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Abstract: Human–machine pair inspection refers to a technique that supports programmers
and machines working together as a “pair” in source code inspection tasks. The machine
provides guidance, while the programmer performs the inspection based on this guidance.
Although programmers are often best suited to inspect their own code due to familiarity,
overconfidence may lead them to overlook important details. This study introduces a novel
mutation-based human–machine pair inspection method, which is designed to direct the
programmer’s attention to specific code components by applying targeted mutations. We
assess the effectiveness of code inspections by analyzing the programmer’s corrections of
these mutations. Our approach involves defining mutation operators for each keyword
in the program based on historical defects, developing mutation rules based on program
keywords and a strategy for automatically generating mutants, and designing a code com-
parison strategy to quantitatively evaluate code inspection quality. Through a controlled
experiment, we demonstrate the effectiveness of mutation-based human–machine pair
inspection in aiding programmers during the inspection process.

Keywords: software inspection; human–machine pair inspection; software faults; software
reliability; mutation testing

1. Introduction
Code inspection is an activity in which software developers evaluate code submitted

by others to improve the quality of software [1]. Fagan [2] proposed a structured process
for code inspections in 1976, and subsequent research [3] and practice [4] have proven that
code inspections can effectively identify potential errors and security risks in the code,
thereby improving software engineering quality. Code inspections have become a crucial
part of the development process, serving as a key step before integrating newly written
code into the project’s main codebase [5].

As computer software systems continue to grow in scale, the complexity of code
structures is increasing accordingly. This trend presents two major challenges: first, complex
software systems are prone to more potential errors; and second, the complexity of the
code makes it challenging for reviewers to fully grasp the context of the code during
inspection, leading to a decline in the quality of code inspection. In modern software
companies, dedicated test teams are commonly employed to manage code inspections.
While this approach introduces external perspectives and centralized expertise, it also
incurs significant time and resource costs [6]. Furthermore, test teams may lack the in-
depth understanding of the code context that developers possess. In agile development and
DevOps workflows, code inspections are often performed by peers in the development team
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rather than dedicated test teams. Although automated tools are available to assist reviewers
in understanding and inspecting submitted source code [7], the core responsibility of
code inspection still lies with the programmer. Additionally, the effectiveness of code
inspection heavily depends on the reviewer’s expertise, attitude, and personality traits [8].
As companies strive to optimize the software development lifecycle, addressing these
challenges has become increasingly critical.

Programmers have not only an in-depth understanding of the code that they develop
but also specialized knowledge regarding the projects that they are involved in. This
makes guiding them through self-inspections a promising approach to addressing existing
challenges in code inspection. To this end, we proposed the human–machine pair inspection
(HMPI) approach in our previous work [9], aiming to leverage both human expertise and
automated tools for more efficient and effective code inspections. However, programmers’
excessive confidence in the code that they write may lead them to overlook potential errors.
Consequently, guiding programmers to effectively inspect their code and quantitatively
assess the quality of code inspections has become a challenge worth investigating. A feasible
approach to address this challenge is mutating the source code written by programmers to
generate mutants and then evaluating the quality of code inspection by quantifying the
extent to which programmers repair these mutants. Specifically, this study aims to address
the following research questions:

- RQ1. How can an automated approach effectively attract programmers’ attention
during the HMPI process to mitigate the overconfidence caused by familiarity with
their own code?

- RQ2. How can a mutation-based method be utilized to guide programmers in identify-
ing potential issues in their code during the inspection process?

- RQ3. What metrics can be designed to quantitatively evaluate the effectiveness of code
inspections by programmers?

At present, among the existing methods for ensuring software quality through code
modification, mutation testing and software fault injection are two widely discussed ap-
proaches. Both involve injecting faults into the source code [10]. Fault injection has been
widely used to evaluate fault tolerance mechanisms and to assess the impact of faults on
computer systems [11]. Unlike fault injection, the purpose of mutation testing is to increase
the effectiveness of test cases in identifying faults, while software fault injection is applied
following other testing and verification activities (including mutation testing) in order to
assess the effectiveness of fault tolerance algorithms and mechanisms. What distinguishes
our approach is that we aim to guide programmers in inspecting their code through muta-
tion (fault injection). Our research seeks to draw the attention of the inspector (who is also
the programmer) to specific components of the code by strategically inserting faults during
the coding process. These deliberate fault insertions aim to guide the inspector towards
conducting a more thorough and focused code inspection. In this study, we propose the
mutation-based HMPI approach (MB-HMPI), which effectively contributes to ensuring the
correctness of programs throughout the entire development process.

In general, this study makes the following contributions:

- An automated MB-HMPI method that leverages both human expertise and automated
tools is proposed to improve code inspections.

- This framework is the first to use mutants to guide programmers in code inspection,
enhancing code quality and the effectiveness of inspections.

- Two novel metrics—the Mutation Detection Rate (MDR) and Code Modification Rate
(CMR)—are proposed to quantitatively assess the quality of a programmer’s code
inspection. The MDR measures the effectiveness of identifying injected mutants, while
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the CMR evaluates the extent of code modifications made by the programmer to
address identified issues.

The remainder of this paper is organized as follows: Section 2 reviews the related liter-
ature, providing context for this study, and introduces the motivations and strengths of the
proposed approach. Section 3 presents a detailed overview and an in-depth explanation of
the MB-HMPI methodology, including its key components and implementation. Section 4
reports the case studies and experimental results, followed by a comprehensive discussion
of the study’s implications, limitations, and potential directions for future research. Finally,
Section 5 summarizes the findings and contributions of this study, concluding the paper.

2. Background
In this section, we describe the current state of code inspection, identify challenges and

limitations in existing approaches, review mutation testing and fault injection techniques,
and explain the motivations and strengths of our method.

