experimentation, enabling researchers to validate and optimize algorithms more efficiently.

5.1.6. Ray RLlib

Ray RLlib is a library for distributed reinforcement learning, built upon the Ray
distributed computing framework. This library simplifies the process of large-scale paral-
lelization and distributed training, allowing researchers to focus more on the algorithms
themselves. It supports multiple reinforcement learning algorithms and demonstrates good
performance, providing strong support for distributed reinforcement learning research.

5.1.7. TensorFlow Agents

TF-Agents is a reinforcement learning library provided by Google’s TensorFlow team,
tightly integrated with the TensorFlow ecosystem. This library supports multiple reinforce-
ment learning algorithms and offers excellent tutorials and example codes, lowering the
learning curve. Leveraging TensorFlow’s powerful computing capabilities, it can efficiently
process large-scale data, providing strong support for reinforcement learning research.

5.1.8. Horizon

Horizon is an application-level reinforcement learning platform developed by Face-
book AI Research. This platform focuses on practical application scenarios, particularly in
recommendation systems. It supports large-scale data processing and model deployment,
enabling researchers to apply reinforcement learning algorithms to actual businesses and
validate their effectiveness. Horizon also provides rich tools and documentation to help
researchers better understand and apply reinforcement learning techniques.

5.2. Application Domains

The forefront of multi-agent reinforcement learning (MARL) research is dedicated to
enhancing the environmental adaptability and collaborative strategy-learning outcomes of
multiple agents in complex and dynamic environments, with the aim of replacing humans
in performing certain high-risk or unknown tasks.

5.2.1. Collaboration

In terms of multi-robot collaboration, MARL technology demonstrates extensive ap-
plication potential in various fields such as industry [84–86], agriculture, military [87],
and healthcare [88]. In scenarios involving robotic arm manipulation, drone formation,
autonomous driving, and IoT connectivity, multi-robot collaboration significantly improves
task-execution efficiency. Implicit communication mechanisms enable robots to optimize
overall performance through collaboration, while underlying decision-making and plan-
ning technologies for mobile robots become key to achieving multi-agent coordinated
control. Autonomous obstacle avoidance and navigation technologies among multiple
robots are key research areas for collaborative operations.



Electronics 2025, 14, 820 27 of 34

In robotic system research, Gu et al. [89] proposed an offline policy-based deep rein-
forcement learning algorithm that efficiently trains real physical robots to learn various
simulations and complex operational skills without demonstrations or manual design.
Additionally, Foerster et al. applied multi-agent reinforcement learning methods to robotic
communication, achieving deep communication among robots through centralized learn-
ing and decentralized execution. The practical work of Duan et al. [90] in robotic control
also provides valuable insights into the application of multi-agent reinforcement learning.
In the field of autonomous driving, Shalev-Shwartz et al. improved and optimized the
safety and environmental unpredictability of autonomous driving, demonstrating how
to use policy gradient iteration without MDP assumptions and minimize the variance of
gradient estimates through stochastic gradient ascent, thereby enhancing the safety and
reliability of autonomous driving systems. In the field of traffic control, MARL technology
also demonstrates significant application value. Chen et al. [91] proposed a collaborative
control framework based on MARL for real-time mitigation of traffic congestion on bus
lanes. Vidhate et al. [92] proposed a traffic flow model based on collaborative multi-agent
reinforcement learning that can handle unknown complex traffic states, providing strong
support for optimizing traffic systems.

In practical work, reference [93] proposed TheAgentCompany as a benchmark test
for evaluating the performance of AI agents in real-world tasks. This method simulates
the environment of a software-engineering startup, where agents need to perform tasks
related to software development, project management, financial analysis, and more. Agents
need to browse web pages, write code, and interact with colleagues in a simulated environ-
ment to complete these tasks. The results demonstrate the current status and challenges
of AI agents performing tasks in real-world work, which helps us better understand the
capabilities and potential of AI agents and provides guidance for their development and ap-
plication. Reference [94] proposed the MetaDesigner method, which utilizes a multi-agent
system including pipeline, glyph, and texture agents to work together to create customized
WordArt, utilizing multimodal models and user-evaluation insights to gradually optimize
the design process. Through this feedback loop, the system can proficiently adjust hy-
perparameters to conform to user-defined styles and theme preferences. The generated
WordArt not only meets users’ visual attractiveness and contextual relevance expectations,
but even exceeds them, effectively serving multiple WordArt applications and continuously
producing beautiful and contextually relevant results.

