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Abstract: More and more users openly share their information on online websites, with
the resulting privacy issues being under scrutiny. Content such as a user’s personal data
and location information is often asked for before posting to enforce the user’s privacy
preferences; however, little attention has been paid to the lack of content (e.g., images)
posted by the user. Even if privacy preferences are requested before images are published,
publishers often remain unaware of the extent of privacy leakage associated with their data.
To this end, we provide an image privacy metric scheme that incorporates users’ privacy
preferences, with the core idea of assisting users in making data publishing decisions. First,
we propose privacy-specific spatial attention mechanisms that can effectively improve the
prediction accuracy. Next, we integrate set pair analysis (SPA) theory and use the network
output as the privacy value. Finally, we combine a user study to understand the privacy
preferences of different users with respect to these attributes and combine it with principal
component analysis to correct and enforce user privacy preferences. Our model is trained
with the ability to predict privacy risk end-to-end, thus being able to guide the user in
sharing data in open platforms. We use the image privacy dataset, VISPR, to predict privacy
information better than other methods.

Keywords: privacy attribute prediction; set pair analysis; measuring privacy

1. Introduction
In the fast-evolving field of data science, the safeguarding of personal privacy faces

unprecedented challenges. Consider the case of a young professional who, while sharing
a celebratory photo of a work promotion on Facebook, unknowingly reveals a sensitive
document in the background with financial figures, or a family sharing a vacation video
on YouTube, where their home address can be inferred from the street signs in the footage.
These real-life scenarios illustrate the fact that user-generated content (UGC) on social
media, including text, images, and videos, contains a vast amount of personal privacy
information [1], as illustrated in Figure 1. Studies have shown that up to 66% of the content
on these platforms includes personal privacy data [2]. The widespread collection and
sharing of personal information, including sensitive biometric, financial, and geographical
location data, poses a significant threat to personal privacy and security. This is largely
due to advancements in mobile internet, cloud computing, and big data technologies.
Although the immediacy of communication and the wide dissemination of social media
have developed qualitatively, these platforms, while offering convenience, also come with
privacy dilemmas for users. Research on privacy preferences and social networks has been
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explored in past studies. Research by [3] has examined the types of personal information
disclosed on social networking sites. Other studies focus on preserving privacy while using
social networks [4], as well as exploring privacy settings [5].

However, traditional methods mainly rely on user profiles and privacy settings, which
have significant limitations. They are relatively weak in managing the unstructured features
of UGC, especially in accurately detecting and measuring privacy in images and video
content. For example, they often struggle to analyze complex visual scenes and identify
subtle privacy-related elements. Their effectiveness in handling visual content, such as
accurately classifying multi-label privacy images, remains to be fully verified. Compared
with traditional concepts of privacy, the scope of privacy in the internet environment
is expanding, and both users and social media platforms are increasingly entangled in
privacy issues. Ensuring that personal information is accurately perceived and measured is
critically important. Although traditional mechanisms have focused on user profiles and
privacy settings, they are relatively weak in managing the unstructured features of UGC,
particularly images and video content. Their effectiveness in analyzing visual content
remains to be fully verified. Research has shown that individuals tend to misinterpret
privacy-sensitive details in images, further complicating the safeguarding of personal
privacy [6].

Figure 1. Examples of user-generated content.

Motivating scenarios where the proposed concept can play a role:

• Travel sharing: When users share travel photos on social media platforms, like In-
stagram or Facebook, they may unknowingly expose details such as the name of the
hotel they stayed at, the license plate of a rental car, or even their face in front of a
famous landmark, which could potentially be used for re-identification. Our system
can detect these privacy-sensitive elements and alert users, allowing them to share
their travel experiences while maintaining their privacy.

• Event photography: At events like concerts or conferences, people often take and
share photos. These photos might contain the faces of other attendees, their badges
with personal information, or even financial transaction receipts left in the venue. Our
proposed concept can analyze these images in real-time as users attempt to share them,
ensuring that no sensitive information is inadvertently shared.

• Home-based content sharing: With the rise of home-based businesses and online
marketplaces, users may share photos of their homes or products. These images could
reveal their home address, personal belongings with identifying marks, or unique
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features of their living environment. Our technology can help users protect their
privacy by identifying and flagging such details before sharing.

This study focuses on the application of deep learning technology to detect fine-
grained privacy in visual content on social media platforms. Deep learning has demon-
strated significant effectiveness in various machine learning domains [1,7–9]. However,
limited research has been conducted on multi-label privacy image classification. The appli-
cation of deep learning in visual privacy detection and measurement is explored, with im-
provements in prediction accuracy achieved by focusing on different regions of an image
using a privacy-specific spatial attention mechanism, highlighting relevant privacy at-
tributes. In addition, this study uses set pair analysis (SPA) theory, which evaluates the
similarity, difference, and opposition between system elements. This provides a novel
approach for analyzing privacy risks, effectively quantifying privacy risks, and offering
guidance to users regarding the publication of sensitive content.

An automated mechanism combining deep learning and SPA is proposed in this study
to predict and measure privacy in visual content on social media platforms. This approach
alleviates the burden on users to manually inspect historical UGC to prevent privacy leaks
while providing a more precise assessment of users’ privacy.

Our main contributions in this paper are outlined as follows:

• Privacy-Specific Spatial Attention: Privacy-specific spatial attention weights are gen-
erated for each privacy attribute label. In multi-label privacy classification, these
attention weights enable the model to focus on image regions relevant to specific
privacy attributes, thereby improving its ability to capture fine-grained privacy in-
formation. Furthermore, the performance of various backbone networks for this
task is explored, with results showing an improvement in accuracy compared to
previous works.

• Proposing an End-to-End Framework for Fine-Grained Privacy Detection and Quan-
tification: We introduced an end-to-end framework that leverages deep learning’s
multi-label classification capabilities in conjunction with set pair analysis (SPA) theory.
This framework demonstrates the ability to effectively capture various privacy com-
ponents within images and, importantly, to estimate the overall privacy level of each
image. The integration of these techniques represents a meaningful advancement in
automating and quantifying visual privacy assessment.

• Experimental Validation on Real-World Datasets: To demonstrate the effectiveness
of our proposed image privacy assessment framework, we designed and conducted
rigorous experiments on VISPR [10] (visual privacy). The results indicate that our
approach performs well in the challenging task of fine-grained visual privacy detection,
highlighting its practical value and potential applicability in scenarios where privacy
preservation is a key consideration.

2. Related Work
2.1. Deep Privacy Prediction

The advent of deep learning has revolutionized the landscape of image privacy per-
ception, enabling more sophisticated and accurate analyses. In 2016, Tran introduced the
use of convolutional neural networks for image privacy perception, employing the AlexNet
architecture and a facial emotion analysis model [11], marking a significant advancement
in this area. This field of research has expanded to various domains, including facial
recognition [12,13], license plate recognition [14], and social relationship analysis [15–17].
A particular phenomenon noted in these studies is the “privacy paradox”, where users con-
tinue to share images despite being aware of the associated privacy risks. This highlights
the complexity and challenges in predicting user behavior concerning privacy [18–20].
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In this study, we enhance the accuracy of privacy attribute prediction by incorporating
spatial privacy attention and introduce a novel challenge in computer vision designed to
help users assess privacy risks before sharing images on social media, encompassing a
broad range of personal information in a single framework.