2.1. Related Work

In the early stages of code inspection, peer review involved programmers submitting
their code to reviewers, who evaluated it based on their own software engineering expertise
and knowledge to identify potential defects. While this process allows for the integration
of external insights and experience to enhance the quality of code, it also incurs significant
human resource costs. Furthermore, variations in reviewers’ knowledge, skill levels, and
diligence can lead to inconsistencies in the quality of code inspections. To address these
challenges, much of the existing research has focused on developing static code analysis
tools to assist reviewers, aiming to reduce the required manual effort while improving
inspection quality [12,13]. Recent studies have explored the automation of code review
processes using machine learning [14] and pre-trained models [15,16]. However, the
most significant factors influencing the efficiency and effectiveness of code inspections
are often the reviewer’s familiarity with the code’s context, their coding proficiency, and
the thoroughness of their review [17,18]. As programmers are typically the most familiar
with the code context, exploring mechanisms to guide them in conducting self-inspections
during the coding process has emerged as a promising area for further investigation.

To the best of our knowledge, there is no research in the literature focused on tech-
niques with the same purpose as our MB-HMPI. However, in software engineering, the
technique of modifying source code based on specific rules and executing these modifica-
tions to collect runtime data remains a focal point for enhancing the security and reliability
of software systems. This technique is typically combined with testing methods, with the
most common applications being mutation testing [19] and fault injection [20]. Although
these techniques differ from our MB-HMPI in many respects, they seem to share the similar
idea of taking advantage of deliberately modified code for defect detection. Therefore, in
this subsection, we focus on the review of mutation testing and fault injection techniques.

Mutation testing can generally be divided into three steps: generating reasonable
mutants based on the given program, testing the mutants using test cases, and finally
evaluating the effectiveness of the test suite through analyzing the test results. The step of
generating reasonable mutants based on the source code is closely related to our current
work. Loise et al. [21] have attempted to address security issues by utilizing a strategy
for the generation of reasonable mutants. Similar studies include the work of Nanavati
et al. [22], as well as its extension by Wu et al. [23], where they attempted to simulate
memory faults using mutants. Garvin and Cohen [24] conducted a study on real faults in
open-source projects and subsequently designed unique mutants for feature interaction
faults. Although these works use mutation to discover bugs in programs and improve
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the reliability of software systems, they still fall within the scope of mutation testing.
This approach requires significant computation to remove redundant mutants, as well as
complex strategies to generate test cases and execute them, which are computationally
intensive [19]. In contrast, our approach involves modifying the source code to assist
programmers in code inspection. Therefore, our strategy for generating mutants focuses
more on creating mutants that can help programmers to identify errors in their own code
during code inspection, rather than designing mutants with specific types of bugs that are
beneficial for testing.

Another approach to ensuring system reliability through modifications to the pro-
gram’s source code is known as software fault injection (SFI). Among these, the subfield
most relevant to this study is code change injection. In this method, the modifications made
to the program’s source code are intended to simulate potential faults that may occur dur-
ing system operation, thereby evaluating the system’s response to specified faults during
its operation. The Fault Injection and Monitoring Environment (FIME) tool [25], proposed
by Kao et al., was the first to address the issue of which faults should be injected in SFI. Its
extended version, the DEFINE tool [26], expanded this approach to distributed environ-
ments. Similar works include G-SWFIT, the NFTAPE framework [27], and State-Driven
Workload Generation [28]. Regarding the question of when faults resulting from code
changes should be injected, Daran et al. [29] have suggested that the injection should occur
before the code execution. Ng et al. [30] further extended this conclusion by proposing a
method for injecting faults during code execution.

However, the strategy of code change injection primarily focuses on evaluating the
system’s fault tolerance, making the faults generated for SFI more targeted, and placing
greater emphasis on the representativeness of the faults and their impact during system
operation. In contrast, code inspection is usually conducted during the system development
phase. Therefore, the objective of our research differs significantly from previous studies.

2.2. Motivations and Strengths

Errors in software development can be categorized based on different stages of de-
velopment into compile-time errors, logical errors, resource management errors, environ-
mental errors, and integration errors. HMPI primarily focuses on inspecting the source
code during the programming process, which makes it challenging to detect environmental
errors that emerge during program execution. As a result, we exclude environmental and
integration errors when defining the mutation strategy. Additionally, as compile-time
errors are typically detected during the compilation process, they are not the focus of
our research.

Unlike traditional mutation testing, which primarily aims to evaluate the effectiveness
of test cases through generating mutants with specific types of bugs, our approach focuses
on assisting developers during the code inspection process. This distinction enables us to
design mutants that directly guide programmers in identifying and inspecting logical errors,
security vulnerabilities, and resource management issues. Through integrating targeted
mutant generation into the programming process, our methodology eliminates the need
for computationally intensive tasks such as removing redundant mutants or generating
exhaustive test cases. Additionally, in contrast to software fault injection, which is often
applied during runtime to evaluate fault tolerance, our strategy emphasizes the early stages
of software development, allowing programmers to address critical issues proactively
during code inspection. Compared to existing approaches, such as mutation testing and SFI,
our method demonstrates significant improvements in guiding programmers to identify
and rectify critical flaws in their own code. Our mutation-based strategy enhances the
thoroughness of code inspections through reducing the overconfidence of programmers,
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which may lead to them overlook potential issues in their code. This not only improves the
overall quality of code, but also minimizes the time and effort required for peer review.

In summary, the proposed MB-HMPI approach leverages deliberate fault injection to
focus programmers’ attention on areas prone to errors, offering a novel methodology for
improving the effectiveness and efficiency of code inspections. This contribution signifi-
cantly advances the field by addressing the limitations of existing techniques and providing
a practical framework for enhancing the reliability of software during development.

3. Methodology
In this section, we first introduce the fundamental techniques required for MB-HMPI,

followed by an overview of the MB-HMPI approach. Subsequently, we detail the mutation
strategy as the foundational step in the process, explaining how mutants are constructed.
Building on this, we outline the method for automating mutant generation, ensuring
efficiency and scalability in the application of the mutation strategy. Finally, we propose a
code comparison strategy to evaluate the effectiveness of programmers’ self-inspections,
guiding the decision on whether to continue coding or inspect a newly generated mutant.

3.1. Foundational Techniques

The MB-HMPI proposed in this study is established based on the initial HMPI (pro-
posed in our previous publication), mutation testing, and the tree edit distance. In this
subsection, we provide a brief introduction to these three techniques.