5.2.2. Resource Scheduling

In the field of resource scheduling, the application of MARL demonstrates irreplaceable
advantages. MARL can effectively address issues such as low resource utilization caused
by imbalance between resource supply and demand, and is widely used in complex
scenarios such as 5G network optimization, supply chain optimization, and power grid
scheduling. Due to the complexity of resource-scheduling tasks and the necessity of
multi-agent collaborative decision-making, these problems cannot be simply classified
as traditional operational research problems or robotic planning problems. Therefore,
MARL can flexibly classify complex resource-scheduling problems into decision-making,
planning, and combinatorial optimization problems based on actual task requirements,
and significantly improve resource utilization efficiency through the collaborative work
of agents.

In resource management, Xi et al. proposed an innovative MARL algorithm that does
not rely on the Markov assumption, with faster convergence speed and stronger robustness.
The application of this algorithm enables power grid systems to more effectively improve
the utilization rate of renewable energy under more complex conditions. Furthermore,



Electronics 2025, 14, 820 28 of 34

Perolat et al. used partial Markov observation models to deeply model the occupants of
public resources, revealing the complex relationships between exclusivity, sustainability,
and inequality, and proposing corresponding solutions to significantly improve resource-
management capabilities. On the other hand, the fuzzy Q-learning method proposed by
Kofinas et al. [95] has achieved significant results in the energy management of decen-
tralized microgrids, effectively improving energy-management efficiency. These research
results fully demonstrate the broad application prospects and strong potential of MARL in
the fields of resource scheduling and resource management.

5.2.3. Internet

In virtual Internet scenarios, MARL leverages its ability to utilize real-time user feed-
back and long-term accumulated rewards, finding wide application in search systems,
recommendation systems, advertising, and other fields. In the field of Internet search,
MARL can train multiple agents to replace traditional general agent models, thereby more
effectively learning various query-reconstruction techniques and significantly improving
search efficiency and accuracy [96]. Additionally, in the training process of recommendation
systems, MARL can capture sequential dependencies across different scenarios and jointly
optimize multiple recommendation strategies, thereby reducing the demand for training
data and achieving more precise strategy updates [97]. For internet advertising, MARL
innovatively defines the impression allocation problem as an auction problem, providing ef-
fective cooperation strategies for publishers to maximize revenue in complex and dynamic
market environments [98]. In the Internet field, Jin et al. combined clustering ideas with
MARL methods to optimize system performance for the real-time online bidding problem
of a large number of advertisers. To balance the competition and cooperation among adver-
tisers, they proposed a practical distributed coordinated multi-agent bidding algorithm that
can promote effective cooperation among advertisers while ensuring competitive fairness,
thereby enhancing the efficiency and effectiveness of the entire advertising system.

5.2.4. Game AI

In the field of game AI, MARL has made significant progress and has been successfully
applied to turn-based competitive games such as German Poker, Chess, and Go, as well
as real-time strategy games such as StarCraft, DOTA, and Honor of Kings [99]. Agents
continuously extract valuable information and enhance their strategy-learning abilities
through training methods such as self-play and collaborative competition. However, multi-
agent game AI faces multiple challenges, including high game complexity, large action-state
dimensions, and limited information access, which greatly increase the difficulty of model
training and make the learning process of MARL more complex and arduous.

As one of the most challenging and attractive research directions in the field of artificial
intelligence, human–computer gaming has achieved major breakthroughs in recent years.
In 2018, OpenAI and DeepMind, two major research institutions, made landmark progress
in this field. OpenAI defeated top human players in the real-time 5v5 strategy game
DOTA2, demonstrating AI’s exceptional abilities in complex team competitions. Meanwhile,
DeepMind reached human-level performance in the complex first-person multiplayer
game Quake III, not only able in competing with human players but also in effectively
collaborating with them. These achievements mark a new milestone in the development of
game AI.

5.2.5. Group Gaming

Game equilibrium theory has demonstrated significant effectiveness in coordinating
the optimization goals of multi-agent systems. A game refers to the process in which
participants, based on interactive environmental conditions and the information they



Electronics 2025, 14, 820 29 of 34

possess, choose strategies to maximize their own interests under the constraints of specific
game rules [100]. Within the framework of classic game theory, agents carefully select
strategies to maximize their returns, ultimately evolving into a Nash equilibrium state [101].

In a Nash equilibrium state, each agent’s strategy is the best response to the strategies
of other agents, and any unilateral change in strategy by an agent will not yield additional
benefits. This theory provides important ideas for coordinating the optimization goals
of multi-agent systems. By simulating and analyzing the game process among agents, it
is possible to predict and guide the system to reach a stable and efficient state. At the
same time, game equilibrium theory also provides effective tools for solving conflict and
cooperation problems in multi-agent systems, helping to design more intelligent and
adaptive multi-agent systems that achieve efficient collaboration and optimization for
complex tasks.

