Improving Localization Accuracy Through Optimal Selection Strategy
<p>The architecture of the 3D localization system.</p> "> Figure 2
<p>Localization node.</p> "> Figure 3
<p>The processing flow of Newton’s iteration localization method (NILM).</p> "> Figure 4
<p>The three-dimensional (3D) localization environment.</p> "> Figure 5
<p>The deployment of the feature points.</p> "> Figure 6
<p>The simulation data model.</p> "> Figure 7
<p>The localization error under different signal-to-noise ratio (SNR) values.</p> "> Figure 8
<p>The localization error with different strengths of None Line of Sight (NLOS).</p> "> Figure 9
<p>The localization error with different densities of feature points.</p> "> Figure 10
<p>The localization error with different densities of anchor nodes.</p> "> Figure 11
<p>The simulation result of group 5.</p> "> Figure 12
<p>The 3D localization environment.</p> "> Figure 13
<p>The NanoLoc-based wireless localization system.</p> "> Figure 14
<p>The deployment configuration of the anchor nodes.</p> "> Figure 15
<p>The framework of the experiment’s data process.</p> "> Figure 16
<p>The localization error observed in the four methods utilizing three strategies. (<b>a</b>) The localization error of the quadrilateral method. (<b>b</b>) The localization error of the least squares method; (<b>c</b>) The localization error of maximum likelihood method. (<b>d</b>) The localization error of the Newton’s iteration method.</p> "> Figure 17
<p>The localization error of the three strategies: localization directly, delete maximum, and distance selection.</p> "> Figure 18
<p>The average localization error of the four approaches: quadrilateral, least squares, maximum likelihood, and Newton’s iteration.</p> "> Figure 19
<p>The localization error of the four localization approaches: quadrilateral, least squares, maximum likelihood, and Newton’s iteration.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. The Distance Estimation Improvement Methods
2.2. The Localization Accuracy Improvement Methods
3. The Localization Method Through Optimal Selection
3.1. The Architecture of the 3D Localization System
3.2. Distance Estimation
3.3. Assessment and Choice of Outcome for Distance Estimation
3.3.1. Definition of Feature Points
3.3.2. Optimal Selection of Feature Points
3.3.3. Retrospective Evaluation and Optimal Selection of Distance Estimation Results
3.3.4. 3D Localization Computation
4. Simulation
4.1. Simulation Arrangement
4.1.1. The Establishment of the Localization Environment
4.1.2. Simulation Data
4.1.3. Simulation Design
4.2. Simulation Results
4.2.1. The Impact Evaluation of the Strength of Noise
4.2.2. The Impact Evaluation of the Strength of None Line of Sight (NLOS)
4.2.3. The Impact Evaluation of the Density of Feature Points
4.2.4. The Impact Evaluation of the Density of Anchor Nodes
4.2.5. The Impact Evaluation of the Rate of None Line of Sight (NLOS)
5. Experiments
5.1. The Establishment of the Experimental Environment
5.2. Experiment Conduct
5.3. Experimental Data Processing
5.4. Experimental Result
5.4.1. Processing Strategy Comparison
5.4.2. Localization Accuracy Comparison
5.4.3. Localization Efficiency Comparison
6. Discussion
6.1. The Generality of the Optimization Selection Strategy