3.1.1. Human–Machine Pair Inspection

During the peer review process, when reviewers inspect complex and large amounts
of code, it can sometimes be challenging to fully comprehend all the details of the code
being reviewed due to a lack of background information or domain knowledge [31]. Self-
inspection of the code by programmers can overcome the aforementioned issue. However,
due to programmers’ excessive familiarity and confidence in the code they have con-
structed [32], the effectiveness of code self-inspection may be compromised by challenges
such as the absence of external perspectives and cognitive biases [33]. In order to mitigate
these deficiencies of existing inspection techniques, we proposed human–machine pair
inspection (HMPI) [9] in our previous work, which aims to provide a technique supporting
human–machine pair programming (HMPP) [34] technology. In HMPP, a programmer and
computer work together to construct a program, where the programmer plays the role of
a driver and the computer plays the role of an observer. Similarly, the process of HMPI
involves the computer pointing out where to inspect in the code (usually high-risk code)
and generating a checklist, whereas the programmer carries out the inspection based on
the checklist. The main process is illustrated in Figure 1.

Specifically, our proposed HMPI utilizes cognitive complexity [35] to guide program-
mers to inspect their own code. The process consists of six major steps: Pre-process the
recorded data, generate the intermediate representation (IR) and control flow graph (CFG),
calculate the cognitive complexity, generate the inspection syntax graph, establish the
checklist, and analyze the code to detect defects. The detailed steps of HMPI are illustrated
in Figure 2. It is worth noting that this method leverages complexity theory to guide the
machine in identifying and recommending potentially high-risk code segments for inspec-
tion. This feature of HMPI directs programmers to inspect code areas that, theoretically, are
more prone to issues, thereby enhancing the efficiency of the inspection process. However,
this approach primarily addresses the question of which areas programmers should focus
on during inspections.
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Figure 1. Overview of the human–machine pair inspection process.

Figure 2. Detailed steps of the human–machine pair inspection process.

As a result, the HMPI approach has limitations in effectively drawing the attention
of the inspector to error-prone sections of code and lacks a reliable means to quantify the
quality of programmers’ code inspections. These shortcomings can lead to inefficiencies,
particularly in large-scale software engineering projects. Therefore, we propose to use
mutation to further support HMPI. The method proposed in this study does not strictly
follow the original HMPI workflow, but instead adopts its overarching concept. Detailed
steps of the proposed method are described in the subsequent sections.

3.1.2. Mutation Testing

Mutation testing involves assessing the effectiveness of test cases by running them on
faulty versions of a program, known as mutants [36]. These mutants can either be manually
introduced or automatically generated using a set of mutation operators, which are pre-
defined rules for making changes in the code. Equivalent mutants [37] are syntactically
different but semantically identical to the original software, performing the same function,
and cannot be distinguished or detected by any test cases, meaning that they cannot be
“killed”. Hard-to-kill mutants are non-equivalent mutants that can only be detected and
eliminated by a small number of highly specific test cases. These mutants are valuable as
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they help to enhance the fault detection capabilities of test cases. The effectiveness of the
test cases is determined by how many mutants they “kill”, referred to as killed mutants,
where the output of the mutant differs from the original program for at least one test case.
Consequently, test cases are crafted to eliminate as many mutants as possible.

This method is grounded in two key theoretical principles: the competent programmer
hypothesis and the coupling effect. The competent programmer hypothesis assumes
that programmers tend to write code that is nearly correct, meaning that most faults
are relatively minor and can be corrected by small changes to the code. These small
changes are represented by mutants. On the other hand, the coupling effect posits that
test cases that are effective in detecting these small faults (mutants) are also likely to detect
more complex faults in the program. Together, these principles provide the theoretical
foundation for generating mutants and evaluating the effectiveness of tests. The process
of mutation testing is shown in Figure 3. For the source code, a set of mutants is selected
according to the mutation strategy. Problematic mutants—such as equivalent ones and
redundant mutants, which are semantically distinct but subsumed by others—need to be
removed. After forming the final set of mutants, a mutation-based test suite is generated
and executed against them. In this phase, test cases are designed (either manually or
automatically) to target and potentially kill the mutants. These test cases are then executed
with all the mutants in order to assess their effectiveness in detecting and eliminating the
introduced mutations.

Figure 3. Mutation testing process.

A long-standing issue in mutation testing is the large number of mutants generated
by mutation operators, which can overwhelm the testing process. Ideally, mutation testing
should concentrate on “hard-to-kill” mutants, as these are more likely to lead to high-quality
test cases and prevent the unnecessary increase in test executions caused by trivial mutants.
To address this challenge, researchers have explored the development of a sufficient set
of mutation operators—namely, those capable of producing a smaller number of mutants
while maintaining high test effectiveness—as well as strategies for mutant sampling and
clustering [19].

3.1.3. Tree Edit Distance

The tree edit distance (TED) [38] is a specialized metric for measuring the structural
similarity between two tree-structured data representations. It calculates the minimum
cost of a sequence of edit operations needed to transform one tree into another. Common
edit operations include node insertion, deletion, and substitution, each associated with a
pre-defined cost. TED is particularly suited for hierarchical data structures, such as syntax
trees, XML documents, or abstract syntax trees, due to its ability to capture structural
differences effectively and efficiently [39].
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Definition 1 (Tree Edit Distance (TED)). The tree edit distance between two rooted trees t1 and
t2, denoted as TED (t1, t2), is defined as

TED (t1, t2) = min
(e1,...,ek)∈P(t1,t2)

k

∑
i=1

c(ei). (1)

where P (t1, t2) represents the set of all possible edit paths (i.e., sequences of edit operations) that
transform t1 into t2, and c(ei) ≥ 0 is the cost associated with each tree edit operation ei. The cost
function c(e) can be customized based on the specific application in order to reflect the significance
of different types of modifications.

Compared to the more general graph edit distance (GED), which is NP-hard, TED
algorithms are computationally more efficient due to the hierarchical constraints of trees.
Many TED algorithms achieve polynomial-time complexity, making TED a practical choice
for analyzing structured data [40]. In this study, we use the TED to compare abstract syntax
trees, as it provides an effective balance between computational feasibility and structural
similarity assessment.