6. Conclusions
This article follows a logical sequence from shallow to deep and provides a detailed

and in-depth analysis of the multi-agent reinforcement learning (MARL) algorithm. Firstly,
the article briefly reviews the basic concepts of reinforcement learning (RL) and subse-
quently introduces the concept of multi-agent systems (MASs), systematically elaborating
on the development history of MARL. On this basis, the article introduces the commonly
used Markov decision process (MDP) model in single-agent reinforcement learning, as well
as the corresponding stochastic game theory in multi-agent environments. These theories
lay a solid mathematical foundation for understanding and designing MARL algorithms.

Next, based on the core idea of reinforcement learning algorithms, the article divides
them into three categories for elaboration: value function algorithms guide agent decision-
making by estimating state or action state values; strategy-based algorithms directly learn
the mapping from state to action without explicitly estimating the value function; the
actor–critic algorithm combines the advantages of the first two, using strategy networks
(actors) to generate actions and value networks (critics) to evaluate the quality of actions,
achieving more efficient learning. Under the MARL framework, these algorithms are
further divided into three types: cooperative, competitive, and hybrid strategies to adapt
to different application scenarios.

The article also delves into the four major challenges faced by the MARL algorithm:
dimensionality explosion, non-stationarity, partial observability, and scalability. These
challenges limit the effectiveness of the MARL algorithm in practical applications.

Looking ahead to the future, research in the field of multi-agent reinforcement learning
will move towards deeper and broader directions. On the one hand, with the continuous
development of advanced technologies such as graph neural networks (GNNs), researchers
are exploring how to use these technologies to improve the coordination efficiency of multi-
agent systems. GNNs can capture the complex relationships between intelligent agents
and efficiently transmit information and coordinate decisions based on these relationships,
which is expected to solve problems such as dimensionality explosion and non-stationarity.

On the other hand, multi-agent reinforcement learning has broad application prospects
in emerging fields such as autonomous driving and distributed energy management. In the
field of autonomous driving, the MARL algorithm can optimize the driving paths and
speeds of multiple vehicles, improving road traffic efficiency and safety. In the field of
distributed energy management, the MARL algorithm can coordinate the operation of
multiple energy devices, achieving efficient energy utilization and supply–demand balance.
These applications not only demonstrate the enormous potential of MARL technology,
but also provide researchers with new research directions and challenges. But for the
problem of full automation of MARL learning, this paper believes that it is technically



Electronics 2025, 14, 820 30 of 34

feasible, but it also faces many challenges. MARL itself is a method to enable agents to
learn the optimal strategy by interacting with an environment. This process is automated in
nature and does not need direct manual supervision. Theoretically, MARL has the potential
to achieve full automation. However, in practical application, realizing the full automation
of MARL still faces a series of challenges. Among them, the instability of the environment
and the interaction between agents are the two most prominent problems, followed by
ethics, security, and other factors. Therefore, this fully automated solution is possible in
the future.

In addition, with the continuous advancement of technology and the expansion of
application scenarios, the scalability and robustness of multi-agent reinforcement learning
algorithms will also become a research focus in the future. Researchers need to design more
efficient and stable algorithms to meet the needs of large-scale multi-agent systems and
maintain stable performance in complex and changing environments.

In summary, multi-agent reinforcement learning, as an important branch of artificial
intelligence, has significant research and development implications. In the future, with the
continuous advancement of technology and the expansion of application scenarios, the
MARL algorithm will play an important role in more fields, contributing more wisdom
and strength to the development of human society.

Author Contributions: Material preparation, data collection, and analyses were performed by J.L.
The first draft of the manuscript was written by J.L. The review and editing of the manuscript were
performed by K.L., J.T. and X.W. The supervision of the project was performed by H.M. and Y.J. Project
administration was performed by R.L., H.M. and Y.J. All authors commented on previous versions of
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by the Research Support Program for Introducing High Level Talents
from Shenyang Ligong University (1010147001225), The Ministry of Education’s supply-demand
docking employment and education project (2023122570529) and Special Funding for Basic Research
Operating Costs of Undergraduate Colleges and Universities in Liaoning Province (SYLUGXTD07).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998; Volume 135.
2. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
3. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that matters. In Proceedings

of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
4. Jun, W.; Xin, X.; Jian, W.; Hangen, H. Overview of research progress on reinforcement learning for multi robot systems. Control

Decis. 2011, 26, 1601–1610.
5. Zhao, Z.H.; Gao, Y.; Luo, B.; Chen, S.F. Research Status and Development Trends of Reinforcement Learning in Multi Agent

Systems. Comput. Sci. 2004, 31, 23–27.
6. Wooldridge, M. An Introduction to Multiagent Systems; John Wiley & Sons: Hoboken, NJ, USA, 2009.
7. Perolat, J.; Leibo, J.Z.; Zambaldi, V.; Beattie, C.; Tuyls, K.; Graepel, T.A multi-agent reinforcement learning model of common-pool

resource appropriation. Adv. Neural Inf. Process. Syst. 2017, 30.
8. Littman, M.L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994;

Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–163.
9. Zhao, X.Y.; Ding, S.F. A Review of Deep Reinforcement Learning Research. Comput. Sci. 2018, 45, 1–6.



