Tensor-Based Uniform and Discrete Multi-View Projection Clustering
<p>Flowchart of the TUDMPC algorithm.</p> "> Figure 2
<p>Visualization of the affinity matrices of the MSRC_v1 dataset. (<b>a</b>) SC. (<b>b</b>) MCGC. (<b>c</b>) MVGL. (<b>d</b>) GMC. (<b>e</b>) SFMC. (<b>f</b>) TUDMPC.</p> "> Figure 3
<p>Visualization of the affinity matrices of the NGs dataset. (<b>a</b>) SC. (<b>b</b>) MCGC. (<b>c</b>) MVGL. (<b>d</b>) GMC. (<b>e</b>) SFMC. (<b>f</b>) TUDMPC.</p> "> Figure 4
<p>Visualization of the affinity matrices of the 100leaves dataset. (<b>a</b>) SC. (<b>b</b>) MCGC. (<b>c</b>) MVGL. (<b>d</b>) GMC. (<b>e</b>) SFMC. (<b>f</b>) TUDMPC.</p> "> Figure 5
<p>Visualization of the HW2sources dataset. (<b>a</b>) SC. (<b>b</b>) Co-regMSC. (<b>c</b>) AWP. (<b>d</b>) MCGC. (<b>e</b>) MVGL. (<b>f</b>) TUDMPC.</p> "> Figure 6
<p>Visualization of the MSRC_v1 dataset. (<b>a</b>) SC. (<b>b</b>) Co-regMSC. (<b>c</b>) AWP. (<b>d</b>) MCGC. (<b>e</b>) MVGL. (<b>f</b>) TUDMPC.</p> "> Figure 7
<p>Some face images from the ORL dataset (10 × 10).</p> "> Figure 8
<p>Some handwritten digital images from the HW dataset (10 × 50).</p> "> Figure 9
<p>Some face image recognition results of TUDMPC on the ORL dataset (10 × 10).</p> "> Figure 10
<p>Some handwritten digital image recognition results of TUDMPC on the HW dataset (10 × 50).</p> "> Figure 11
<p>Results of the ablation experiments on the 100leaves dataset.</p> "> Figure 12
<p>Convergence on some datasets. (<b>a</b>) MRSC_v1. (<b>b</b>) HW2source. (<b>c</b>) ORL. (<b>d</b>) 100leaves.</p> "> Figure 13
<p>Sensitivity analysis on different datasets as parameters <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <span class="html-italic">k</span> change. (<b>a</b>) MSRC_v1. (<b>b</b>) HW2sources. (<b>c</b>) 100leaves. (<b>d</b>) NGs. (<b>e</b>) ORL.</p> "> Figure 14
<p>Results of the Nemenyi Test. (<b>a</b>) ACC. (<b>b</b>) NMI. (<b>c</b>) Purity.</p> ">
Abstract
:1. Introduction
- The high-dimensional data in the view are mapped to a low-dimensional potential space by projection learning to reduce the complexity of the method and to avoid dimensional catastrophes. Meanwhile, the -norm is utilized for feature selection to remove the problem of outliers and redundant data on the clustering. The use of post-fusion in the low-dimensional space can adaptively and more accurately learn affinity graphs while maintaining the popular structure.
- The proposed TUDMPC minimizes the differences between views by using the tensor kernel norm, which makes excellent use of complementarity and captures the high-order correlations.
- The affinity graph generated from TUDMPC representing the clustering structure and the clustering results can be obtained in a unified framework without subsequent processing.
- An efficient iterative algorithm is developed to implement TUDMPC. The experimental results show that TUDMPC outperforms some of the baseline methods using datasets from the literature and from online websites.