3.2. General Workflow

The main purpose of the proposed MB-HMPI is to utilize mutation operators to
simulate potential errors that may exist in the program. This helps programmers to identify
potential risks that may occur during the program development process when inspecting
the mutated versions. The proposed method consists of two phases: the first phase involves
the mutant generation algorithm, while the second phase focuses on the rules for mutant
inspection. Its organization process is shown in Figure 4.

Figure 4. Overview of the mutation-based human–machine pair inspection method.

In the first phase of the MB-HMPI method, the source code is parsed into an abstract
syntax tree (AST). This approach offers two key advantages. First, it facilitates monitoring
of the structure of the source code. Second, by manipulating the AST, pre-defined mutation
strategies can be more easily implemented to automatically generate mutants. The specific
steps of the first phase consist of three parts:

- The AST is traversed according to a given set of rules, and the nodes requiring modifi-
cation are identified.

- The identified nodes are modified according to the specified patterns, as illustrated in
the red box in Figure 4.

- The modified AST is recompiled into mutants, which are then provided to program-
mers for inspection and evaluation.

The detailed implementation of mutant generation is discussed in Section 3.4.
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In the second phase, the mutant code is inspected by programmers, who then submit
the fixed code. The fixed code is compared against both the original clean code and the
mutant code, resulting in one of the three possible outcomes:

- The inspection passes, and the programmers continue with development.
- The fixed code undergoes another round of mutation, generating new mutated code

for further inspection by the programmers.
- The inspection fails, and the programmers continue inspecting the mutated code. The

specific comparison strategy and implementation method are provided in Section 3.5.

3.3. Mutation Model

The main purpose of generating mutants in MB-HMPI is to guide programmers
in identifying mutations within the mutants, thereby improving the efficiency of code
inspection and uncovering potential errors in the code. Therefore, the injected mutations
should reflect as many typical errors often introduced to source code as possible. To achieve
this, we propose a defect-based mutation operator setting strategy and a mutation rule
setting strategy.

3.3.1. Defect-Based Mutation Operators

We propose a strategy for designing mutation operators based on empirical patterns
of historical real-world errors, aimed at guiding programmers in conducting more effective
code inspections. This strategy involves two key steps: identifying and summarizing the
real defects that have occurred historically, along with how they were fixed. Through
extracting and analyzing the modified segments of the code, we can derive meaningful
patterns that inform the systematic design of mutation operators, enabling them to capture
and simulate real-world error scenarios effectively. In modern software development,
peer review is frequently performed on version control platforms that support distributed
collaboration through mechanisms such as pull requests. Pull requests encapsulate detailed
information about code modifications, with “Diffs” being fundamental components that
visualize changes line-by-line, thereby streamlining the review process and enhancing
collaborative discussions. Historical defect data in the code can be obtained through pull
requests in GitHub. Through analyzing defect-related Diff files in GitHub, it is possible
to manually summarize the mutation operators corresponding to different keywords in
the program.

As shown in Table 1, as the structure of a program is determined by keywords, linking
keywords to mutation operators establishes a relationship between the program structure
and mutation operators. First, let KW be the set of all keywords in a programming language
and let the mapping ϕ : P → P′ represent a mutation operator, where P is the original
program and P′ is the modified program. Here, ϕ is derived manually by summarizing the
Diff file. Secondly, we construct a set of mutation operators for each keyword, denoted
as MOk = {ϕ1k, . . . , ϕsk}, where the k belongs to the keyword set KW and s represents the
number of mutation operators defined for the keyword k. Here, the values of |MOi| and
|MOj| can be different for different keywords i and j.

Table 1. Fundamental constructs, operators, and keywords used in programming.

Construct Keywords Operators

Sequence
Structure

- Import-from Keyword
- As Keyword
- Def Keyword
- With-as Keyword

- Arithmetic Operators
- Bitwise Operators
- Assignment Operators
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Table 1. Cont.

Construct Keywords Operators

Selection
Structure

- If-else Keyword
- Try-except Keyword
- Assert Keyword

- Comparison Operators
- Logical Operators
- The Operators of Sequence Struc-

ture

Iteration
Structure

- For Keyword
- While Keyword
- Break-continue

Control Keywords

- Membership Operators
- The Operators of Selection

To clarify the above strategy, we take the keywords For and If as examples. Specific
mutation operators can be assigned to each keyword, as shown in Table 2. For the keyword
For, its corresponding mutation operators can be represented as the set MO f , where
|MO f | = 3. Similarly, for the keyword If, its corresponding mutation operators can be
represented as the set MOi, where |MOi| = 3.

Table 2. Examples of keyword-to-mutation operator mappings.

Keywords Mutations Example

For
- Boundary Change
- Body Statement
- Control Variable

- range(1, 2)→ range(1, 4)
- delete break
- f or i in List→ f or j in List

If-else
- Condition Logic
- Condition Value
- Control Flow

- &&→ ||
- i f (x > 5)→ i f (true)
- add return

If a large number of mutation operators are assigned to each keyword and applied
together to generate source code mutants, it may result in the code becoming unrecogniz-
able. Therefore, it is necessary to manually establish rules for the use of mutation operators
based on different code structures.

3.3.2. Mutation Rule

Unlike the purpose of generating mutants in mutation testing, our approach aims to
guide programmers in inspecting code. Instead of generating a large number of random
mutants for a piece of source code, we generate a single, unique mutant. If defined
mutation operators are used to randomly modify the code, the resulting mutants may
differ significantly from the original code. Such mutants are unlikely to effectively guide
programmers in performing code self-inspection and fail to achieve the intended purpose.
To achieve this, we define specific mutation rules tailored to different code structures.

These rules are defined based on the structure of the code. Consider the following
Example_rule: if the control structure of a given source code segment contains two nested
FOR loops, with an IF condition inside the inner loop, the boundary change mutation
operator is applied to the first level FOR loop in that code segment. Applying the above
rule to the code in Listing 1, the MB-HMPI will generate the mutant in Listing 2.



Electronics 2025, 14, 382 11 of 23

Listing 1. Original code.

1 for i in range(1, 10):
2 for j in range(1, 5):
3 if j % 2 == 0:
4 print(f"i: {i}, j: {j}")

Listing 2. The mutant.