2.2. Privacy Measurement

Research on privacy has mainly focused on privacy protection, with relatively less
emphasis on privacy risk measurement, primarily centering on the privacy measurement
of location or trajectories through metrics such as information entropy, the probability of
inferring the actual location, and the duration of sustainable trajectories [21–26]. In the sce-
nario of privacy-protected neural network inference, the accuracy and efficiency of privacy
measurements are of crucial importance. Although existing technologies are dedicated to
protecting data privacy, they have certain limitations. For example, Jun Feng [27] pointed
out that the current state-of-the-art secure two-party neural network (2P-NN) inference
technology incurs significant computational and communication overhead when dealing
with ImageNet-scale deep neural networks. The Panther system they proposed offers
new ideas for solving this problem. Differential privacy (DP) is a commonly used privacy-
preserving technique that reduces data leakage risks by adding noise and has been widely
applied in areas such as federated learning. However, DP has certain limitations in privacy
measurement. First, DP focuses on data protection, while privacy measurement aims to
assess privacy risks, making their objectives different. Second, DP relies on noise injection,
which may affect the precise calculation of privacy risks. Lastly, DP is primarily designed
for structured data, while privacy measurement often involves unstructured data, like im-
ages, requiring deeper feature extraction and semantic understanding. Therefore, while DP
is an important privacy-preserving approach, its direct application in privacy measurement
remains limited, and future work can explore its integration with privacy risk assessment.
A privacy quantification model was proposed, analyzing users’ privacy concerns using
theories of commercial rights and data statistics [28]. A noise-based data perturbation
technique was adopted to assess the degree of privacy by evaluating the closeness between
the original data within the interval and the perturbed data [29]. A privacy index function
was introduced to evaluate users’ privacy exposure; however, it was limited to a single
social network [30]. Privacy in published tweets can be quantified to a certain degree of
uncertainty through the mention of private information like names and addresses [31].
The use of SPA and other mathematical models in privacy measurement represents innova-
tive approaches to handling uncertainty in cross-domain data sharing [32,33], particularly
noting SPA’s applicability in dynamic, uncertain scenarios. Recent methodologies based on
SPA theory addressed the challenge of measuring privacy when background knowledge is
unclear, allowing for more dynamically adaptable privacy analysis [34]. The development
of privacy measurement techniques, including those based on the theory of anonymous sets
and event entropy, underscores the ongoing need for effective tools to detect and manage
privacy leaks.

However, previous works on privacy analysis have mainly focused on coarse-grained
privacy detection, limiting the depth of their implications. To address this, Song proposed
a multi-task learning model guided by a classification of privacy-oriented features crafted
for predicting personal aspects revealed in posts, introducing a comprehensive taxonomy
for representing user privacy [35]. WQ Huang demonstrated the applicability of set pair
analysis for privacy measurement under conditions of uncertain background knowledge,
a foundation we build upon to further analyze privacy metrics in emerging social media
platforms [36]. Although pioneer studies achieved significant milestones, they predomi-
nantly utilized shallow learning methods and a set of handcrafted privacy-oriented features.
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The work most closely related to ours is [10], where they focus on developing privacy
advisors and conducting user studies to personalize predictions based on users’ privacy
preferences. However, their approach heavily relies on users’ privacy preferences when
predicting privacy scores, leading to a lack of objectivity in the privacy risk scores and
poor interpretability. In this paper, we focus on leveraging an attention mechanism to
enhance the performance of fine-grained privacy detection and explore personal privacy
quantification in conjunction with SPA.

In order to align with users’ specific privacy preferences, we draw on the user research
method in the work of Orekondy et al. We recruited 305 AMT workers to rate 67 privacy
attributes (excluding the “safe” attribute) on a scale of 1–5 to evaluate the degree of pri-
vacy violation when details of the attributes are accidentally disclosed. This is used to
collect users’ preference data. Subsequently, we use principal component analysis (PCA) to
transform these related ratings into uncorrelated principal components and determine the
weights based on the absolute values of the coefficients of each attribute in the principal
components. Attributes with large absolute coefficient values, such as “credit card”, have
higher weights in the calculation of comprehensive privacy risks. In this way, the deter-
mined weights are closely related to users’ preferences, enhancing the interpretability of
the weight assignment process.

2.3. Visual Privacy Datasets

Datasets are often a major constraint in the development of machine learning, and de-
tecting multiple privacy attributes heavily relies on high-quality datasets. Privacy tasks
often rely on images that reveal sensitive details, such as faces, names, or opinions. How-
ever, many existing datasets do not provide enough of these types of images to effectively
study privacy-related issues. Although some datasets [37] include such data, they tend
to be either too small or not representative of real-world social media images. The PIPA
dataset [15,38], which consists of 37,107 Flickr images for people recognition in uncon-
strained settings, is the closest match. However, it does not cover other critical privacy
aspects like license plates, political opinions, or official identification documents. The PE-
ViD video dataset [39] focuses on person-centric bounding box annotations across 20
video sequences in controlled settings. Visual privacy datasets such as PicAlert [17] and
YourAlert [40] offer user-classified privacy labels, while VISPR [10] provides a more exten-
sive set of 22k images annotated with a variety of privacy-related labels. However, both
the PIPA and PicAlert datasets are currently unavailable, which limits related research.

2.4. Use of AI Tools

In the preparation of this manuscript, the authors primarily drafted their content
without significant reliance on generative AI (GenAI) tools. However, during the writing
process, AI-assisted tools were used for specific purposes. The authors used ChatGPT (Ope-
nAI) to refine language, check grammar, and improve the clarity of technical descriptions.
All AI-generated suggestions were carefully reviewed and revised by the authors to ensure
technical accuracy and adherence to scientific integrity. Additionally, Zotero (or another
citation manager) was utilized for managing and formatting references, ensuring correct
citation formats without altering the content of the references.

All scientific content, data analysis, and conclusions in this manuscript were developed
and verified solely by the authors, who bear full responsibility for the submitted work.

3. Visual Privacy Prediction and Measurement
The complete process of privacy detection and measurement is illustrated in Figure 2.

Our research approach and technical procedure are as follows: (i) Privacy-specific spatial
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attention mechanism: First, to more accurately capture privacy information in images, we
propose a privacy-specific spatial attention mechanism. Convolutional neural networks
(CNNs) are a class of deep learning models that have shown remarkable performance in
image processing tasks. They use convolutional layers to automatically learn hierarchical
features from images, which are particularly effective in extracting visual patterns. Based
on the foundation of CNNs, our proposed mechanism automatically identifies privacy-
sensitive regions in the image and assigns higher attention weights to these areas. Through
the spatial attention layer, the model can focus on regions related to privacy, enhancing
its ability to capture privacy attributes. (ii) Privacy measurement model based on SPA:
After obtaining the privacy attribute vector of the image, we establish a set theory model to
describe the inclusion and intersection relationships among the privacy attributes of the
image, and use set operations to perform privacy measurement, calculating the overall level
of privacy contained in the given image. This model refers to the measurement methods
in set pair analysis theory. (iii) Generate privacy recommendations: Based on the privacy
level of the image, our system can determine whether the given image can be safely shared
or needs to be modified to some extent.