Electronics 2025, 14, 820 31 of 34

10. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–
3 June 2017; pp. 3389–3396.

11. Foerster, J.; Assael, I.A.; De Freitas, N.; Whiteson, S.Learning to communicate with deep multi-agent reinforcement learning. Adv.
Neural Inf. Process. Syst. 2016, 29, 2145–2153.

12. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor–critic for mixed cooperative–competitive
environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6382–6393.

13. Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.; Tuyls, K.; Pérolat, J.; Silver, D.; Graepel, T. A unified game-theoretic
approach to multiagent reinforcement learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4193–4206.

14. Leibo, J.Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; Graepel, T. Multi-agent reinforcement learning in sequential social dilemmas.
arXiv 2017, arXiv:1702.03037.

15. Shalev-Shwartz, S.; Shammah, S.; Shashua, A. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv 2016,
arXiv:1610.03295.

16. Jin, J.; Song, C.; Li, H.; Gai, K.; Wang, J.; Zhang, W. Real-time bidding with multi-agent reinforcement learning in display
advertising. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino,
Italy, 22–26 October 2018; pp. 2193–2201.

17. Xi, L.; Chen, J.; Huang, Y.; Xu, Y.; Liu, L.; Zhou, Y.; Li, Y. Smart generation control based on multi-agent reinforcement learning
with the idea of the time tunnel. Energy 2018, 153, 977–987.

18. Li, M.; Xu, K.; Song, Z.; Xia, Q.; Zhou, P. Overview of Research on Multi Agent Reinforcement Learning Algorithms. J. Front.
Comput. Sci. Technol. 2024, 18, 1979.

19. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
20. KRÖSE, B.A. Learning from delayed rewards. Robot. Auton. Syst. 1995, 15, 233–235.
21. Lin, Y.P.; Li, X.Y. Reinforcement learning based on local state feature learning and policy adjustment. Inf. Sci. 2003, 154, 59–70.
22. Hwang, K.S.; Tan, S.W.; Chen, C.C. Cooperative strategy based on adaptive Q-learning for robot soccer systems. IEEE Trans.

Fuzzy Syst. 2004, 12, 569–576.
23. Guo, M.; Liu, Y.; Malec, J. A new Q-learning algorithm based on the metropolis criterion. IEEE Trans. Syst. Man, Cybern. Part B

Cybern. 2004, 34, 2140–2143.
24. Aissani, N.; Beldjilali, B.; Trentesaux, D. Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement

approach. Eng. Appl. Artif. Intell. 2009, 22, 1089–1103.
25. Derhami, V.; Majd, V.J.; Ahmadabadi, M.N. Exploration and exploitation balance management in fuzzy reinforcement learning.

Fuzzy Sets Syst. 2010, 161, 578–595.
26. Hui, W. Research on Near End Policy Optimization Algorithm in Continuous Environment. Master’s Thesis, Taiyuan University

of Science and Technology, Taiyuan, China, 2024.
27. Wang, Y.H.; Zhong, X.J.; Li, M. Experimental Design of Mobile Robot Arm Grasping Based on Improved Near End Policy

Optimization Algorithm. Exp. Technol. Manag. 2024, 41. https://doi.org/10.16791/j.cnki.sjg.2024.04.011.
28. Sun, Y.; Cao, L.; Chen, X.L.; Xu, Z.X.; Lai, J. A Review of Research on Multi Agent Deep Reinforcement Learning. Comput. Eng.

Appl. 2020, 56, 13–24.
29. Jin, Y.; Ying, Z.; Liu, C.; Ge, H.; Chen, Z. Research on Spherical Robot Target Following Based on PPO. J. Ordnance Equip. Eng.

2024, 45, 280.
30. Huang, C.Z. Research and Implementation of AI System for Virtual Reality Games Based on Reinforcement Learning. Master’s

Thesis, Shenzhen University, Shenzhen, China, 2020.
31. Li, Z.L.; Zhu, J.H.; Kuang, M.C.; Zhang, J.; Ren, J. Hierarchical Reinforcement Learning Decision Algorithm for Air Combat Based

on Mixed Actions. J. Aeronaut. 2024, 45, 163–180.
32. Wan, Y.; Zhu, Z.; Zhong, C.; Liu, Y.; Lin, T.; Zhang, L. Dynamic Path Planning of Robotic Arm Based on Improved PPO Algorithm.