6.2. The Scalability of the Distance Selection Strategy
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, N.; Zhang, B.; Wang, L. A Novel Anchor-Free Localization Method Using Cross-Technology Communication for Wireless Sensor Network. Electronics 2022, 11, 4025. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X. DV-Hop Location Algorithm Based on RSSI Correction. Electronics 2023, 12, 1141. [Google Scholar] [CrossRef]
- Shilpi; Gautam, P.R.; Kumar, S.; Kumar, A. An optimized sensor node localization approach for wireless sensor networks using RSSI. J. Supercomput. 2023, 79, 7692–7716. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, J.; Jang, K.-S.; Kim, Y. Intelligent Mesh Cluster Algorithm for Device-Free Localization in Wireless Sensor Networks. Electronics 2023, 12, 3426. [Google Scholar] [CrossRef]
- Shalaby, M.; Shokair, M.; Messiha, N.W. Performance of RSS Based Cooperative Localization in Millimeter Wave Wireless Sensor Networks. Wirel. Pers. Commun. 2019, 109, 1955–1970. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, L.; Priyadarshi, R. Deep Learning Challenges and Prospects in Wireless Sensor Network Deployment. Arch. Comput. Methods Eng. 2024, 31, 3231–3254. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, X.; Bian, H. An Accurate Cooperative Localization Algorithm Based on RSS Model and Error Correction in Wireless Sensor Networks. Electronics 2024, 13, 2131. [Google Scholar] [CrossRef]
- Isaiaand, C.; Michaelides, M.P. A Review of Wireless Positioning Techniques and Technologies: From Smart Sensors to 6G. Signals 2023, 4, 90–136. [Google Scholar] [CrossRef]
- Soundari, D.P.V.; Chenniappan, P. An efficient hybrid bat sand cat swarm optimizationbased node localization for data quality improvement in wireless sensor networks. Int. J. Commun. Syst. 2025, 38, e5961. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Kuang, Z.; Yang, H. Three-dimensional localization algorithm for WSN nodes based on RSSI-TOA and LSSVR method. In Proceedings of the 2019 11th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2019, Qiqihar, China, 28–29 April 2019; pp. 498–503. [Google Scholar]
- Luo, Q.; Peng, Y.; Peng, X.; El Saddik, A. Uncertain data clustering-based distance estimation in Wireless Sensor Networks. Sensor 2014, 14, 6584–6605. [Google Scholar] [CrossRef]
- Moravek, P.; Komosny, D.; Simek, M.; Jelinek, M.; Girbau, D.; Lazaro, A. Investigation of radio channel uncertainty in distance estimation in wireless sensor networks. Telecommun. Syst. 2016, 52, 1549–1558. [Google Scholar] [CrossRef]
- Peng, Y.; Luo, Q.; Peng, X. WSN Localization Method Using Interval Data Clustering. Acta Autom. Sin. 2012, 38, 1190–1199. [Google Scholar] [CrossRef]
- Luo, Q.; Peng, Y.; Li, J.; Peng, X. RSSI-Based Localization Through Uncertain Data Mapping for Wireless Sensor Networks. IEEE Sens. J. 2016, 16, 3155–3162. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; He, Z.; Zhuang, Y.; Radi, A.; Chen, R.; El-Sheimy, N. Wireless fingerprinting uncertainty prediction based on machine learning. Sensors 2019, 19, 324. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Luo, Q.; Zhou, P.; Liu, J. An Uncertainty Propagation Mechanism Analysis Method for Three-dimensional Quadrilateral Localization. In Proceedings of the 2019 Prognostics and System Health Management Conference, Paris, France, 2–5 May 2019; pp. 39–44. [Google Scholar]