Figure 2. Employing automated deep learning and set pair analysis techniques to enhance privacy
measurement practices on social media platforms.

Through this technical process, we aim to model and measure image privacy more
precisely while ensuring computational efficiency. This plays a significant role in guiding
users to share privacy-sensitive images and achieving controllable privacy measurements.
During the experimental phase, a pre-trained multi-label classification model will be
utilized to extract privacy components directly from users’ visual privacy datasets.

3.1. Privacy Attribute Prediction

As shown in Table 1, we compare the performance of various models based on the
mean average precision (mAP) metric, evaluated on the test set. The results highlight the
superior effectiveness of our proposed method, ResNet-50+PSSA, which achieves an mAP
of 46.88. This represents a significant improvement over all other methods tested.

When compared to traditional SVM-based methods (refer to machine learning ap-
proaches that utilize support vector machines (SVMs), which are supervised learning
models used for classification and regression analysis), which yield mAP scores of 37.93
for CaffeNet and 39.88 for GoogleNet, our deep learning models show a clear advan-
tage. For instance, ResNet-50, a widely used backbone, achieves an mAP of 40.50, while
our ResNet-50+PSSA model surpasses it by 6.38 points. Furthermore, even when com-
pared to other state-of-the-art models such as ResNet-101, which has an mAP of 40.50,
and GoogleNet, which scores 41.20, our method demonstrates a clear performance boost.
In addition, the VIT-B16-224 model has an mAP of 42.50, and the VIT-L16-224 model attains
an mAP of 43.80. However, our ResNet-50+PSSA model still outperforms them with its
mAP of 46.88, further highlighting the superiority of our proposed approach.
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Table 1. Accuracy of our methods given by mean average precision and other metric scores, evaluated
on test. The highest and second-highest accuracies under each setting are in bold and underlined,
respectively.

Training Backbone mAP (%) CP CR CF1 OP OR OF1

SVM
CaffeNet 37.93 0.65 0.62 0.63 0.55 0.52 0.53

GoogleNet 39.88 0.68 0.65 0.66 0.58 0.55 0.56
Resnet-50 40.50 0.70 0.67 0.68 0.60 0.57 0.58

End-to-End

ResNet-18 37.93 0.65 0.62 0.63 0.55 0.52 0.53
CaffeNet 40.91 0.72 0.69 0.70 0.62 0.59 0.60

GoogleNet 41.20 0.73 0.70 0.71 0.63 0.60 0.61
ResNet-34 39.88 0.68 0.65 0.66 0.58 0.55 0.56

ResNet-50 [10] 44.91 0.78 0.75 0.76 0.68 0.65 0.66
ResNet-101 40.50 0.70 0.67 0.68 0.60 0.57 0.58
VIT-B16-224 42.50 0.75 0.72 0.73 0.65 0.62 0.63
VIT-L16-224 43.80 0.77 0.74 0.75 0.67 0.64 0.65

ResNet-50+PSSA 46.88 0.82 0.79 0.80 0.72 0.69 0.70

It is also noteworthy that the ResNet-50 model presented in Orekondy [10] achieves
an mAP of 44.91, but our enhancement with the PSSA mechanism leads to a further
improvement, bringing the mAP up to 46.88, surpassing previous work and demonstrating
the effectiveness of our approach.

Thus, the integration of the PSSA mechanism with ResNet-50 significantly improves
the model’s ability to detect and extract privacy attributes, establishing it as the most
effective method in this evaluation.

3.1.1. Spatial Attention Mechanism for Privacy Attribute Prediction

In the task of multi-label privacy attribute extraction, a primary challenge is that
privacy-sensitive information is distributed unevenly across the image. Certain regions
might contain sensitive data, such as faces, IDs, or other personal information, while other
areas might not include any relevant privacy data. To address this, we propose a privacy-
specific spatial attention (PSSA) mechanism that allocates varying attention weights to
different image regions, thereby enhancing the model’s ability to focus on areas containing
privacy-relevant information.

Given an image I, we first process it through a feature extractor (CNN backbone)
ϕ to obtain a feature tensor X ∈ Rd×h×w, where d, h, and w represent the depth, height,
and width of the feature map, respectively, as follows:

X = ϕ(I; θ) (1)

Here, θ is the parameter set of the CNN backbone. We use ResNet-50 [41] as the
backbone with an input resolution of 224 × 224. This results in a feature tensor with
the shape 2048 × 7 × 7, which can be divided into 49 feature patches xi ∈ R2048 for
i = 1, 2, . . . , 49.

To address the challenge of a spatially uneven privacy attribute distribution, we
introduce the PSSA mechanism. The core idea is to apply a different attention weight to
each region of the image based on its relevance to specific privacy attributes. We define
privacy-specific attention scores αi

j for the i-th privacy attribute at the j-th spatial location,
which represents the importance of the i-th privacy attribute at location j:

αi
j =

exp
(

Tx⊤j wi

)
∑49

k=1 exp
(
Tx⊤k wi

) (2)
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where ∑49
j=1 αi

j = 1, and T > 0 is the temperature parameter controlling the sharpness of

the attention distribution. The attention score αi
j can be interpreted as the likelihood of the

i-th privacy attribute being present at the spatial location j.
Next, we calculate the privacy-specific feature vector ai for the i-th privacy attribute

by taking a weighted sum of the feature tensor across all spatial locations:

ai =
49

∑
k=1

αi
kxk (3)

We also compute the global feature vector g, which captures the overall features of
the image, as follows:

g =
1

49

49

∑
k=1

xk (4)

By combining the global feature vector g and the privacy-specific feature vector ai,
we obtain the final privacy-specific spatial attention (PSSA) feature fi for the i-th pri-
vacy attribute:

fi = g + λai (5)

Here, λ is a hyperparameter that determines the relative contribution of the global
and privacy-specific features. This combination enables the model to focus on both the
global context of the image and the privacy-relevant details, thereby improving the ability
to extract privacy information.

3.1.2. Explanation of the PSSA Module

We now provide a more detailed explanation of the PSSA module. First, we note that
the process in Figure 3 is a simplified version of the PSSA mechanism. By substituting
Equations (2)–(5) into Equation (6), we can derive the logit for the i-th privacy attribute as

yi = w⊤i g + λw⊤i
49

∑
k=1

αi
kxk (6)

The first term 1
49 ∑49

k=1 x⊤k wi represents the global logit, while the second term reflects
the weighted residual information, where the attention scores αi

k adjust the influence of
each spatial location based on its relevance to the i-th privacy attribute.

As T → ∞, the softmax output αi
k =

exp(Tx⊤k wi)
∑49

l=1 exp(Tx⊤l wi)
converges to a Dirac delta function,

concentrating the attention on the most prominent spatial region. In this scenario, the logit
for the i-th privacy attribute becomes

yi = w⊤i g + λ max
(

x⊤1 wi, . . . , x⊤k wi

)
(7)

This corresponds to the λ×Ymax term in Figure 3, suggesting that the PSSA module
functions similarly to max pooling, where attention is focused on the most significant
region of the image.