J. Syst. Simul. 2024, 1–14. https://doi.org/10.16182/j.issn1004731x.joss.24-0122.
33. Ye, B.; Wang, X.; Li, L.; Wu, W. Vehicle Intelligent Control Method Based on Deep Reinforcement Learning PPO. Comput. Eng.

2024, 1–14. https://doi.org/10.19678/j.issn.1000-3428.0068889.
34. Qin, H.; Huang, Y.; Chen, T.; Zhang, H. Cluster Multi Objective Firepower Planning Method Based on PPO Algorithm. Syst. Eng.

Electron. Technol. 2024, 46, 3764–3773.
35. Shi, G.; Zhao, Q.; Dong, X.; He, J.; Liu, J. PPO Algorithm based Interactive Reinforcement Learning Method for Autonomous

Driving Human Machine Interaction. Comput. Appl. Res. 2024, 41, 2732–2736. https://doi.org/10.19734/j.issn.1001-3695.2024.01.
0018.

36. An, C.; Zhou, S. Multi UAV Collaborative Exploration Method Based on Improved Multi Agent PPO. Electr. Control 2024,
31, 51–56.

37. Du, W.; Ding, S. Overview of Multi Agent Reinforcement Learning. Comput. Sci. 2019, 46, 1–8.

https://doi.org/10.16791/j.cnki.sjg.2024.04.011
https://doi.org/10.16182/j.issn1004731x.joss.24-0122
https://doi.org/10.19678/j.issn.1000-3428.0068889
https://doi.org/10.19734/j.issn.1001-3695.2024.01.0018
https://doi.org/10.19734/j.issn.1001-3695.2024.01.0018


Electronics 2025, 14, 820 32 of 34

38. Fu, Y.; Lei, K.; Wei, J.; Cao, Z.; Yang, B.; Wang, W.; Sun, Z.; Li, Q. Hierarchical Multi Agent Collaborative Decision Making Method
Based on Actor Critic Framework. J. Ordnance Eng. 2024, 45, 3385–3396.

39. Yang, Y.; Huang, T.; Wang, T.; Yang, W.; Chen, H.; Li, B.; Wen, C.Y. Sampling-efficient path planning and improved actor–critic-
based obstacle avoidance for autonomous robots. Sci. China Inf. Sci. 2024, 67, 152204.

40. Zhao, C. Non complete Information Intelligent Game Decision Method Based on A3C Model. Master’s Thesis, Shaanxi Normal
University, Xi’an, China, 2020. https://doi.org/10.27292/d.cnki.gsxfu.2020.002741.

41. Zhu, Y.; Ma, L.; Liu, X. Iterative Learning Model Predictive Control Based on Deep Deterministic Policy Gradient Algorithm. In
Proceedings of the 35th China Process Control Conference, Sanya, China, 25 July 2024. https://doi.org/10.26914/c.cnkihy.2024.0
20111.

42. Yu, R.; Xu, L.; Zhang, R. Collaborative Control Method for Variable Speed Limits on Highways Based on Multi Agent Deep
Reinforcement Learning. J. Tongji Univ. Nat. Sci. Ed. 2024, 52, 1089–1098.

43. Fu, J.X.; Liu, L.; Qian, C. A3C Quantitative Trading Strategy Based on Attention Mechanism. J. Nantong Univ. Nat. Sci. Ed. 2023,
22, 43–49+74.

44. Hu, H.; Zhao, C.J.; Liu, J.; Song, Y.X.; Zhang, Y.C. Network Defense Strategy Optimization Based on Random Game Theory and
A3C Deep Reinforcement Learning. J. Command Control 2024, 10, 47–58.

45. Dong, W.; Liu, K.; Liu, C.; Tang Y.; Ma, J. Automated Penetration Testing Method Based on Deep Reinforcement Learning Noisy
Net-A3C Algorithm. J. Zhengzhou Univ. Eng. Ed. 2024, 1–9. https://doi.org/10.13705/j.issn.1671-6833.2024.02.011.

46. Zhao, T.; Zhang, X.; Zhang, M.; Chen, J. Research on Path Planning for Autonomous Driving Based on Deep Reinforcement
Learning. J. Hebei Univ. Technol. 2024, 53, 21–30. https://doi.org/10.14081/j.cnki.hgdxb.2024.04.002.

47. Zhang, Y.Z.; WU, Z.R.; Zhang, J.D.; Yang, Q.M.; Shi, G.Q.; Xu, Z.X. Multi to One Pursuit and Escape Game of Drones Based on
ME-DDPG Algorithm. Syst. Eng. Electron. Technol. 2024, 1–15.