- Li, H.; Chen, X.; Wang, H. Uncertainty Evaluation in Distance Measurement by CMM Based on Monte Carlo Method. Adv. Mater. Res. 2013, 684, 429–433. [Google Scholar] [CrossRef]
- Luo, Q.; Yan, X.; Li, J.; Peng, Y.; Tang, Y.; Wang, J.; Wang, D. DEDF: Light-weighted WSN distance estimation using RSSI data distribution based finger printing. Neural Comput. Appl. 2016, 27, 1567–1575. [Google Scholar] [CrossRef]
- Luo, Q.; Yan, X.; Li, J.; Peng, Y. DDEUDSC: Dynamic distance estimation using uncertain data stream clustering in mobile wireless sensor networks. Measurement 2014, 55, 423–433. [Google Scholar] [CrossRef]
- Lohrasbipeydeh, H.; Amindavar, H. Unknown Transmit Power RSSD Based Source Localization with Sensor Position Uncertainty. IEEE Trans. Commun. 2015, 63, 1784–1797. [Google Scholar] [CrossRef]
- Njima, W.; Bazzi, A.; Chafii, M. DNN-Based Indoor Localization Under Limited Dataset Using GANs and Semi-Supervised Learning. IEEE Access 2022, 10, 69896–69909. [Google Scholar] [CrossRef]
- Kupershtein, E.; Wax, M.; Cohen, I. Single-site emitter localization via multipath fingerprinting. IEEE Trans. Signal Process. 2013, 61, 10–21. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, B.; So, H.; Hwang, D.-H.; Kim, S.-C. Cooperative localization considering estimated location uncertainty in distributed ad hoc networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1–10. [Google Scholar] [CrossRef]
- Mahdi, J.; Xu, J.; Choi, J.; Johnson, N.S.; Li, W. Gaussian process regression for sensor networks under localization uncertainty. IEEE Trans. Signal Process. 2013, 61, 223–237. [Google Scholar]
- Yousefi, S.; Vaghefi, R.M.; Chang, X.-W.; Champagne, B.; Buehrer, R.M. Sensor Localization in NLOS Environments with Anchor Uncertainty and Unknown Clock Parameters. In Proceedings of the IEEE International Conference on Communication Workshop, London, UK, 8–12 June 2015; pp. 742–747. [Google Scholar]
- Luo, Q.; Yan, X.; Gan, X.; Zhou, P.; Li, P.; Song, J. Uncertainty analysis method for RSSI-based localization in three-dimensional wireless sensor network. In Proceedings of the IEEE 13th International Conference on Electronic Measurement and Instruments, Yangzhou, China, 20–22 October 2017; pp. 150–158. [Google Scholar]
- Yan, X.; Luo, Q.; Yang, Y.; Liu, S.; Li, H.; Hu, C. ITL-MEPOSA: An Improved Trilateration Localization with Minimum Uncertainty Propagation and Optimized Selection of Anchor nodes for wireless sensor networks. IEEE Access 2019, 7, 53136–53146. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, N.; Wang, H. On the Performance Limits of Cooperative Localization in Wireless Sensor Networks with Strong Sensor Position Uncertainty. IEEE Commun. Lett. 2017, 21, 1613–1616. [Google Scholar] [CrossRef]
Factors | SNR | Strength of NLOS | Density of Feature Points | Density of Anchor Nodes | NLOS Rate |
---|---|---|---|---|---|
Group 1 | 15 dB~−10 dB | 3 m | 63 | 8 | 25% |
Group 2 | 10 dB | 1~5 m | 63 | 8 | 25% |
Group 3 | 10 dB | 3 m | 23~83 | 8 | 25% |
Group 4 | 10 dB | 3 m | 63 | 8~20 | 25% |
Group 5 | 10 dB | 3 m | 63 | 20 | 10~50% |