3.1.3. Multi-Head Attention Extension

To improve the model further, especially in scenarios where privacy attributes are
distributed unevenly across different regions of the image, we introduce a multi-head
attention extension. This extension uses multiple attention branches, each with a different
temperature T, enabling the model to capture varying levels of attention across different
parts of the image. We denote the number of attention heads as H, where each head
corresponds to a distinct temperature.
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Figure 3. The structure of privacy-specific spatial attention.

For example, when H = 2, we set T1 = 1 and T2 = ∞ (i.e., max pooling); when
H = 4, the temperatures are T1:3 = 1, 2, 4 and T4 = ∞; and so on. This multi-head
attention approach allows the model to capture different levels of attention across the
image, improving the representation of privacy attributes.

By leveraging multi-head attention, the model becomes more robust, as it can better
focus on different levels of granularity, improving the overall extraction of privacy-related
features and making the model more adaptable to a variety of privacy data distributions.

Table 2 presents the impact of different numbers of attention heads (H) and tempera-
ture (T) settings on the mean average precision (mAP) of the model in the privacy-specific
spatial attention (PSSA) mechanism. The experiments cover scenarios ranging from single-
head attention to four-head attention. For single-head attention, the temperature settings
include the default temperature, T = 1, and T → ∞ (equivalent to max pooling). In the
case of multi-head attention, different temperature combinations are set, such as T1 = 1,
T2 → ∞ for two-head attention and T1 = 1, T2 = 2, T3 = 4, T4 → ∞ for four-head attention.
The results indicate that as the number of attention heads increases and the temperature
settings are optimized, the mAP of the model gradually improves. The highest mAP of
46.88% is achieved with four-head attention and multiple temperature settings, suggest-
ing that the combination of multi-head attention and different temperature settings can
effectively enhance the model’s performance.

The structure of the privacy prediction network is shown in Figure 3.

• Feature Extraction: Images are processed through a pre-trained CNN (e.g., ResNet50)
to extract deep feature maps.

• Spatial Attention Generation: For each privacy attribute label, a spatial attention map
is calculated using the feature map. This is accomplished by applying a lightweight
convolutional network over the feature map, which learns to identify image regions
associated with specific privacy attributes.

• Combining Privacy-Specific and Global Features: Each attention map is merged with
global features (obtained via applying global average pooling on the feature map),
through a weighted sum (where weights are the learned attention scores) to produce
enhanced privacy-specific features.

• Model Output: The enhanced features are fed into the classification layer, typically
one or several fully connected layers, to predict the presence of each privacy attribute
in the image.
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Table 2. Ablation study of temperature and attention heads in privacy-specific spatial attention
mechanism using ResNet-50.

Number of Attention
Heads (H) Temperatures (T) Mechanism mAP (%)

1 Default
Single-head attention

with default
temperature

46.33

1 T = 1
Single-head attention

with temperature
T = 1

46.45

1 T → ∞
Single-head attention

equivalent to max
pooling

46.50

2 T1 = 1, T2 = ∞
Two-head attention

with T1 = 1 and
T2 → ∞

46.80

4 T1 = 1, T2 = 2,
T3 = 4, T4 = ∞

Four-head attention
with multiple

temperature settings
46.88

The automatic privacy extraction algorithm, as shown in Algorithm 1, presents a
method for constructing a visual privacy dataset. This method takes a collection of original
images and a list of privacy attributes as input, and through the processes of privacy region
detection, annotation, and exclusion of non-private images, outputs a visual privacy dataset
suitable for training.

Specifically, the algorithm first initializes the visual privacy dataset. Then, it iterates
over the collection of original images, performing region detection for each attribute defined
in the privacy attribute list to determine whether the image contains regions corresponding
to those privacy attributes. If an image contains privacy attributes, the region is annotated
and saved as a sample of the visual privacy dataset; if an image does not contain privacy
attributes, it is saved as a non-privacy sample, and the generated non-privacy images
are outputted to enrich the dataset. After processing all original images, the result is a
visual privacy dataset that includes both annotated privacy images and generated non-
privacy images.

The innovation of this method lies in its use of both privacy region detection and
annotation as well as non-privacy content generation to construct the dataset. Privacy
region detection allows for the annotation of sensitive information within images, while
non-privacy content generation enriches the sample data, aiding the model trained on
these dataset in distinguishing between privacy and non-privacy content. By detecting,
annotating, and generating image regions, this method can effectively construct a visual
privacy dataset, providing input for subsequent privacy measurement.

3.2. Measuring Visual Privacy with SPA
3.2.1. Basic Concept of SPA

During the data-sharing phase of image privacy, reducing the features that distinguish
individuals within the shared dataset can reduce the distinguishability between individuals,
thereby increasing the anonymity of user data. Considering the distinguishability metric
and the advantage of SPA theory in addressing uncertainty issues, we use SPA theory from
a database perspective to measure the privacy quantity of image data in the sharing phase.
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Algorithm 1 Visual privacy prediction with privacy-specific spatial attention (PSSA)

Input: U = {u1, u2, . . . , un}: user set
O = {o1, o2, . . . , on}: original image set owned by users
L = {PA0, PA1, . . . , PA9}: list of privacy attributes, where PA0 represents non-private
T: temperature parameter for spatial attention mechanism
λ: weight parameter for combining global and local features

Output: Visual privacy datasets Sp (private) and Ss (safe)
1: Initialize Sp ← ∅ and Ss ← ∅
2: for ui ∈ U do
3: for each image oj ∈ oi do
4: is_private← False
5: Extract feature tensor X = ϕ(oj; θ) using deep learning model ϕ
6: Compute attention scores for each privacy attribute using PSSA mechanism
7: for each PAk ∈ L except PA0 do

8: Compute spatial attention sk
j =

exp(Tx⊤j wk)

∑49
k=1 exp(Tx⊤k wk)

9: Aggregate privacy features: ak = ∑49
k=1 sk

kxk
10: Combine global and local features: fk = g + λak

11: if Attribute PAk identified in image oj then
12: is_private← True
13: Break
14: end if
15: end for
16: if is_private then
17: Add oj to Sp
18: else
19: Add oj to Ss
20: end if
21: end for
22: end for
23: S← (Sp, Ss)
24: return S

Set pair analysis, first introduced by Zhao in 1989, primarily addresses issues of uncer-
tainty by abstracting them into two related sets, A and B, and characterizing the relationship
between the sets from three perspectives: identity, discrepancy, and contrary. This approach
assesses the development trends of the research issue. In the field of privacy measurement,
this theoretical framework exhibits unique advantages by quantifying the connection be-
tween personal data and potential privacy risks, thus enhancing the understanding of the
nature of privacy.

• The “identity” indicator represents the degree of consistency in common attributes
between two sets, used in privacy measurement to evaluate the similarity between a
personal dataset and a known safe dataset. This aids in identifying the effectiveness of
data anonymization and is an important indicator for assessing the success of personal
information anonymization and de-identification processes.