1 for i in range(1, 100):
2 for j in range(1, 5):
3 if j % 2 == 0:
4 print(f"i: {i}, j: {j}")

Many similar rules can also be defined. To implement rule matching within code, the
AST of the source code is traversed to extract a nested tree, which is structured accord-
ing to the keywords that define the code’s architecture. We define a set of nested trees
T = {t1, t2, . . . , tn}, where n is the number of code nested tree templates we have defined.
For each nested tree, we define an If-Then rule, denoted as ri: If the nested structure of the
source code matches ti, then apply the mutation operators in the set Xi to the source code.
We define the set Xi as

Xi =
⋃

k∈K

{ϕjk | j ∈ Jk},

where K = {k1, k2, . . . , kc} ⊆ KA = {k1, k2, . . . , kw}, with w being the total number of
keywords and c being the number of keywords that need to be modified in the nested
structure; furthermore, Jk ⊆ MOk is the set of mutation operators for the keyword in the
nested structure ti.

To better understand the description above, we continue using the code structure de-
scribed in Example_rule as an example. Here, KA = {For, I f } represents the set of two key-
words defining the nested structure, while K = {For} specifies the keyword that needs to
be mutated according to the rule; and MOk = {Boundary Change, Body Statement, Control
Variable} represents all mutation operators applicable to the For keyword, whereas
Jk = {Boundary Change} denotes the restricted set of mutation operators allowed by
the Example_rule. The nested rule described in Example_rule corresponds to the set of
applicable mutation operators X = {Boundary Change}.

3.4. Automatic Mutant Generation

To ensure the feasibility of this strategy without human intervention, we propose an
automated AST-based mutant generation method. We detail the process of generating
mutants for code inspection from two key perspectives: the location (Where) and the type
of error (What).

Where: First, convert the source code into an abstract syntax tree (AST). Next, traverse
the AST to obtain the nested structures between specified keywords. Finally, compare the
identified nested structures with the pre-defined nested tree structure. If a match is found,
return the AST node that needs to be modified. For specific details, see Algorithm 1.

What: We apply the pre-defined mutation operator for each structure to the AST nodes
that need modification, as identified in the location step. After mutation, the mutated AST
is converted back into source code, which becomes the mutant. For specific details, see
Algorithm 2.



Electronics 2025, 14, 382 12 of 23

Algorithm 1: Location.
Input: Source_Code, StructureSet
Output: nodes_to_modi f y
Nodes = AST.parse(Source_Code)
Function Extract_Structure(Node, Level):

ControlFlowNodes← keywords;
Structure← [ ];
if Node in ControlFlowNodes then

Append (Node_Type_Name, Level) to Structure;
end
for Child in Children of Node do

Structure← Structure + Extract_Structure(Child, Level + 1);
end
return Structure;

Function CompareStructures(Structure, StructureSet):
for S in StructureSet do

if S matches Structure then
return nodes_to_modi f y;

end
end

Algorithm 2: Mutant.
Input: Source Code
Output: Mutant
begin

AST = Parse (Source Code);
nodes_to_modi f y = Location (AST);
for AST.node in AST do

if AST.node in nodes_to_modi f y then
AST.node = Fix (AST.node, Operator);

end
end
Mutant = Unparse (AST);
return Mutant;

end

3.5. Code Comparison Strategy

The mutants generated by MB-HMPI are presented to programmers for inspection,
requiring them to manually restore the original code from the mutants. The extent to
which programmers restore the mutants is used to evaluate the effectiveness of their code
self-inspection. Specifically, when the programmer fixes a mutant, we obtain the fixed code.
Then, the fixed code is compared with both the mutant and the source code to calculate
the modification ratio. This allows us to quantify the effectiveness of the programmer’s
code self-inspection based on the differences between the codes. To clarify the evaluation
process, we first introduce the following key definitions.

Definition 2 (Mutation Detection Rate (MDR)). Let T1 be the AST of the fixed code, and T2 be
the AST of the mutant. If Substitution(T1, T2) represents the total cost of node substitutions in the
tree edit distance and |M| is the number of mutations in the mutant, then the MDR is defined as
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MDR =
Substitution(T1, T2)

|M| . (2)

Definition 3 (Code Modification Rate (CMR)). Let T1 be the AST of the fixed code, and T3 be
the AST of the clean code. If Insert(T1, T3) represents the total sum of node insertion costs in the
tree edit distance, Deletions(T1, T3) represents the total sum of node deletion costs in the tree edit
distance, and |T3| represents the total number of nodes in T3, then the CMR is defined as

CMR =
Insert(T1, T3) + Deletions(T1, T3)

|T3|
. (3)

Definition 2 aims to measure how many of the inserted mutations the programmer
identified and corrected during the code inspection. If the modification ratio is too small,
MB-HMPI will assume that the programmer did not perform a thorough code inspec-
tion. Conversely, if the modification ratio is relatively large, it will be considered that the
programmer’s inspection was effective. In contrast, Definition 3 measures whether these
mutations prompted the programmer to modify the previously written source code. If
the modification ratio is too large, MB-HMPI will assume that the programmer identified
potential issues in the code during the inspection process. On the other hand, if the modifi-
cation ratio is too small, it suggests that the inspection process did not uncover potential
issues in the source code. However, during the code inspection, the programmer may
modify both the inserted mutations from MB-HMPI and the source code simultaneously.
Therefore, we designed Table 3, which presents a method to balance both metrics.

Table 3. Comparison strategy.

MDR ≥ T M% MDR < T M%

CMR ≥ TC% Re-mutation Re-mutation
CMR < TC% Continue Inspection

In Table 3, TM% is the threshold of the MDR manually set by the programmer and
TC% is the threshold of the CMR manually set by the user. When the CMR exceeds TC%,
the MB-HMPI considers that the programmer has made significant code modifications
after the inspection. In this case, regardless of the MDR value, our algorithm will re-insert
mutations into the modified code and generate a new mutant. If the CMR is less than
the given TC%, our algorithm considers that the programmer has not made substantial
modifications to the code and, in this case, the size of the MDR will determine whether the
programmer’s inspection passes.