2. Related Works
3. TUDMPC and Its Preparation
3.1. Notations
3.2. Motivation
3.3. The TUDMPC Method
3.3.1. MVGC
3.3.2. Projection Learning
3.3.3. Tensor Kernel Norm
3.3.4. Rank Constraint
4. Optimization and Complexity Analysis
4.1. Optimization
4.1.1. Updating by Fixing , and
4.1.2. Updating by Fixing , and
4.1.3. Updating by Fixing , and
4.1.4. Updating by Fixing , and
Algorithm 1 Steps in the TUDMPC algorithm |
Require: Multi-view datasets for , the projection dimension for , and the parameters , and k. |
Ensure: Graph with c-connected components. |
4.2. Complexity Analysis
5. Numerical Experiments and Analysis of Results
5.1. Experimental Setup
- MSRC-v1: This dataset contains 20 groups of images of objects, each with about 100 images. It is mainly used for object recognition and image segmentation tasks. The dataset is suitable for multi-view clustering and image classification, where each image symbolizes a different “perspective”.
- HW2sources: This is a handwritten digital recognition dataset, which contains handwritten digital samples from multiple perspectives and comes from different writings. This dataset provides diversity and different writing styles and is suitable for testing the performance of clustering algorithms on non-uniform data.
- 100leaves: This dataset contains 100 different types of leaf images, and each leaf has multiple images, which are mainly used for plant classification. It can help evaluate the effectiveness of multi-view learning in natural image data.
- NGs: This dataset contains different levels of detail of natural images and is suitable for exploring fine-grained object classification. Multi-view provides more information and is suitable for testing the performance of multi-view clustering algorithms in different details.
- Hdigit: Similar to HW2sources, this dataset is also about handwritten numbers but comes from different recording methods or devices. It provides more sample variability for handwritten digital recognition and can test the stability of clustering algorithms.
- ORL: The ORL dataset contains 400 face images of 40 different people, which includes relevant information in expressions, facial ornaments and minute gestures, and is often used in face recognition studies. The different features of the face images in the ORL dataset are extracted by using four feature extraction methods including Generalized Search Tree (GIST), Local Binary Pattern (LBP), Histogram of Orientation Gradients (HOG) and Gradient Energy Norm Tensor (CENT), which are considered as four views. The obtained feature dimensions of the four views are 512, 59, 864, and 254, respectively.
Datasets | Instances (n) | Views (V) | Clusters (c) | Dimensions |
---|---|---|---|---|
MSRC-v1 [47] | 210 | 5 | 7 | 24/576/512/256/254 |
HW2sources [36] | 2000 | 2 | 10 | 784/256 |
100leaves 1 | 1600 | 3 | 100 | 64/64/64 |
NGs 2 | 500 | 3 | 5 | 2000/2000/2000 |
Hdigit 3 | 10,000 | 2 | 10 | 784/256 |
ORL [48] | 400 | 4 | 40 | 512/59/864/254 |
5.2. Analyses of Experimental Results
5.3. More Applications
5.3.1. Datasets
5.3.2. Analysis of the Application Results
5.4. Ablation Experiments
5.5. Convergence Analysis
5.6. Sensitivity Analyses
5.7. Statistical Tests
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, T.; Gao, Q. Fast multiple graphs learning for multi-view clustering. Neural Netw. 2022, 155, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Yin, Q.; Zhao, X.; Yao, L. Consistent and diverse multi-View subspace clustering with structure constraint. Pattern Recognit. 2022, 121, 108196. [Google Scholar] [CrossRef]
- Kumar, A.; Rai, P.; Daumé, H. Co-regularized multi-view spectral clustering. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–14 December 2011; pp. 1413–1421. [Google Scholar]
- Nie, F.; Li, J.; Li, X. Parameter-Free Auto-Weighted Multiple Graph Learning: A Framework for Multiview Clustering and Semi-Supervised Classification. Int. Jt. Conf. Artif. Intell. 2016, 9, 1881–1887. [Google Scholar]