48. Li, M. Research on Robot Arm Grasping Methods Based on Reinforcement Learning and Meta Learning. Master’s Thesis,
Nanjing University of Posts and Telecommunications, Nanjing, China, 2022. https://doi.org/10.27251/d.cnki.gnjdc.2022.001663.

49. Buşoniu, L.; Babuška, R.; De Schutter, B. Multi-agent reinforcement learning: An overview. In Innovations in Multi-Agent Systems
and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–221.

50. Wang, Y.; De Silva, C.W. Multi-robot box-pushing: Single-agent q-learning vs. team q-learning. In Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3694–3699.

51. Galindo-Serrano, A.; Giupponi, L. Distributed Q-learning for aggregated interference control in cognitive radio networks. IEEE
Trans. Veh. Technol. 2010, 59, 1823–1834.

52. Fu, H.; Tang, H.; Hao, J.; Lei, Z.; Chen, Y.; Fan, C. Deep multi-agent reinforcement learning with discrete-continuous hybrid
action spaces. arXiv 2019, arXiv:1903.04959.

53. Hu, J.; Wellman, M.P. Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 2003, 4, 1039–1069.
54. Greenwald, A.; Hall, K.; Serrano, R. Correlated Q-learning. In Proceedings of the ICML, Washington, DC, USA, 21–24 August

2003; Volume 1, pp. 242–249.
55. Littman, M.L. Friend-or-foe Q-learning in general-sum games. In Proceedings of the ICML, Williamstown, MA, USA, 28 June–1

July 2001; Volume 1, pp. 322–328.
56. Littman, M.L. Value-function reinforcement learning in Markov games. Cogn. Syst. Res. 2001, 2, 55–66.
57. Lauer, M.; Riedmiller, M.A. An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In

Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000;
pp. 535–542.

58. Liu, W.; Cheng, X.; Li, H. Optimized Collaborative Multi Agent Reinforcement Learning Architecture. Comput. Syst. Appl. 2024,
1–11. https://doi.org/10.15888/j.cnki.csa.009636.

59. Li, J.M.; Qiao, S.J.; Han, N.; Wu, T.; Gao, R.W.; Peng, Y.H.; Xie, T.C.; Ran, L.Q. Collaborative Multi Agent Model for Database
Parameter Optimization. Electron. J. 2024, 1–6. Available online: http://kns.cnki.net/kcms/detail/11.2087.TN.20240514.0849.002.
html (accessed on 11 February 2025).

60. Jin, L. Research on UAV Collaboration Based on Multi Agent Reinforcement Learning. Master’s Thesis, University of Electronic
Science and Technology of China, Chengdu, China, 2024. https://doi.org/10.27005/d.cnki.gdzku.2024.000881.

61. Han, X. Research on Multi Agent Collaboration Algorithm Based on Reinforcement Learning. Master’s Thesis, China University
of Geosciences Beijing, Beijing, China, 2019. https://doi.org/10.27493/d.cnki.gzdzy.2019.001006.

62. Wang, M. Research on the Path Finding Problem of Game AI Based on Reinforcement Learning. Master’s Thesis, Xidian
University, Xi’an, China, 2023. https://doi.org/10.27389/d.cnki.gxadu.2023.001108.

63. Gong, H.W. Research on Multi Agent Adversarial Strategies Based on Deep Reinforcement Learning. Master’s Thesis, Harbin
Engineering University, Harbin, China, 2022. https://doi.org/10.27060/d.cnki.ghbcu.2022.001278.

64. Liu, T. Research on Multi Agent Competitive Reinforcement Learning Method Based on Privacy Protection. Master’s Thesis, Jilin
Unveristy, Changchun, China, 2024. https://doi.org/10.27162/d.cnki.gjlin.2024.006103.

https://doi.org/10.27292/d.cnki.gsxfu.2020.002741
https://doi.org/10.26914/c.cnkihy.2024.020111
https://doi.org/10.26914/c.cnkihy.2024.020111
https://doi.org/10.13705/j.issn.1671-6833.2024.02.011
https://doi.org/10.14081/j.cnki.hgdxb.2024.04.002
https://doi.org/10.27251/d.cnki.gnjdc.2022.001663
 https://doi.org/10.15888/j.cnki.csa.009636
 http://kns.cnki.net/kcms/detail/11.2087.TN.20240514.0849.002.html
 http://kns.cnki.net/kcms/detail/11.2087.TN.20240514.0849.002.html
https://doi.org/10.27005/d.cnki.gdzku.2024.000881
https://doi.org/10.27493/d.cnki.gzdzy.2019.001006
https://doi.org/10.27389/d.cnki.gxadu.2023.001108
https://doi.org/10.27060/d.cnki.ghbcu.2022.001278
https://doi.org/10.27162/d.cnki.gjlin.2024.006103


Electronics 2025, 14, 820 33 of 34

65. Liu, M. Research on Multi Agent Collaborative Adversarial Algorithm Based on Reinforcement Learning. Master’s Thesis,
Harbin Engineering University, Harbin, China, 2023. https://doi.org/10.27060/d.cnki.ghbcu.2023.002651.