No. of the Anchor Node | 1 5 9 | 2 6 10 | 3 7 \ | 4 8 \ |
---|---|---|---|---|
Coordinate | (1, 0.85, 1) | (11.8, 0.85, 1) | (22.6, 0.85, 1) | (22.6, 20.05, 1) |
(11.8, 20.05, 1) (11.8, 19.7, 6.43) | (1, 20.05, 1) (0, 10.45, 6.43) | (11.8, 1.2, 6.43) \ | (23.6, 10.45, 6.43) \ |
No. of the Anchor Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 m | 10.80 m | 21.60 m | 28.90 m | 22.03 m | 22.39 m | 19.20 m | 11.07 m | 12.09 m | 25.15 m |
2 | 10.8 m | 0 m | 10.80 m | 22.03 m | 19.20 m | 19.62 m | 22.03 m | 16.15 m | 5.44 m | 16.15 m |
3 | 21.60 m | 10.80 m | 0 m | 19.20 m | 22.03 m | 22.39 m | 28.90 m | 25.15 m | 12.09 m | 11.07 m |
4 | 28.90 m | 22.03 m | 19.20 m | 0 m | 10.80 m | 12.09 m | 21.60 m | 25.15 m | 22.39 m | 11.07 m |
5 | 22.03 m | 19.20 m | 22.03 m | 10.80 m | 0 m | 5.44 m | 10.80 m | 16.15 m | 19.62 m | 16.15 m |
6 | 22.39 m | 19.62 m | 22.39 m | 12.09 m | 5.44 m | 0 m | 12.09 m | 14.99 m | 18.50 m | 14.99 m |
7 | 19.20 m | 22.03 m | 28.90 m | 21.60 m | 10.80 m | 12.09 m | 0 m | 11.07 m | 22.39 m | 25.15 m |
8 | 11.07 m | 16.15 | 25.15 m | 25.15 m | 16.15 m | 14.99 m | 11.07 m | 0 m | 14.99 m | 23.60 m |
9 | 12.09 m | 5.44 m | 12.09 m | 22.39 m | 19.62 m | 18.50 m | 22.39 m | 14.99 m | 0 m | 14.99 m |
10 | 25.15 m | 16.15 m | 11.07 m | 11.07 m | 16.15 m | 14.99 m | 25.15 m | 23.60 m | 14.99 m | 0 m |
No. of Unknown Node | 1 5 9 13 17 21 | 2 6 10 14 18 22 | 3 7 11 15 19 23 | 4 8 12 16 20 24 |
---|---|---|---|---|
Coordinate | (3.4, 3.4, 1.0) | (3.4, 5.8, 1.0) | (3.4, 9.4, 1.0) | (3.4, 11.8, 1.0) |
(3.4, 15.4, 1.0) (5.8, 11.8, 1.5) (9.4, 9.4, 1.0) (11.8, 5.8, 1.5) (15.4, 3.4, 1.0) | (5.8, 3.4, 1.5) (5.8, 15.4, 1.5) (9.4, 11.8, 1.0) (11.8, 9.4, 1.5) (15.4, 5.8, 1.0) | (5.8, 5.8, 1.5) (9.4, 3.4, 1.0) (9.4, 15.4, 1.0) (11.8, 11.8, 1.5) (15.4, 9.4, 1.0) | (5.8, 9.4, 1.5) (9.4, 5.8, 1.0) (11.8, 3.4, 1.5) (11.8, 15.4, 1.5) (15.4, 11.8, 1.0) |
Strategies | Quadrilateral | Least Squares | Maximum Likelihood | Newton’s Iteration | Improvement |
---|---|---|---|---|---|
Directly | 7.957 m | 6.861 m | 6.860 m | 5.912 m | 17.78% |
Delete Maximum | 6.115 m | 5.075 m | 5.050 m | 4.227 m | 21.29% |
Distance Selection | 3.855 m | 2.862 m | 2.826 m | 1.954 m | 37.30% |
Improvement | 44.26% | 50.95% | 51.42% | 60.36% | \ |
Distances’ Optimized Selection | Quadrilateral | Least Squares | Maximum Likelihood | Newton’s Iteration | |
---|---|---|---|---|---|
Time (s) | 24.654 | 28.275 | 37.736 | 39.246 | 452.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Yan, X.; Luo, Q.; Xing, Y. Improving Localization Accuracy Through Optimal Selection Strategy. Electronics 2025, 14, 172. https://doi.org/10.3390/electronics14010172
Wu N, Yan X, Luo Q, Xing Y. Improving Localization Accuracy Through Optimal Selection Strategy. Electronics. 2025; 14(1):172. https://doi.org/10.3390/electronics14010172
Chicago/Turabian StyleWu, Na, Xiaozhen Yan, Qinghua Luo, and Yuexiu Xing. 2025. "Improving Localization Accuracy Through Optimal Selection Strategy" Electronics 14, no. 1: 172. https://doi.org/10.3390/electronics14010172
APA StyleWu, N., Yan, X., Luo, Q., & Xing, Y. (2025). Improving Localization Accuracy Through Optimal Selection Strategy. Electronics, 14(1), 172. https://doi.org/10.3390/electronics14010172