- Jing, P.; Su, Y.; Li, Z.; Nie, L. Learning robust affinity graph representation for multi-view clustering. Inf. Sci. 2021, 544, 155–167. [Google Scholar] [CrossRef]
- Liao, S.; Gao, Q.; Yang, Z.; Chen, F.; Nie, F.; Han, J. Discriminant Analysis via Joint Euler Transform and L2,1-norm. IEEE Trans Image Process. 2018, 27, 5668–5682. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, X.; Gao, Q.; Han, J.; Xiao, S.; Gao, X. Multiview Clustering by Joint Latent Representation and Similarity Learning. IEEE Trans. Cybern. 2020, 50, 4848–4854. [Google Scholar] [CrossRef]
- Gao, Q.; Wan, Z.; Liang, Y.; Wang, Q.; Liu, Y.; Shao, L. Multi-view projected clustering with graph learning. Neural Netw. 2020, 126, 335–346. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Liang, Y.; Tang, Y. Multi-view unsupervised feature selection with tensor low-rank minimization. Neurocomputing 2022, 487, 75–85. [Google Scholar] [CrossRef]
- Fu, L.; Yang, J.; Chen, C.; Zhang, C. Low-rank tensor approximation with local structure for multi-view intrinsic subspace clustering. Inf. Sci. 2022, 606, 877–891. [Google Scholar] [CrossRef]
- Ma, S.; Liu, Y.; Liu, G.; Zheng, Q.; Zhang, C. Orthogonal multi-view tensor-based learning for clustering. Neurocomputing 2022, 500, 592–603. [Google Scholar] [CrossRef]
- Li, Z.; Tang, C.; Liu, X.; Zheng, X.; Zhang, W.; Zhu, E. Tensor-Based Multi-View Block-Diagonal Structure Diffusion for Clustering Incomplete Multi-View Data. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Song, P. Deep low-rank tensor embedding for multi-view subspace clustering. Expert Syst. Appl. 2024, 237, 121518. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Li, Y.; Zhao, L.; Yang, T.; Farahbakhsh, R.; Crespi, N.; Huang, X. IMC-NLT: Incomplete multi-view clustering by NMF and low-rank tensor. Expert Syst. Appl. 2023, 221, 119742. [Google Scholar] [CrossRef]
- Wu, J.; Xie, X.; Nie, L.; Lin, Z.; Zha, H. Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering. Proc. AAAI Conf. Artif. Intell. 2020, 34, 6388–6395. [Google Scholar] [CrossRef]
- Dong, X.; Wu, D.; Nie, F.; Wang, R.; Li, X. Multi-view clustering with adaptive procrustes on Grassmann manifold. Inf. Sci. 2022, 609, 855–875. [Google Scholar] [CrossRef]
- Yao, J.; Lin, R.; Lin, Z.; Wang, S. Multi-view clustering with graph regularized optimal transport. Inf. Sci. 2022, 612, 563–575. [Google Scholar] [CrossRef]
- Ren, Z.; Li, X.; Mukherjee, M.; Huang, Y.; Sun, Q.; Huang, Z. Robust multi-view graph clustering in latent energy-preserving embedding space. Inf. Sci. 2021, 569, 582–595. [Google Scholar] [CrossRef]
- Li, L.; He, H. Bipartite Graph based Multi-view Clustering. IEEE Trans. Knowl. Data Eng. 2020, 34, 3111–3125. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liu, B. GMC: Graph-Based Multi-View Clustering. IEEE Trans. Knowl. Data Eng. 2020, 32, 1116–1129. [Google Scholar] [CrossRef]
- Wei, X.; Sen, W.; Ming, Y.; Quan, X.; Jun, G.; Xin, B. Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation. Neural Netw. 2022, 145, 1–9. [Google Scholar] [CrossRef]
- Sang, X.; Lu, J.; Lu, H. Consensus graph learning for auto-weighted multi-view projection clustering. Inf. Sci. 2022, 609, 816–837. [Google Scholar] [CrossRef]
- Zhao, J.; Kang, F.; Zou, Q.; Wang, X. Multi-view clustering with orthogonal mapping and binary graph. Expert Syst. Appl. 2023, 213, 118911. [Google Scholar] [CrossRef]
- Du, Y.; Lu, G.; Ji, G. Robust and optimal neighborhood graph learning for multi-view clustering. Inf. Sci. 2023, 631, 429–448. [Google Scholar] [CrossRef]
- Nie, F.; Li, J.; Li, X. Self-weighted Multiview Clustering with Multiple Graphs. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017. [Google Scholar] [CrossRef]
- Jiao, W.; Bin, W.; Zhen, W.; Hong, Y.; Yun, H. Multi-scale deep multi-view subspace clustering with self-weighting fusion and structure preserving. Expert Syst. Appl. 2023, 213, 119031. [Google Scholar] [CrossRef]