• The “discrepancy” indicator reveals the uncertain association between two sets, mean-
ing that, in terms of privacy measurement, it measures the uncertainty between a
personal dataset and potential privacy risks. This indicator is crucial for assessing
the risk of data being unauthorizedly accessed or leaked, helping to build safer data
processing.

• The “contrary” indicator assesses the negative correlation between two sets, high-
lighting the adversarial relationship between data utility and privacy management
measures in privacy evaluation. By examining the balance between the value derived
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from data use and privacy measures, this indicator is crucial to ensuring that data
retains its usefulness and accuracy while being managed for privacy.

These three types of indicators in SPA applications in privacy measurement not only
help to deeply explore the inherent connection between certainty and uncertainty of per-
sonal datasets and privacy risks but also effectively evaluate the effectiveness of privacy
measures and the safety of data processing behaviors. By calculating the consistency, differ-
ence, and opposition indicators of “identity”, “discrepancy”, and “contrary” between the
personal dataset and reference sets (such as safe datasets, and risk datasets), SPA provides
a quantitative, precise, and intuitive tool, significantly enhancing the theoretical basis and
practical methods of privacy measurement. The application of this method is not only
suitable for privacy risk assessment of large-scale datasets but also provides an accurate
basis for formulating and evaluating the appropriateness of data processing strategies,
offering a powerful analytical tool for evaluating personal privacy and data security.

3.2.2. Connection Number

The concept of a connection number is an essential part of set pair analysis (SPA). Its
general expression is as follows:

µ =
S
N

+
F
N

i +
P
N

j (8)

where N represents the total number of features in all object sets, S is the number of identical
features in two object sets, P is the number of different features, and F is the number of
features that are neither identical nor different. This relationship can be expressed as
N = S + P + F. Let a = S/N, b = F/N, and c = P/N; thus, Equation (8) can be simplified
to the following form of a connection number:

µ = a + bi + cj (9)

According to Equation (9), we know a + b + c = 1, and a, b, c ∈ [0, 1], i ∈ [−1, 1],
j = −1. Here, a represents the part of identity, with a coefficient of 1, belonging to
the positive level; b represents the part of discrepancy, with a coefficient having a range
of [−1, 1], lying in the uncertain level; and c represents the part of contrariness, with a
coefficient of −1, entirely at the negative level. According to Equation (9), the multivariate
connection number can be expressed as follows:

µ = a + b1i1 + b2i2 + . . . + bnin + cj (10)

where a+ b1 + b2 + . . .+ bn + c = 1, and a, b1, b2 . . . bn, c ∈ [0, 1], ip ∈
[
−1+ 2(p−1)

n ,−1+ 2p
n

]
,

(p = 1, 2, . . . , n), j = −1. The notation b1 + b2 + . . . + bn in Equation (10) represents the
extension of ′b′i .

The presence of dynamic variables bi(b1i1, b2i2, . . . , bnin) in the expression of the
connection number is advantageous as adjusting the values of dynamic variables
can adapt to the uncertainty of the problem. Thus, if X is a non-empty set, then
Λ = {⟨x, aΛ(x), bΛ(x), cΛ(x)⟩ | x ∈ X} represents an SPA set, where aΛ(x), bΛ(x),
and cΛ(x), respectively, represent the degree of support (identity), uncertainty (discrep-
ancy), and opposition (contrariness) of element x in X, denoted as the degree of connection:
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µΛ(x) =aΛ(x) + bΛ(x)i + cΛ(x)j

aΛ(x) : x → [0, 1]

bΛ(x) : x → [0, 1]

cΛ(x) : x → [0, 1] (11)

which satisfies the normalization condition aΛ(x) + bΛ(x) + cΛ(x) = 1. Here, i ∈ [−1, 1]
is called the coefficient of uncertainty; j is the coefficient of opposition, usually taken
as j = −1. Set pair analysis reflects the laws of change and the internal relationship
between the fuzzy, random, certain, and uncertain aspects of things, making the SPA
method theoretically and practically valuable for visual privacy measurement. In the
previous section, we discussed extracting privacy attributes from images. In this section,
we explore user-specific visual privacy feedback. The goal is to calculate a privacy risk
score for each image, representing the privacy leakage(refers to the unauthorized access,
use, or disclosure of sensitive personal information, posing a significant risk to individual
privacy and potentially leading to financial loss, reputational damage, or other negative
consequences) risk for a specific user. As shown in Algorithm 2, we convert the privacy
attributes contained in the user-shared dataset into privacy scores. Within the framework of
SPA theory, “identity”, “discrepancy”, and “contrary” constitute the three basic dimensions
describing the relationship between two sets or objects. This theoretical approach is not only
applicable to a wide range of scientific and engineering problems but also demonstrates
its unique potential in the domain of visual privacy measurement. This paper explores
how to use these three dimensions to quantify the relationship between individual image
privacy features and the overall dataset privacy features, further assessing the potential
risk of privacy leakage. Below is an in-depth analysis of the application of “identity”,
“discrepancy”, and “contrary” in visual privacy measurement:

The application dimension of “identity”: The “identity” dimension represents the
consistency or similarity in specific attributes or features between two sets. In the context
of SPA theory, this dimension is used to quantify the degree of match in shared features
between two sets. Applied to visual privacy measurement, this dimension can assess the
degree of match between privacy features in individual images and known privacy risk fea-
tures. For example, if an image contains elements highly matched with a privacy-sensitive
database (such as facial features or license plate numbers), the image can be deemed to have
a higher privacy risk score due to its significant consistency in the “identity” dimension.

The application dimension of “discrepancy”: The “discrepancy” dimension depicts the
differences or inconsistencies in certain attributes or features between two sets, quantifying
the uncertain association or partial match level between two sets. In the field of visual
privacy measurement, this dimension helps identify those images that may contain privacy
risks but do not completely match with known privacy-sensitive features. Such images,
although containing privacy-related features, only partially match with features in the
database, possibly representing a lower or uncertain risk of privacy leakage.

The application dimension of “contrary”: The “contrary” dimension reflects the
complete mismatch or opposition in specific attributes or features between two sets. In SPA
theory, this dimension is used to describe the absolute inconsistency in key attributes
between two sets. Applying this concept to visual privacy measurement allows for the
identification of images that do not match any features in the privacy-sensitive feature
database. If an image does not match any features in the database, it scores higher in
the “contrary” dimension, indicating that the image likely does not contain privacy risks.
By conducting a comprehensive quantitative analysis of the “identity”, “discrepancy”,
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and “contrary” dimensions for each image in the dataset, this study can effectively assess
the potential privacy risk level of each image, thereby facilitating the implementation of
more precise and dynamic privacy measures. Figure 4 is used to briefly illustrate the
identity/discrepancy/contrary relationships.