66. Zhang, F. Research on Multi Agent Deep Reinforcement Learning Methods in a Hybrid Cooperative Competitive Environment.
Master’s Thesis, Sichuan University, Chengdu, China, 2021. https://doi.org/10.27342/d.cnki.gscdu.2021.003550.

67. Jiang, H. Research and System Implementation of Strategy Optimization Technology in Multi Agent Cooperative Adversarial
Environment. Master’s Thesis, National University of Defense Technology, Changsha, China, 2020. https://doi.org/10.27052/d.
cnki.gzjgu.2020.001093.

68. Du, C. Research on Multi Agent Collaborative Adversarial Methods Based on Deep Reinforcement Learning. Master’s Thesis,
Xidian University, Xi’an, China, 2020. https://doi.org/10.27389/d.cnki.gxadu.2020.000731.

69. Bellman, R. Dynamic programming. Science 1966, 153, 34–37.
70. Guestrin, C.; Lagoudakis, M.; Parr, R. Coordinated reinforcement learning. In Proceedings of the ICML, Citeseer, Sydney,

Australia, 8–12 July 2002; Volume 2, pp. 227–234.
71. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.;

Tuyls, K.; et al. Value-decomposition networks for cooperative multi-agent learning. arXiv 2017, arXiv:1706.05296.
72. Rashid, T.; Samvelyan, M.; De Witt, C.S.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep

multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 1–51.
73. Rashid, T.; Farquhar, G.; Peng, B.; Whiteson, S. Weighted qmix: Expanding monotonic value function factorisation for deep

multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst. 2020, 33, 10199–10210.
74. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.E.; Yi, Y. Qtran: Learning to factorize with transformation for cooperative multi-agent

reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA,
9–15 June 2019; pp. 5887–5896.

75. Matignon, L.; Laurent, G.J.; Le Fort-Piat, N. Independent reinforcement learners in cooperative markov games: A survey
regarding coordination problems. J. The Knowledge Engineering Review. 2012, 27, 1–31.

76. Tont, G.; Secara, O.M.; Tont, D.G. Bayesian Reliability Analysis of Non-Stationarity in Multi-agent Systems. J. Electr. Electron. Eng.
2013, 6, 153.

77. Zhang, X.; Zheng, K.; Wang, C.; Chen, J.; Qi, H. A novel deep reinforcement learning for POMDP-based autonomous ship
collision decision-making. In Neural Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–15.

78. Li, L.; Zhao, W.; Wang, C. POMDP motion planning algorithm based on multi-modal driving intention. IEEE Trans. Intell. Veh.
2022, 8, 1777–1786.

79. Tan, X.; Zhou, L.; Wang, H.; Sun, Y.; Zhao, H.; Seet, B.C.; Wei, J.; Leung, V.C. Cooperative multi-agent reinforcement-learning-based
distributed dynamic spectrum access in cognitive radio networks. IEEE Internet Things J. 2022, 9, 19477–19488.

80. Azzam, R.; Boiko, I.; Zweiri, Y. Swarm cooperative navigation using centralized training and decentralized execution. Drones
2023, 7, 193.

81. Xiao, G.Q.; Li, X.Q.; Chen, Y.D.; Tang, Z.; Jiang, W.J.; Li, K.L. A Review of Large Scale Graph Neural Networks Research. J. Comput.
Sci. 2024, 47, 148–171.

82. Hu, Y.; Fu, J.; Wen, G. Graph soft actor–critic reinforcement learning for large-scale distributed multirobot coordination. IEEE
Trans. Neural Netw. Learn. Syst. 2023, 36, 665–676.

83. Jiang, Z.; Chen, Y.; Wang, K.; Yang, B.; Song, G. A Graph-Based PPO Approach in Multi-UAV Navigation for Communication
Coverage. Int. J. Comput. Commun. Control. 2023, 18, 5505.

84. Fu, X.; Wang, H.; Wang, Z.; Shi, Z.; Yang, W.; Ma, P. Research on micro-grid group intelligent decision mechanism under the
mode of block-chain and multi-agent fusion. Energies 2019, 12, 4196.

85. Paikray, H.; Das, P.; Panda, S. Optimal multi-robot path planning using particle swarm optimization algorithm improved by sine
and cosine algorithms. Arab. J. Sci. Eng. 2021, 46, 3357–3381.