- Huang, S.; Tsang, I.; Xu, Z.; Lv, J. Measuring Diversity in Graph Learning: A Unified Framework for Structured Multi-View Clustering. IEEE Trans. Knowl. Data Eng. 2022, 34, 5869–5883. [Google Scholar] [CrossRef]
- Jun, C.; Zhao, K.; Bo, Y.; Lu, P.; Zeng, L. Multi-view subspace clustering via partition fusion. Inf. Sci. 2021, 560, 410–423. [Google Scholar] [CrossRef]
- Jin, H.; Jian, Y. Robust subspace segmentation via low-rank representation. IEEE Trans. Cybern. 2014, 44, 1432–1445. [Google Scholar] [CrossRef]
- Yang, B.; Wu, J.; Zhang, X.; Zheng, X.; Nie, F.; Chen, B. Discrete correntropy-based multi-view anchor-graph clustering. Inf. Fusion 2022, 103, 102097. [Google Scholar] [CrossRef]
- Deng, P.; Li, T.; Wang, D.; Wang, H.; Peng, H.; Horng, S.-J. Multi-view clustering guided by unconstrained non-negative matrix factorization. Knowl.-Based Syst. 2023, 266, 110425. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Gao, J.; Han, J. Multi-View Clustering via Joint Nonnegative Matrix Factorization. In Proceedings of the SIAM International Conference on DATA MININGs, Austin, TX, USA, 2–4 May 2013; pp. 252–260. [Google Scholar] [CrossRef]
- Shi, S.; Nie, F.; Wang, R.; Li, X. Multi-View Clustering via Nonnegative and Orthogonal Graph Reconstruction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 201–214. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, P.; Chen, Z.; Ye, D.; Wang, S. Diversity embedding deep matrix factorization for multi-view clustering. Inf. Sci. 2022, 610, 114–125. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Chen, C. Consistent affinity representation learning with dual low-rank constraints for multi-view subspace clustering. Neurocomputing 2022, 514, 113–126. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liu, B.; Hamido, F. A study of graph-based system for multi-view clustering. Knowl.-Based Syst. 2019, 163, 1009–1019. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, Y.; Li, Z.; Wang, X.; Chen, X.; Fang, D. Robust Self-Weighted Multi-View Projection Clustering. Proc. AAAI Conf. Artif. Intell. 2020, 34, 6110–6117. [Google Scholar] [CrossRef]
- Misha, E.K.; Carla, D.M. Factorization strategies for third-order tensors. Linear Algebra Its Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef]
- Fan, K. On a theorem of weyl concerning eigenvalues of linear transformation. Proc. Natl. Acad. Sci. USA 1949, 35, 652–655. [Google Scholar] [CrossRef]
- Jeribi, A. Spectral Graph Theory. In Spectral Theory and Applications of Linear Operators and Block Operator Matrices; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; Yang, Y. The Twist Tensor Nuclear Norm for Video Completion. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2961–2973. [Google Scholar] [CrossRef]
- Ng, A.; Jordan, M.; Weiss, Y. On Spectral Clustering: Analysis and an algorithm. Neural Inf. Process. Syst. 2001, 14, 849–856. [Google Scholar]
- Zhan, K.; Zhang, C.; Guan, J.; Wang, J. Graph Learning for Multiview Clustering. IEEE Trans. Cybern. 2018, 48, 2887–2895. [Google Scholar] [CrossRef]
- Zhan, K.; Nie, F.; Wang, J.; Yang, Y. Multiview Consensus Graph Clustering. IEEE Trans. Image Process. 2019, 28, 1261–1270. [Google Scholar] [CrossRef]
- Nie, F.; Tian, L.; Li, X. Multiview Clustering via Adaptively Weighted Procrustes. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Wang, R.; Nie, F. Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 330–344. [Google Scholar] [CrossRef]
- Winn, J.; Jojic, N. LOCUS: Learning object classes with unsupervised segmentation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Washington, DC, USA, 17–21 October 2005; pp. 756–763. [Google Scholar] [CrossRef]
- Chen, M.; Huang, L.; Wang, C.; Huang, D.; Lai, J. Relaxed multi-view clustering in latent embedding space. Inf. Fusion 2021, 68, 8–21. [Google Scholar] [CrossRef]
- Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu (accessed on 15 November 2024).