Algorithm 2 Visual privacy measurement with PCA and weighting

Input: Extracted visual privacy dataset S, privacy attribute set A = {A1, A2, . . . , A67},
desired cumulative variance ratio γ (e.g., γ = 0.9)

Output: P: privacy measurement for n users
1: eigenvalues← ComputeEigenvalues(A)

2: total_variance← ∑
|eigenvalues|
i=1 eigenvaluesi

3: Initialize an empty list variance_ratios
4: for i = 1 to |eigenvalues| do
5: ratio← eigenvaluesi

total_variance
6: Append ratio to variance_ratios
7: end for
8: cumulative_variance← 0
9: index← 0

10: while cumulative_variance < γ do
11: cumulative_variance← cumulative_variance + variance_ratios[index]
12: index← index + 1
13: end while
14: τ ← variance_ratios[index− 1]
15: Initialize an empty list selected_attributes
16: for i = 1 to |A| do
17: if variance_ratios[i] ≥ τ then
18: Append A[i] to selected_attributes
19: end if
20: end for
21: total_selected_variance← ∑

|selected_attributes|
i=1 variance_ratios[i]

22: Initialize an empty list w
23: for i = 1 to |selected_attributes| do
24: wi ← variance_ratios[i]

total_selected_variance
25: Append wi to w
26: end for
27: Initialization of n empty subsets
28: while not at end of S do
29: for each element si ∈ Sp do
30: ide← I(si)
31: dis← D(si)
32: con← C(si)
33: pi ← AGG(ide, dis, con)
34: p′i ← ∑

|selected_attributes|
i=1 wi · pi

35: end for
36: Shii ← SYN(p′i)
37: Si ← SCO(p′i) i
38: Pi ← {Shii, p′i}
39: end while
40: P← P1 + P2 + . . . + Pn
41: return P

In this study, we introduce a novel visual privacy measurement algorithm integrating
deep learning with SPA theory. We develop a method to quantify image privacy risks by
assessing privacy features within images and the dataset. We initialize n subsets based on
dataset size and complexity, use deep learning models to extract privacy-sensitive features,
assign samples to subsets based on similarity, and calculate identity (ide), discrepancy (dis),
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and contrary (con) within subsets. These indicators are combined into a comprehensive
privacy score (Sub_score) for each subset, which is then summarized to yield the final
privacy measurement score P. The number of subsets n is carefully chosen for optimal
analysis granularity and computational efficiency. Simultaneously, the weights of identity,
discrepancy, and contrary are adjusted based on their importance contribution to privacy
risk assessment, ensuring a reasonable reflection of different privacy features in the overall
privacy measurement. Additionally, privacy feature extraction models that perform ex-
cellently in privacy-related tasks such as facial recognition and license plate recognition
are chosen to ensure the accuracy and efficiency of the privacy feature extraction process.
Through this method, we aim to provide an efficient and accurate quantitative assessment
tool for visual privacy.

Figure 4. Intuitive diagrams of identity/discrepancy/contrary relationships in privacy risk assess-
ment based on set pair analysis.

We incorporate a user study [10] using PCA to select privacy attributes from 67 options,
identifying and weighting those above a threshold. This ensures that relevant features
are in the model. We choose top-performing privacy feature extraction models for facial
and license plate recognition to guarantee accuracy and efficiency. Our goal is to offer an
effective quantitative tool for visual privacy assessment.

3.2.3. Evaluation Metrics

To assess the method’s performance in the privacy extraction task, we calculate the
average precision (AP) for each attribute, which is the area under the precision-recall curve,
and we use the class mean average precision (C-MAP) as well. Furthermore, we incor-
porate the recall rate of the prediction task into the evaluation metrics. The experiment
uses the VISPR image dataset, which contains a wide range of privacy information labels
and undergoes scaling and normalization preprocessing. The model training employs
the cross-entropy loss function, and evaluation metrics include accuracy, recall, F1-Score,
and the introduced AP. The AP metric is particularly suitable for imbalanced datasets,
calculating the AP value for each privacy attribute by computing the area under the
precision-recall curve, thereby obtaining the mAP (mean average precision) and provid-
ing a quantification of the model’s overall performance in identifying different privacy
information in images [42–44]. Here, are the calculations for CP, CR, CF1, OP, OR, and OF1
metrics as derived from the document:
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Per-Category Metrics

• Per-Category Precision (CP):

CP =
1
C

C

∑
i=1

TPi
TPi + FPi

(12)

where C is the number of categories, TPi is the number of true positives for category i.
FPi is the number of false positives for category i.

• Per-Category Recall (CR):

CR =
1
C

C

∑
i=1

TPi
TPi + FNi

(13)

FNi is the number of false negatives for category i.

• Per-Category F1-Score (CF1):

CF1 =
1
C

C

∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

(14)

where Precisioni and Recalli are the precision and recall for category i, respectively.

Overall Metrics

• Overall Precision (OP):

OP =
∑C

i=1 TPi

∑C
i=1(TPi + FPi)

(15)

• Overall Recall (OR):

OR =
∑C

i=1 TPi

∑C
i=1(TPi + FNi)

(16)

• Overall F1-Score (OF1):

OF1 =
2 ·OP ·OR
OP + OR

(17)

These formulas help in evaluating the performance of multi-label classification models
by considering both individual category metrics and overall metrics across all categories.

3.3. Complexity Analysis of the Proposed Approach
3.3.1. Time Complexity

• Privacy-Specific Spatial Attention Mechanism (PSSA): In the PSSA mechanism, the im-
age is first processed through a feature extractor (such as ResNet-50). The time
complexity of the forward propagation of ResNet-50 is O(N), where N is the number
of images. For each privacy attribute, the time complexity of calculating the attention
scores is O(h × w × d), where h, w, and d are the height, width, and depth of the
feature map, respectively. When calculating the privacy-specific feature vector and the
final PSSA feature, operations on the feature tensor are also involved, and their time
complexity is also O(h× w× d). Assuming there are M privacy attributes, the total
time complexity of the PSSA mechanism is O(N ×M× (h× w× d)).

• Multi-head Attention Extension: When the multi-head attention extension is in-
troduced, since multiple attention branches are used, each with a different tem-
perature T. If there are H attention heads, when calculating the attention scores,
feature vectors, and other operations for each head, the time complexity becomes
O(N × M × H × (h × w × d)), which is higher than that of the single-head atten-
tion mechanism.
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• Privacy Measurement Model based on SPA: In the privacy measurement model based
on SPA, when calculating the connection number, each sample’s features need to be
processed. Assuming the number of samples is S and the number of features for each
sample is n, the time complexity of calculating the connection number is O(S× n).
When performing aggregation and evaluation operations, traversing and calculating
the sample data are involved, and its time complexity is also O(S× n). Therefore,
the total time complexity of the privacy measurement model based on SPA is O(S× n).

Overall, the time complexity of the entire method is mainly determined by the PSSA
mechanism and the SPA-based measurement model. In practical applications, factors such
as the number of images N, the number of privacy attributes M, the number of samples S,
the number of features n, and the dimensions h, w, d of the feature map will affect the overall
time complexity. In large-scale datasets and complex model settings, the time complexity
may increase significantly, and it is necessary to consider optimizing the algorithm and
using hardware acceleration to improve efficiency.