4. Results and Discussion
In this section, we present two case studies. Case study 1 is used to elaborate on

how generating mutants of the source code guides programmers in discovering potential
errors in the source code, while case study 2 provides a detailed demonstration of how our
method generates mutants. We then evaluate the effectiveness of our MB-HMPI method
through a series of controlled experiments, subsequently addressing the research questions
outlined in the Introduction. Finally, we provide a comprehensive discussion of the study’s
implications, limitations, and potential future directions.

4.1. Case Study 1

To explain our algorithm, we begin by addressing the following specific requirement:
Given an integer array and a sliding window of size k, the window moves from the leftmost
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side of the array to the rightmost, shifting one position to the right at each step. In each
step, the task is to return the maximum value within the current window. To illustrate
and clarify the development of our approach, we first present an initial implementation
that contains potential errors (out-of-bounds), serving as the basis for further refinement
and discussion.

- Step 1: Generate the mutant

The code in Listing 3 is an implementation of the above requirements. However, in
the loop on line 8, for j in range(1, k) is used to find the maximum value within the
sliding window. If the array length is insufficient to accommodate the specified window
size, it may lead to out-of-bounds access on arr[i + j]. Although the check k > len(arr)
on line 2 ensures that the window size is valid, this check does not account for all potential
out-of-bounds cases.

Listing 3. Source code containing potential errors.

1 def maxSlidingWindow(arr , k):
2 if k <= 0 or k > len(arr):
3 return None
4 max = []
5 for i in range(len(arr) - k + 1):
6 # for i in range(len(arr) - k + 2):
7 windowMax = arr[i]
8 for j in range(1, k):
9 if arr[i + j] > windowMax:

10 windowMax = arr[i + j]
11 max.append(windowMax)
12 return max

As the control statement nesting structure from lines 5 to 10 in Listing 3 is consistent
with the structure in Listing 1 referenced in Section 3.3.2, we apply boundary operators to
the first for loop in Listing 3—namely, for i in range(len(arr) - k + 1)—according
to the mutation rule bound to Listing 1. Finally, the mutant generated by MB-HMPI only
needs to replace line 5 in Listing 3 with the content from line 6.

- Step 2: Code inspection of the mutant

The programmer reviews the mutant generated after modifying Listing 3, and there
are two possible outcomes. The first possible outcome is that the mutant is modified
back to the original code in Listing 3. This situation corresponds to “continue” in Table 3,
where MB-HMPI will consider the code in Listing 3 to be correct. The second possible
outcome is that the programmer identifies a potential error in Listing 3. Through adding
the conditional statement in line 8 and incorporating error handling, the code in Listing 4
written by the programmer can prevent out-of-bounds read errors.

Listing 4. The code after inserting mutants.

1 def maxSlidingWindow(arr , k):
2 if k <= 0 or k > len(arr):
3 return None
4 max = []
5 for i in range(len(arr) - k + 1):
6 # for i in range(len(arr) - k + 20000):
7 windowMax = arr[i]
8 for j in range(1, k):
9 if i + j < len(arr):

10 if arr[i + j] > windowMax:
11 windowMax = arr[i + j]
12 else:
13 print(f"Error: Accessing out of bounds at index {i + j}.")
14 return None
15 max.append(windowMax)
16 return max
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- Step 3: Re-mutation

After the programmer re-writes the code in Listing 3, resulting in Listing 4, MB-HMPI
needs to mutate Listing 4 again, according to the rules in Table 3. As the control statement
nesting structure from lines 5 to 14 in Listing 4 is still consistent with the structure in
Listing 1 referenced in Section 3.3.2, we apply boundary operators to the first for loop
in Listing 4; namely, for i in range(len(arr) - k + 1). Suppose this time that we
change 1→ 20,000. In this case, the mutant generated by MB-HMPI should replace line 5
in Listing 4 with the content from line 6. Actually, as this implementation uses a Brute Force
Algorithm, it typically has a high time complexity due to a lack of optimization. Although
it can produce correct results for small test cases, the computation time often becomes very
long as the problem size increases. When the programmer reviews the mutant generated
after modifying Listing 4, there is a certain probability that they will identify a potential
issue with the algorithm’s high complexity in Listing 4. As a result, they may apply a queue
optimization technique, leading to the code shown in Listing 5.

Listing 5. Optimized code.

1 def maxSlidingWindow(arr , k):
2 deque = collections.deque ()
3 max , n = [], len(arr)
4 for i, j in zip(range (1 - k, n + 1 - k), range(n)):
5 if i > 0 and deque [0] == arr[i - 1]:
6 deque.popleft ()
7 while deque and deque [-1] < arr[j]:
8 deque.pop()
9 deque.append(arr[j])

10 if i >= 0:
11 max.append(deque [0])
12 return max

4.2. Case Study 2

In this subsection, we progressively demonstrate the steps for automatically generating
mutants using Algorithms 1 and 2. For the source code in Listing 6, to facilitate automatic
monitoring of the code structure and mutant generation, we first convert the Python code
into an abstract syntax tree.

Listing 6. Python code for parsing.

1 def process_number(num , target , increment):
2 if num > target:
3 while num > target:
4 if num % 2 == 0:
5 num -= 2
6 else:
7 num -= 1
8 else:
9 while num < target:

10 if num + increment > target:
11 increment = target - num
12 num += increment
13 return num

As shown in Figure 5, through performing a depth-first traversal of the abstract syntax
tree using Algorithm 1, we can accurately identify the if and while keywords and determine
that the code in Listing 6 exhibits a three-level nested structure. As source code with higher
complexity is more likely to contain potential errors, we have established a rule: if the
source code contains multiple levels of nesting, we only mutate the first level. In the case
study, Algorithm 1 returned the i f (num > target) node in the AST. Next, as shown in
Figure 6, we used a pre-defined mutation operator to modify the i f (num > target) node,
as detailed in Algorithm 2.
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Figure 5. AST for Python code.

Figure 6. AST for Python code with mutation.