Notations | Descriptions |
---|---|
and V | The number of clusters, samples and views, respectively, |
Projection dimension in view v | |
The number of features in view v | |
Data matrix of view v | |
Projection matrix of view v | |
Similarity matrix in view v | |
Clustering indicator matrix | |
, and | Matrix of all 1 s, the identity matrix and matrix of all 0 s |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.6429 ± 0.0000 | 0.5595 ± 0.0003 | 0.6905 ± 0.0000 | 0.5141 ± 0.0009 | 0.5306 ± 0.0005 |
Co-regMSC | 0.8031 ± 0.0066 | 0.7199 ± 0.0095 | 0.8031 ± 0.0066 | 0.6821 ± 0.0069 | 0.6931 ± 0.0081 |
MVGL | 0.7476 ± 0.0000 | 0.7532 ± 0.0000 | 0.8810 ± 0.0000 | 0.5860 ± 0.0000 | 0.6736 ± 0.0000 |
AWP | 0.7524 ± 0.0000 | 0.7228 ± 0.0000 | 0.8810 ± 0.0000 | 0.6029 ± 0.0000 | 0.6867 ± 0.0000 |
MCGC | 0.7429 ± 0.0000 | 0.6653 ± 0.0000 | 0.8286 ± 0.0000 | 0.5453 ± 0.0000 | 0.6191 ± 0.0000 |
GMC | 0.7476 ± 0.0000 | 0.7709 ± 0.0000 | 0.7905 ± 0.0000 | 0.8089 ± 0.0000 | 0.6968 ± 0.0000 |
SFMC | 0.7810 ± 0.0000 | 0.7883 ± 0.0000 | 0.8095 ± 0.0000 | 0.8138 ± 0.0000 | 0.7404 ± 0.0000 |
TUDMPC | 0.9238 ± 0.0000 | 0.8477 ± 0.0000 | 0.9238 ± 0.0000 | 0.8548 ± 0.0000 | 0.8505 ± 0.0000 |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.6156 ± 0.0002 | 0.6356 ± 0.0003 | 0.6831 ± 0.0002 | 0.5193 ± 0.0002 | 0.5406 ± 0.0002 |
Co-regMSC | 0.8284 ± 0.0057 | 0.8787 ± 0.0087 | 0.9152 ± 0.0097 | 0.7781 ± 0.0039 | 0.8233 ± 0.0064 |
MVGL | 0.4326 ± 0.0059 | 0.4997 ± 0.0030 | 0.5395 ± 0.0055 | 0.3363 ± 0.0040 | 0.3737 ± 0.0037 |
AWP | 0.7510 ± 0.0000 | 0.7752 ± 0.0000 | 0.8390 ± 0.0000 | 0.6575 ± 0.0000 | 0.7047 ± 0.0000 |
MCGC | 0.6158 ± 0.0004 | 0.6359 ± 0.0006 | 0.6833 ± 0.0004 | 0.5197 ± 0.0005 | 0.5410 ± 0.0005 |
GMC | 0.9940 ± 0.0000 | 0.9853 ± 0.0000 | 0.9940 ± 0.0000 | 0.9881 ± 0.0000 | 0.9880 ± 0.0000 |
SFMC | 0.9765 ± 0.0000 | 0.9440 ± 0.0000 | 0.9765 ± 0.0000 | 0.9540 ± 0.0000 | 0.9537 ± 0.0000 |
TUDMPC | 0.9955 ± 0.0000 | 0.9897 ± 0.0000 | 0.9955 ± 0.0000 | 0.9911 ± 0.0000 | 0.9910 ± 0.0000 |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.5260 ± 0.0000 | 0.2950 ± 0.0000 | 0.6040 ± 0.0000 | 0.3726 ± 0.0000 | 0.4130 ± 0.0000 |