3.3.2. Space Complexity

• Privacy-Specific Spatial Attention Mechanism (PSSA): In the PSSA mechanism, it is
necessary to store the parameters of the feature extractor, attention scores, privacy-
specific feature vectors, and global feature vectors. The storage space for the param-
eters of the feature extractor (such as ResNet-50) is O(P), where P is the number of
model parameters. The storage space for the attention scores and feature vectors
is related to the size of the feature map. Assuming the size of the feature map is
h×w× d, the space complexity for storing these data are O(h×w× d). For M privacy
attributes, the total space complexity is O(P + M× (h× w× d)).

• Multi-head Attention Extension: The multi-head attention extension will increase the
storage space requirements. Since there are H attention heads, each head needs to
store the corresponding attention scores and feature vectors. Therefore, the space
complexity becomes O(P + M× H × (h× w× d)), and as the number of attention
heads H increases, the space complexity will increase linearly.

• Privacy Measurement Model based on SPA: The privacy measurement model based
on SPA needs to store connection numbers, subset data, and related intermediate
calculation results. The storage of connection numbers is related to the number
of samples S and the number of features n, and the space complexity is O(S × n).
The storage of subset data and intermediate calculation results will also increase a
certain amount of space overhead. Assuming it is O(S×m), where m is the number
of features of the intermediate data, then the total space complexity of the privacy
measurement model based on SPA is O(S× (n + m)).

Overall, the space complexity of the entire method is affected by many factors, such
as model parameters, feature map size, number of privacy attributes, number of attention
heads, number of samples, and number of features. In practical applications, it is necessary
to adjust the model parameters and data processing methods reasonably to avoid excessive
space requirements. For example, model compression techniques and data dimensionality
reduction methods can be used to reduce the storage space occupied.

4. Experiments and Discussion
4.1. Experimental Settings

In our experiments, we use the VISPR dataset [10], which consists of 22,000 images
annotated with various privacy related labels. It contains various privacy attributes, such
as faces, number plates, personal documents and other sensitive information, which is
essential for evaluating privacy attribute extraction models.
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To mimic real-world situations, we apply our proposed spatial attention mechanism
to the VISPR dataset to detect and annotate privacy-sensitive regions in different image
categories. We evaluate the effectiveness of our approach by comparing the accuracy
of privacy attribute identification and region localization with existing baseline models.
We also perform ablation studies to analyze the impact of different attention weighting
temperatures and multi-head attention on model performance.

The VISPR dataset was constructed from publicly available images from the OpenIm-
ages dataset and Flickr. To meet ethical standards, we followed the guidelines for handling
personally identifiable information (PII) in the EU Data Protection Directive 95/46/EC and
the US Privacy Act of 1974. A user study was conducted with 305 Amazon Mechanical
Turk (AMT) participants to assess privacy preferences. Although explicit IRB approval was
not required for publicly available data, informed consent was obtained from participants
prior to the survey.

To anonymize the data, all VISPR images were manually annotated with 68 privacy
attributes. All images with explicit identifiers (such as full names, and passport numbers)
were reviewed to avoid privacy violations. Although the dataset preserves visual privacy
attributes for research purposes, researchers using VISPR are advised to use additional
privacy-preserving techniques such as image blurring or redaction where necessary.

4.1.1. Training Details

The experimental setup involves training the model using a standard split of the
VISPR dataset, with 80% of the images used for training and 20% for testing. We use a
ResNet-50 backbone with the input image resolution set to 448 × 448 and implement the
PSSA mechanism as part of the model’s feature extraction process. The model is trained
for 30 epochs using the Adam optimizer with a learning rate of 0.001, a momentum of 0.9,
and a weight decay of 0.0001. The performance is evaluated based on standard metrics.

4.1.2. Privacy Prediction on VISPR

Due to the use of a self-constructed visual privacy dataset, the outcomes of the privacy
perception task were not optimal. However, the model performed better on attributes
with strong scene relevance and human-related properties, while it faced difficulties with
attributes involving subtle differences and relationship inference. Quantitative results are
displayed in Table 3, and Figure 5 presents evaluation metrics such as the average precision
scores and recall rates for some privacy attributes. The following observations were made:
(i) The privacy extraction model exhibited good performance with attributes that have
high relevance to the scene, such as fingerprints. It also performed well in identifying
human-related attributes, like facial information. (ii) Subtle differences led to confusion,
for example, when predicting whether a license plate was complete or whether a subject
was nude. (iii) Failures were observed due to details in the images, such as bank cards
being recognized as square cards. (iv) Another limitation was the inability to recognize
relationship-based attributes, which require reasoning based on the interaction of multiple
visual cues within the image, not just their presence.

Table 3. Original privacy information from users.

Index PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9

1 0.6635 0 0 0 0 0 0 0 0 0
2 0 0.6177 0 0.6421 0 0.5543 0.6363 0 0.5851 0
3 0 0 0 0.6124 0 0 0 0 0.6319 0
4 0 0 0 0.7143 0 0 0 0 0 0
5 0 0 0 0.6348 0 0.5680 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5. Average precision and recall scores.

4.1.3. Evaluation

Here, we list a portion of the original visual privacy data from the VISPR, which
serves as the input for privacy quantification, as shown in Table 1.

Defining and quantifying visual privacy is no easy task. In our research, we use the
predictive scores of each privacy attribute from a multi-label classification model as the
extraction results for corresponding privacy components for two main reasons: (i) If we
were to use binary outcomes (0 and 1) to represent the presence of a privacy component, it
would diminish the variability in the predictive outcomes for the same class and reduce
the usability of the data, offering no basis for subsequent data processing and analysis.
(ii) Utilizing predictive scores as the extraction results of privacy components provides
users with a measure akin to confidence levels. Higher scores indicate a greater certainty of
the privacy prediction model regarding the presence of a privacy component. This enables
users not only to make informed decisions about whether to rely on the model’s output
but also to have an initial assessment of the model’s accuracy and provide more precise
feedback, thus clarifying the direction for optimizing the model.

Subsequently, we measure privacy based on the extraction results, as shown in
Figure 6. The measurement algorithm consists of four parts: preprocessing, anonymization,
conjunction, and evaluation:

• Preprocessing: Due to inconsistencies and much noise in the data from Table 3, it
is necessary to perform denoising. Then, for the reasons stated above, we use the
predictive scores of each class from a multi-label classification model as the extraction
results of corresponding privacy components. Additionally, to prevent individual
attribute values from overly influencing the weight, we construct a ternary interval
number with the minimum value minΛi, the maximum value maxΛi, and the actual
value Λi, i.e., [Λ] = [minΛi, Λ, maxΛi].

• Anonymization: In the ternary interval, min Λi represents the lower limit (also called
the small element), max Λi represents the upper limit (also called the large element),
and Λi is the value most likely to be taken on the interval, namely the preference
value (also called the special element). However, the information on ternary intervals
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has strong regularity, making it easy for attackers to identify. To better establish data
privacy protection, we convert the ternary intervals into connection numbers.