4.3. Experiments

To validate the proposed approach, we conducted a comparative evaluation against
the popular inspection technique known as checklist-based reading (CBR) [41]. To measure
the impact of this approach, we recruited four postgraduate students in the field of software
engineering (labeled as 1, 2, 3, and 4) who met the following criteria: (1) High proficiency
in Python programming, (2) familiarity with checklist-based reading method, and (3) the
ability to understand and manually replicate the process of MB-HMPI. Prior to the experi-
ment, the participants underwent comprehensive training that consisted of three phases:
(1) Theoretical instruction, where the principles of the checklist-based reading method and
the MB-HMPI approach were explained in detail, including the rationale and design of
mutation operators; (2) demonstration sessions, in which we showcased the step-by-step
application of both the checklist-based reading method and the use of mutation operators to
guide code inspection, simulating the inspection process; and (3) hands-on practice, where
participants independently applied the checklist-based reading method and the MB-HMPI
method to example code under supervision, followed by feedback and refinement of their
understanding. This structured training ensured that participants not only understood
the checklist-based reading method and machine-assisted MB-HMPI process and could
simulate their functionality, but also demonstrated their ability to independently apply the
MB-HMPI method for effective code inspection.

The experiment was conducted in three phases using the Python 3 programming
language, executed on the LeetCode online programming platform. The participants were
introduced to the platform’s features and usage prior to the experiment. LeetCode was
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chosen for its ability to control coding difficulty, track code execution time, measure lines
of code, monitor pass rates, and provide integrated timing functions. For the experiment,
each participant independently selected a set of problems from LeetCode’s “hard” cate-
gory, in order to ensure consistency in the difficulty and complexity of the problems. A
total of 18 problems (numbered 1 through 18) with a difficulty of “hard” were randomly
selected from LeetCode by all participants. These problems were chosen to reflect sufficient
algorithmic complexity and real-world applicability.

Phase 1: Evaluation of programming without code inspection
In the first phase, we tested the participants’ effectiveness in programming inde-

pendently without code inspection. Each participant worked individually to complete
problems 1 and 2 selected from LeetCode without code inspection. For each task, the
following metrics were recorded:

- Programming Time: The total time spent by the programmer in writing the code.
- Execution duration: The time taken for the code to run during testing.
- Submission count: The number of times the programmer submitted the code to the

system for verification.

Phase 2: Evaluation of CBR Method
In the second phase, we tested the effectiveness of traditional inspection methods.

Participants were organized into pairs to perform specific programming and inspection
tasks. Participant 1 was tasked with programming solutions to problems 3 and 4, after
which participant 2 inspected the code. This pair was designated as group A. Participant 3
was tasked with programming solutions to problems 5 and 6, followed by participant 4
inspecting the code. This pair was designated as group B. After the initial tasks were com-
pleted, the roles within each group were reversed: Participant 2 assumed the programming
role for problems 7 and 8, while participant 1 became the inspector. This role-reversed
pair was termed group A’. Participant 4 programmed solutions to problems 9 and 10,
with participant 3 as the inspector. This pair was designated as Group B’. For each task,
the following metrics were recorded: Programming time, inspection time (the time taken
by the inspector to evaluate and provide feedback on the code), execution duration, and
submission count. For a comprehensive overview, refer to Table 4.

Phase 3: Evaluation of MB-HMPI
In the last phase, we tested the effectiveness of our proposed method. The participants

were paired into two groups, working together to solve the remaining eight problems
selected from LeetCode. The group collaboration and naming method was similar to that
in phase 2, except that the task of the inspector in phase 2 was to simulate the machine’s
role through inserting mutants and guiding the inspection process, as well as recording
relevant data; specifically, participants 1 and 3 focused on coding, while participants 2 and
4 simulated the machine’s role. According to Section 3.3, ten mutants were introduced
into the code. Upon completion, the roles were switched: participants 2 and 4 took over
coding, while participants 1 and 3 simulated the machine’s functionality. Thus, group
A completed programming problems 11 and 12, group B handled problems 13 and 14,
group A’ worked on problems 15 and 16, and group B’ was responsible for problems 17
and 18. As the time taken by the tool to insert mutants is negligible in practice, the time
spent by participants simulating this function did not count toward the programming time.
For each task, the following metrics were recorded: Programming time, execution duration,
and submission count.

The specific participants, their assigned tasks, the problems completed (selected from
LeetCode), and the data recorded are summarized in Table 4.
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Table 4. Task allocation in the experimental setup.

Phase Group Participant Problem Task Recorded data

1

1 1 1, 2 Programming
independently
without code
inspection

• Programming Time
• Execution Duration
• Submission Count

2 2 1, 2
3 3 1, 2
4 4 1, 2

2

A
1 3, 4 Programming

• Programming Time
• Inspection Time
• Execution Duration
• Submission Count

2 Inspection

B
3 5, 6 Programming
4 Inspection

A’
1 7, 8 Inspection
2 Programming

B’
3 9, 10 Inspection
4 Programming

3

A
1 11, 12 Programming

• Programming Time
• Execution Duration
• Submission Count

2 Machine’s role

B
3 13, 14 Programming
4 Machine’s role

A’
1 15, 16 Machine’s role
2 Programming

B’
3 17, 18 Machine’s role
4 Programming

4.4. Experimental Results

The first phase primarily evaluated the participants’ independent programming ca-
pabilities, serving as a baseline for subsequent method comparisons. Table 5 presents the
programming time, execution duration, and the number of submissions required for each
participant to complete different coding tasks. Shorter programming times indicate higher
programming efficiency, while shorter execution durations and fewer submissions reflect
higher code quality. Based on these metrics, the participants’ coding proficiency can be
ranked as follows: 4 > 2 > 1 > 3.

Table 5. Experimental results of programming without inspection.

Participant Problem Programming
Time (min)

Execution
Duration (ms)

Submission
Count

1 1 32 37 7
2 25 31 5

2 1 27 19 4
2 20 24 2

3 1 43 56 9
2 36 47 7

4 1 20 18 3
2 16 17 2

In the second phase, after introducing CBR, a comparison with the first phase (where
no inspections were conducted) revealed certain trends in the data presented in Table 6.
The programming time increased as participants needed to make modifications based
on inspection feedback, leading to a significant increase in the overall development time
(including both programming and inspection). However, the number of submissions
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decreased slightly, indicating only a limited improvement in code quality. Even the most
skilled participant 4 did not significantly reduce the number of submissions, likely due to
their limited familiarity with others’ code.