Co-regMSC | 0.9462 ± 0.0009 | 0.8458 ± 0.0027 | 0.9462 ± 0.0009 | 0.8939 ± 0.0017 | 0.8951 ± 0.0017 |
MVGL | 0.9560 ± 0.0000 | 0.8779 ± 0.0000 | 0.9560 ± 0.0000 | 0.9119 ± 0.0000 | 0.9137 ± 0.0000 |
AWP | 0.6980 ± 0.0000 | 0.7131 ± 0.0000 | 0.8940 ± 0.0000 | 0.6138 ± 0.0000 | 0.7009 ± 0.0000 |
MCGC | 0.5340 ± 0.0000 | 0.5402 ± 0.0000 | 0.9320 ± 0.0000 | 0.3619 ± 0.0000 | 0.5131 ± 0.0000 |
GMC | 0.9820 ± 0.0000 | 0.9392 ± 0.0000 | 0.9820 ± 0.0000 | 0.9643 ± 0.0000 | 0.9643 ± 0.0000 |
SFMC | 0.2040 ± 0.0000 | 0.0160 ± 0.0000 | 0.2080 ± 0.0000 | 0.9802 ± 0.0000 | 0.3300 ± 0.0000 |
TUDMPC | 0.9820 ± 0.0000 | 0.9408 ± 0.0000 | 0.9820 ± 0.0000 | 0.9643 ± 0.0000 | 0.9641 ± 0.0000 |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.5438 ± 0.0069 | 0.7533 ± 0.0023 | 0.5768 ± 0.0056 | 0.3783 ± 0.0067 | 0.3951 ± 0.0059 |
Co-regMSC | 0.8462 ± 0.0124 | 0.9339 ± 0.0035 | 0.8978 ± 0.0075 | 0.7564 ± 0.0169 | 0.7953 ± 0.0130 |
MVGL | 0.6769 ± 0.0000 | 0.8529 ± 0.0000 | 0.8563 ± 0.0000 | 0.1448 ± 0.0000 | 0.2442 ± 0.0000 |
AWP | 0.7706 ± 0.0000 | 0.8936 ± 0.0000 | 0.8381 ± 0.0000 | 0.6339 ± 0.0000 | 0.6884 ± 0.0000 |
MCGC | 0.6206 ± 0.0000 | 0.7659 ± 0.0000 | 0.8156 ± 0.0000 | 0.5760 ± 0.0000 | 0.1067 ± 0.0000 |
GMC | 0.8375 ± 0.0000 | 0.9388 ± 0.0000 | 0.8675 ± 0.0000 | 0.8728 ± 0.0000 | 0.7692 ± 0.0000 |
SFMC | 0.7500 ± 0.0000 | 0.9176 ± 0.0000 | 0.7925 ± 0.0000 | 0.8650 ± 0.0000 | 0.6565 ± 0.0000 |
TUDMPC | 0.8650 ± 0.0000 | 0.9516 ± 0.0000 | 0.8900 ± 0.0000 | 0.8956 ± 0.0000 | 0.8086 ± 0.0000 |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.5417 ± 0.0075 | 0.7529 ± 0.0026 | 0.5782 ± 0.0050 | 0.3748 ± 0.0056 | 0.3939 ± 0.0049 |
Co-regMSC | 0.8474 ± 0.0087 | 0.9344 ± 0.0025 | 0.8992 ± 0.0059 | 0.7599 ± 0.0101 | 0.7978 ± 0.0077 |
MVGL | 0.6769 ± 0.0000 | 0.8529 ± 0.0000 | 0.8563 ± 0.0000 | 0.1448 ± 0.0000 | 0.2442 ± 0.0000 |
AWP | 0.7706 ± 0.0000 | 0.8936 ± 0.0000 | 0.8381 ± 0.0000 | 0.6339 ± 0.0000 | 0.6884 ± 0.0000 |
MCGC | 0.6206 ± 0.0000 | 0.7659 ± 0.0000 | 0.8156 ± 0.0000 | 0.0576 ± 0.0000 | 0.1067 ± 0.0000 |