• Conjunction: We aggregate privacy data, such as biometric and personal information,
from the set pair connection number database. There are two common methods for
data information aggregation: the mean value method and the set pair logical connec-
tion method. The mean value method calculates the mean connection number from
the mean values of identity, discrepancy, and opposition in each set pair connection
number. Given the minimal value of the privacy amount determines its privacy level,
we adopt the conjunctive aggregation method to calculate the privacy amount.

• Evaluation: For the aggregated set pair connection numbers, we perform effective pri-
vacy measurement by defining the potential of the connection number Shi(µ) and the
scoring function S(µ). The potential and scoring function of connection numbers can
categorize privacy protection issues into identity, discrepancy, and contrary, guiding
the feasibility of privacy measurement publication. The potential or scoring function
of a connection number reflects the trend of connection between information. When
Shi(µ) > 1, the processing plan is considered feasible; when Shi(µ) = 1, it is average;
and when Shi(µ) < 1, the plan is not feasible. Similarly, the scoring function S(µ) also
reflects the trend of change in the connection between data information, with higher
S(µ) values indicating closer connections and lower values indicating more distant
relations. We present the results of the average connection number’s potential and
scoring function and their analysis in Table 4.

Figure 6. Set pair analysis.

Table 4. Set pair analysis contact numbers of private data after conversion.

Index Contact Number Shi (µ) S(µ) Result

1 – – – public
2 0.6117 + 0.0550i + 0.3333j 1.8353 0.2784 private
3 0.4906 + 0.0650i + 0.4444j 1.1040 0.0462 private
4 0.3028 + 0.0305i + 0.6667j 0.4542 −0.3639 not sure
5 0.3903 + 0.0541i + 0.5556j 0.7025 −0.1653 not sure

In this study, we introduce the concept of “Synpotence” derived from set pair analysis
theory, which offers a novel perspective to comprehend the multifaceted significance of
varying types of privacy information embedded within images. Synpotence functions as a
holistic measure, capturing the overall degree or weight of privacy information present in
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images. It serves as a versatile tool that enables us to quantify and compare the relative
importance of different privacy features, facilitating more informed decisions in the realm
of image privacy protection. By employing synpotence, we can systematically assess the
privacy content of images, taking into account both the intrinsic value of individual pri-
vacy features and their inter-relationships within the image context. This comprehensive
approach allows us to identify patterns and trends that may not be immediately apparent
through traditional analysis methods. The concept of synpotence is intricately linked
with other technologies and theories, such as machine learning and privacy-preserving
techniques. By integrating these advancements, synpotence enhances its capabilities to
accurately evaluate privacy risks while preserving the integrity of sensitive information.
For instance, when dealing with privacy-sensitive data, synpotence can facilitate the se-
lection of appropriate anonymization or encryption strategies, ensuring that valuable
insights are gained without compromising individual privacy. Specifically, the calculation
of synpotence involves treating different types of privacy information as distinct datasets
and then obtaining the synpotence value through aA/cA. Synpotence reflects the degree
of convergence between two sets in relation to the research question, where “two sets”
refers to the sets of privacy components extracted from privacy, and the “research question
context” refers to the degree of privacy in visual privacy data, thereby indicating the level
of privacy. The size of synpotence can reflect the magnitude of the privacy degree implied
by the data.

Based on the results shown in Table 3, we have the following analysis: (i) For data
that do not involve privacy components after privacy extraction, we directly conclude
that the data are public. (ii) For data that contain privacy components after privacy
extraction, we note that the data indexed 2 and 3 have higher Shi values, greater than 1,
and S values greater than 0, indicating that these datasets contain a significant amount of
privacy, consistent with the original data in Table 4. This implies a high level of privacy
components, demonstrating the effectiveness of set pair analysis theory as a means of
privacy measurement in this context. (iii) For the fourth and fifth sets of data, because the
Shi values are less than 1 and the S values are negative, we categorize these datasets as
uncertain regarding their privacy status, due to the lesser amount of privacy components
contained, allowing users to decide based on the actual data whether to classify them
as private.

4.1.4. Future Work in Privacy Measurement

This study achieved the quantification of privacy levels on a self-constructed visual
privacy dataset; however, due to the poor generalizability of the multi-label classification
model, it did not achieve optimal results. Therefore, in the future, we need to collect
and construct richer and more diverse visual privacy datasets, including images under
different scenarios, lighting conditions, etc., to improve the model’s generalization ability.
Moreover, we need to carry out and consider the following work in the future: Explore
different neural network models and structures for privacy feature extraction, such as
GANs, autoencoders, etc., to learn more abstract and semantic representations of privacy.
Explore multi-task learning and transfer learning methods, using additional information to
aid in privacy feature extraction and measurement, for example, auxiliary classification
tasks. Design new measurement metrics, considering the accuracy, completeness, and attack
resistance of privacy extraction, etc. Concepts like trustworthiness could be referred to.
Explore how to explain privacy measurement results, provide intuitive privacy security tips,
and improve user experience. Consider different privacy preferences, setting reasonable
privacy measurement boundaries according to legal and ethical norms. Moreover, since
the importance of privacy attributes also varies, future work should consider applying
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weighted set pair analysis theory to calculate the privacy quantity of data, ensuring more
precise judgments for the last two groups of data in Table 3. Enhancing the distinction in
privacy measurement is also a major direction for future research.

In addition, the integration of PSSA-SPA introduces additional computational over-
head, which can be challenging for real-time applications. Currently, we have not specif-
ically tested whether the model can run in real time or if it is too resource-intensive for
real-world deployment and suitable for edge devices. The privacy-specific spatial attention
(PSSA) mechanism increases the complexity of feature extraction, while the set pair analy-
sis (SPA) framework involves additional computations to quantify identity, discrepancy,
and opposite relationships. Future research should focus on optimizing the efficiency of
these processes by exploring model pruning, quantization, and hardware acceleration (e.g.,
GPU and TPU inference optimization) to reduce computational time.

Scalability is another critical factor for real-world deployment. To enable edge com-
puting applications, such as privacy-aware content moderation on social media or mobile
devices, lightweight model variants need to be explored. This could include reducing the
number of attention heads in PSSA, approximating SPA computations with faster heuristics,
or implementing a hierarchical privacy risk assessment approach that balances accuracy
and efficiency. We plan to conduct comprehensive evaluations to determine the model’s
performance in real-time scenarios, resource requirements for deployment, its viability on
edge devices, and incorporate the results into the revised manuscript.

In addition, latency analysis should be performed to assess the feasibility of real-time
processing. Measuring the inference time per image and analyzing its impact on large-scale
deployments can help determine whether the model is suitable for interactive privacy
recommendation systems or batch processing scenarios. Addressing these challenges will
be critical in making the proposed privacy risk assessment framework practical and efficient
in real-world applications.

5. Conclusions
This study proposes a novel visual privacy measurement method integrating deep

learning and set pair analysis (SPA) theory, featuring a framework to evaluate privacy
risks through similarity, discrepancy, and opposition in privacy data subsets. It also
includes a privacy-specific spatial attention (PSSA) mechanism, which is used to enhance
focus on privacy-sensitive regions and improve fine-grained feature extraction, validated
by superior performance on the VISPR dataset, advancing automated privacy assessment
and privacy-aware systems in complex visual environments.
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