Table 6. Experimental results with CBR method.

Group Programmer Problem Programming
Time (min)

Inspection
Time (min)

Execution
Duration (ms)

Submission
Count

A 1
3 28 13 32 5

4 34 11 35 5

B 3
5 46 10 46 7

6 40 9 38 6

A’ 2
7 24 15 18 3

8 31 14 20 2

B’ 4
9 19 16 17 2

10 21 15 14 2

In the third phase, our approach involved introducing mutants to facilitate code
inspection. Consequently, the programming time increased due to the additional time
spent on self-inspection. However, as shown in Table 7, the programming time (including
inspection) using our proposed MB-HMPI method was relatively shorter compared to the
CBR inspection method in Table 6. This reduction is mainly attributed to the programmers’
familiarity with their own code, which reduces the time spent inspecting it. Additionally,
the number of submissions was lower than with the traditional method, indicating higher
code quality. Overall, our method effectively enhanced the inspection process, leading to
improved development efficiency and code quality.

Table 7. Experimental results with MB-HMPI method.

Group Programmer Problem Programming
Time (min)

Execution
Duration (ms)

Submission
Count

A 1 11 36 30 4
12 40 33 3

B 3 13 45 36 5
14 57 43 6

A’ 2 15 32 19 2
16 37 17 2

B’ 4 17 28 12 1
18 30 15 2

4.5. Responses to Research Questions

The research questions presented in the Introduction are addressed as follows:

- RQ1. How can an automated approach effectively attract programmers’ attention
during the HMPI process to mitigate the overconfidence caused by familiarity with
their own code?

- A1. Our proposed MB-HMPI approach leverages human expertise through integrating
mutation-based techniques to strategically guide programmers’ attention to specific
components of the code. Utilizing mutation operators derived from historical defects
and applying automated AST-based mutant generation, the approach ensures that
code inspection remains focused, efficient, and less prone to oversights.
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- RQ2. How can a mutation-based method be utilized to guide programmers in identify-
ing potential issues in their code during the inspection process?

- A2. The mutation-based method generates mutants that simulate common logical and
structural errors, enabling programmers to identify potential flaws during the inspec-
tion process. Through combining deliberate fault injection and structured inspection
strategies, programmers are guided toward uncovering hidden issues in their code
that might otherwise be missed.

- RQ3. What metrics can be designed to quantitatively evaluate the effectiveness of code
inspections by programmers?

- A3. We introduce two novel metrics: the Mutation Detection Rate (MDR) and Code
Modification Rate (CMR). The MDR measures the programmer’s ability to detect and
repair inserted mutations, while the CMR evaluates the extent to which programmers
refine the original source code based on the inspection process. These metrics provide
a robust quantitative assessment of the effectiveness of code inspections conducted
through MB-HMPI.

4.6. Implications, Limitations, and Future Prospects

Implications: The proposed MB-HMPI approach significantly advances the field of
code inspection by leveraging mutation-based strategies to enhance the ability of program-
mers to identify and rectify defects in their own code. This method reduces reliance on
external reviewers, thereby saving time and resources, while also empowering program-
mers to conduct more thorough and focused inspections. Furthermore, the introduction of
metrics (MDR and CMR) offers a systematic framework for evaluating the effectiveness of
code inspections, which can be adapted to various programming contexts. These impli-
cations underscore the potential of MB-HMPI to improve software quality and reliability
throughout the development process.

Limitations: Despite its promising contributions, the MB-HMPI framework has certain
limitations. The reliance on manually designed mutation operators introduces variability
and limits the generalizability of the approach across different programming languages
and domains. Additionally, while the method partially automates code inspection, it still
requires significant human intervention to customize mutation operators and manage
mutants, which may hinder scalability in large-scale industrial projects. These limitations
highlight areas where further refinement is needed to enhance the framework’s adaptability
and automation.

Future Prospects: Future research could address these limitations by leveraging ad-
vanced machine learning techniques, such as deep learning and natural language process-
ing, to automatically extract mutation patterns from historical defect data in version control
systems. For instance, models trained on historical defect data could identify common
patterns and create tailored mutants for specific programming scenarios. Additionally,
integrating MB-HMPI with AI-driven static analysis tools could further expand its defect
detection capabilities. Extending the framework to support multiple programming lan-
guages and incorporating dynamic analysis techniques would also broaden its applicability.
By pursuing these directions, the MB-HMPI approach could evolve into a comprehensive
solution for improving code quality and inspection efficiency. Further refinements could
extend its applicability and impact, making it a valuable tool for both academic research
and practical software development.

5. Conclusions
The mutation-based human–machine pair inspection (MB-HMPI) approach introduced

in this study represents a novel and systematic method to enhance the code inspection
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processes of programmers. Leveraging mutation operators tailored to historical defect
patterns and integrating automated tools with programmer expertise, MB-HMPI effectively
addresses common challenges in code inspection, such as programmer overconfidence and
oversight of potential errors.

This study comprehensively described the framework and methodology of MB-HMPI,
including the selection and application of mutation operators, the automated generation
of mutants, and the development of metrics—including the Mutation Detection Rate
(MDR) and Code Modification Rate (CMR)—for quantitative assessments of inspection
effectiveness, as well as the way in which the guidance is used by the programmer to carry
out inspections. Two case studies demonstrated the process of applying our MB-HMPI. The
results of controlled experiments further demonstrated the method’s potential to improve
the thoroughness of code inspections while reducing inspection time.

However, this study also acknowledges certain limitations, such as the dependency
on manually defined mutation operators and scalability challenges in large-scale applica-
tions. Future work should aim to overcome these limitations by incorporating advanced
machine learning techniques to automate mutant generation and enhance the adaptability
of MB-HMPI across different programming languages and domains. By addressing these
limitations, MB-HMPI can evolve into a comprehensive solution that not only improves
the quality and efficiency of code inspections but also establishes a robust framework for
advancing research and practice in the context of software engineering.
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