GMC | 0.8238 ± 0.0000 | 0.9292 ± 0.0000 | 0.8506 ± 0.0000 | 0.8874 ± 0.0000 | 0.5042 ± 0.0000 |
SFMC | 0.7088 ± 0.0000 | 0.8633 ± 0.0000 | 0.7275 ± 0.0000 | 0.7682 ± 0.0000 | 0.3548 ± 0.0000 |
TUDMPC | 0.9325 ± 0.0000 | 0.9705 ± 0.0000 | 0.9431 ± 0.0000 | 0.9322 ± 0.0000 | 0.8690 ± 0.0000 |
Methods | ACC | NMI | Purity | R | F |
---|---|---|---|---|---|
SC | 0.6810 ± 0.0127 | 0.7183 ± 0.0055 | 0.7582 ± 0.0128 | 0.5917 ± 0.0104 | 0.6280 ± 0.0116 |
Co-regMSC | 0.9921 ± 0.0000 | 0.9789 ± 0.0000 | 0.9921 ± 0.0000 | 0.9843 ± 0.0000 | 0.9844 ± 0.0000 |
MVGL | 0.9965 ± 0.0000 | 0.9885 ± 0.0000 | 0.9965 ± 0.0000 | 0.9930 ± 0.0000 | 0.9930 ± 0.0000 |
AWP | 0.7534 ± 0.0000 | 0.8052 ± 0.0000 | 0.8475 ± 0.0000 | 0.6817 ± 0.0000 | 0.7270 ± 0.0000 |
MCGC | 0.1002 ± 0.0000 | 0.0018 ± 0.0000 | 0.9991 ± 0.0000 | 0.0999 ± 0.0000 | 0.1816 ± 0.0000 |
GMC | 0.9981 ± 0.0000 | 0.9939 ± 0.0000 | 0.9981 ± 0.0000 | 0.9962 ± 0.0000 | 0.9962 ± 0.0000 |
SFMC | 0.9924 ± 0.0000 | 0.9763 ± 0.0000 | 0.9924 ± 0.0000 | 0.9849 ± 0.0000 | 0.9849 ± 0.0000 |
TUDMPC | 0.9987 ± 0.0000 | 0.9957 ± 0.0000 | 0.9987 ± 0.0000 | 0.9974 ± 0.0000 | 0.9974 ± 0.0000 |
Metrics | p-Value | ||
---|---|---|---|
ACC | 24.97 | 7 | 0.0008 |
NMI | 25.89 | 7 | 0.0005 |
Purity | 18.92 | 7 | 0.0084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Li, H.; Zang, W.; Liu, X.; Sun, M. Tensor-Based Uniform and Discrete Multi-View Projection Clustering. Electronics 2025, 14, 817. https://doi.org/10.3390/electronics14040817
Ma L, Li H, Zang W, Liu X, Sun M. Tensor-Based Uniform and Discrete Multi-View Projection Clustering. Electronics. 2025; 14(4):817. https://doi.org/10.3390/electronics14040817
Chicago/Turabian StyleMa, Linlin, Haomin Li, Wenke Zang, Xincheng Liu, and Minghe Sun. 2025. "Tensor-Based Uniform and Discrete Multi-View Projection Clustering" Electronics 14, no. 4: 817. https://doi.org/10.3390/electronics14040817
APA StyleMa, L., Li, H., Zang, W., Liu, X., & Sun, M. (2025). Tensor-Based Uniform and Discrete Multi-View Projection Clustering. Electronics, 14(4), 817. https://doi.org/10.3390/electronics14040817