86. Soleimanpour-Moghadam, M.; Nezamabadi-Pour, H. A multi-robot task allocation algorithm based on universal gravity rules.
Int. J. Intell. Robot. Appl. 2021, 5, 49–64.

87. Roth, E.M.; Hanson, M.L.; Hopkins, C.; Mancuso, V.; Zacharias, G.L. Human in the loop evaluation of a mixed-initiative system
for planning and control of multiple UAV teams. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
New Orleans, LA, USA, 20–24 September 2004; SAGE Publications Sage: Los Angeles, CA, USA, 2004; Volume 48, pp. 280–284.

88. Shallal, A.H.; Ucan, O.N.; Humaidi, A.J.; Bayat, O. Multi-robot systems formation control with maneuvring target in system
applicable in the hospitality and care-health industry of medical Internet of things. J. Med. Imaging Health Informat. 2020,
10, 268–278.

89. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration. In Proceedings of the
International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp. 2829–2838.

90. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control. In
Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp. 1329–1338.

https://doi.org/10.27060/d.cnki.ghbcu.2023.002651
https://doi.org/10.27342/d.cnki.gscdu.2021.003550
https://doi.org/10.27052/d.cnki.gzjgu.2020.001093
https://doi.org/10.27052/d.cnki.gzjgu.2020.001093
https://doi.org/10.27389/d.cnki.gxadu.2020.000731


Electronics 2025, 14, 820 34 of 34

91. Chen, W.; Zhou, K.; Chen, C. Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning. In
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 100–106.

92. Vidhate, D.A.; Kulkarni, P. Cooperative multi-agent reinforcement learning models (CMRLM) for intelligent traffic control. In
Proceedings of the 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad,
India, 5–6 October 2017; pp. 325–331.

93. Xu, F.F.; Song, Y.; Li, B.; Tang, Y.; Jain, K.; Bao, M.; Wang, Z.Z.; Zhou, X.; Guo, Z.; Cao, M.; et al. Theagentcompany: Benchmarking
llm agents on consequential real world tasks. arXiv 2024, arXiv:2412.14161.

94. He, J.Y.; Cheng, Z.Q.; Li, C.; Sun, J.; He, Q.; Xiang, W.; Chen, H.; Lan, J.P.; Lin, X.; Zhu, K.; et al. MetaDesigner: Advancing Artistic
Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis. arXiv 2024, arXiv:2406.19859.

95. Kofinas, P.; Dounis, A.I.; Vouros, G.A. Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids. Appl.
Energy 2018, 219, 53–67.

96. Ishiwaka, Y.; Sato, T.; Kakazu, Y. An approach to the pursuit problem on a heterogeneous multiagent system using reinforcement
learning. Robot. Auton. Syst. 2003, 43, 245–256.

97. Rütters, H.; Stadler, S.; Bäßler, R.; Bettge, D.; Jeschke, S.; Kather, A.; Lempp, C.; Lubenau, U.; Ostertag-Henning, C.;
Schmitz, S.; et al. Towards an optimization of the CO2 stream composition—A whole-chain approach. Int. J. Greenh. Gas
Control 2016, 54, 682–701.

98. Zhao, N.; Liu, Z.; Cheng, Y. Multi-agent deep reinforcement learning for trajectory design and power allocation in multi-UAV
networks. IEEE Access 2020, 8, 139670–139679.

99. Shao, K.; Zhu, Y.; Zhao, D. StarCraft micromanagement with reinforcement learning and curriculum transfer learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2018, 3, 73–84.

100. Chen, T.Q.; He, J.M.; Yin, Q.Y. Evolutionary Dynamics of BCRT Strategy Selection under Game Learning Theory. Syst. Eng. 2011,
29, 22–27.

101. Wang, T.; Wang, B.; Liang, Y. Multi-agent graphical games with input constraints: An online learning solution. Control Theory
Technol. 2020, 18, 148–159.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Basic Theory
	Markov Decision Process
	Markov Game
	Reinforcement Learning
	Value-Based Reinforcement Learning Algorithms
	Policy-Based Reinforcement Learning Algorithms
	Actor–Critic Algorithms


	Classification and Research of Multi-Agent Reinforcement Learning Algorithms
	Fully Cooperative
	Fully Competitive
	Mixed

	Challenges Faced
	Dimensionality Curse
	Non-Stationarity
	Partial Observability
	Scalability

	Research on Experimental Platforms and Application Domains
	Experimental Platforms
	OpenAI Gym
	Unity ML-Agents Toolkit
	DeepMind Lab
	MuJoCo
	Roboschool
	Ray RLlib
	TensorFlow Agents
	Horizon

	Application Domains
	Collaboration
	Resource Scheduling
	Internet
	Game AI
	Group Gaming


	Conclusions
	References

