
Academic Editor: Christos J. Bouras

Received: 13 November 2024

Revised: 27 December 2024

Accepted: 28 December 2024

Published: 31 December 2024

Citation: Kong, C.; Song, L.; Li, Y.

Toward Enhanced Reliability: An

Efficient Method for Link-Local

Retransmission in a Programmable

Data Plane. Electronics 2025, 14, 131.

https://doi.org/10.3390/

electronics14010131

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Toward Enhanced Reliability: An Efficient Method for
Link-Local Retransmission in a Programmable Data Plane
Chenxiao Kong 1,2, Lei Song 1,2 and Yifei Li 1,2,∗

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; kongcx@dsp.ac.cn (C.K.);
songl@dsp.ac.cn (L.S.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

* Correspondence: liyf@dsp.ac.cn

Abstract: In wide-area networks (WANs) with high-speed, lossless transmission require-
ments, avoiding packet loss is crucial for ensuring link reliability, and maintaining link
utilization over long distances is equally important. In this paper, we explore strategies
for leveraging malfunctioning network links through link-local retransmission, optimizing
our approach specifically for wide-area networks. To enhance performance, we select the
duplicate threshold (dupthresh) based on the mean length deviation, which helps avoid
triggering a certain portion of spurious fast retransmissions and reduces link bandwidth us-
age in an out-of-order environment. We evaluated our implementation on a programmable
switch platform and found that this system maintained a low packet loss rate within a
10 Gbps line rate environment. It also reduces false retransmissions by 25% in the case of
out-of-order links.

Keywords: link-local retransmission; packet reordering; in-network packet loss recovery;
programmable switches

1. Introduction
1.1. Motivation

Packet loss frequently occurs in lossy networks, such as wireless networks, wide-area
networks, data center networks, and cross-data center networks. In Remote Direct Memory
Access (RDMA) of wide-area networks, for example, traffic has high requirements for the
integrity and reliability of data packets [1]. Packet loss can cause significant performance
degradation for RDMA. When the packet loss rate is greater than 0.01%, the throughput
performance is less than 86.5 Gbits [2]. Although some losses are attributed to congestion,
which has led to the development of various congestion control algorithms, research
indicates that a substantial portion of packet loss is actually due to link failures. For example,
a large-scale study conducted in 15 Microsoft data centers, which included 350,000 optical
links, revealed that the number of packets lost due to corruption is comparable to the
number lost due to congestion [3]. Furthermore, a recent study by Alibaba, which analyzed
hundreds of real-world service tickets, found that approximately 18% of packet drops that
cause network performance anomalies (NPAs) were attributable to packet corruption [4].

The root causes of damage are diverse, such as contaminated connectors, bent or dam-
aged fibers, rotten or loose transceivers, and faulty shared components. This phenomenon
can significantly impact many real-time or lossless networks, underscoring the importance
of solutions for addressing packet loss caused by link corruption. The corruption of links

Electronics 2025, 14, 131 https://doi.org/10.3390/electronics14010131

https://doi.org/10.3390/electronics14010131
https://doi.org/10.3390/electronics14010131
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8248-3194
https://orcid.org/0000-0003-3608-1917
https://doi.org/10.3390/electronics14010131
https://www.mdpi.com/article/10.3390/electronics14010131?type=check_update&version=2

Electronics 2025, 14, 131 2 of 20

in networks is random and difficult to predict. The typical approach to handling link
corruption involves physical repairs; however, these repairs can be time-consuming [3].
If the strategy is to reroute packets to bypass the faulty link [5], the original route will
also require some time to detect the link failure and switch to an alternative route. During
this transition period, the removal of the damaged link can lead to a reduction in network
capacity, and the selection of new routing paths can significantly impact real-time networks
that have stringent requirements for integrity and timeliness.

Therefore, relying solely on end-to-end recovery mechanisms is insufficient. The
reliability of a link is closely tied to timely and efficient packet loss detection and recovery
processes, which can keep the link operational until physical repairs are completed. This
approach is crucial to maintaining the quality of the link and ensuring that network
performance remains stable, even in the face of unexpected interruptions.

In addition, link corruption can significantly influence congestion control algorithms,
ultimately affecting overall network performance. Traditional TCP congestion control mech-
anisms have predominantly been designed around loss-based strategies. This dependency
can lead to a decrease in throughput, as packet loss and latency do not always correlate
with actual network congestion levels. For example, under conditions where the link rate
is 100 Mbps and the packet loss rate reaches 10−3, the throughput of TCP Westwood+
experiences a substantial decline of approximately 50%. In contrast, TCP NewReno and
SACK (Selective Acknowledgment) exhibit only a 10% reduction in throughput under the
same network conditions [6]. There are also some congestion control mechanisms based
on delay or explicit congestion notification [7]. But in wide-area network communication
across data centers, the traffic is often a mix of flows. Due to the heterogeneity of the data,
methods based on network measurement (ECN or delay) may not be suitable [8]. In this
case, the network still needs to rely on packet loss to detect congestion, which further
increases the demand for network quality.

These factors highlight the need for improved network reliability solutions to address
both data integrity and performance in WANs. The reliability problem also involves some
out-of-order problems on the link. An out-of-order packet is a network phenomenon in
which the order of packet arrival is inconsistent with the order of packet sending. On a
lossless network, reordering does not increase worst-case delay or jitter, but on a lossy
network, reordering increases worst-case delay and jitter and has a significant impact on
the TCP protocol on the receiving side [9]. The appearance of out-of-order packets has
a great impact on the traditional protocols, causing unnecessary retransmissions at the
transport layer and wasting bandwidth. The congestion window is unnecessarily reduced,
reducing the network utilization rate. Therefore, when we solve the reliability problem of
the link layer, we also need to take out-of-order packets into account.

1.2. Related Works

Researchers have a long history of studying packet loss recovery and network relia-
bility, which involves Forward Error Correction (FEC), automatic repeat request (ARQ),
frame replication and elimination for reliability (FRER), and so on. The choice of mitigation
measures for each system depends mainly on the transmission medium. The first approach
is FEC [10–12]. In particular, there is a study titled Wharf that Uses Field-Programmable Gate
Arrays (FPGAs) to Implement FEC in Faulty Links [12]. However, FEC typically employs
fixed redundancy parameters, which may not be suitable for dynamic packet loss rates.
This rigidity can lead to inefficiencies, as the predetermined level of redundancy may not
align with the actual network conditions. Furthermore, increased redundancy requires
higher bandwidth, which can increase costs for certain network application scenarios like
RDMA [2]. Consequently, while FEC provides a valuable mechanism for error correction,

Electronics 2025, 14, 131 3 of 20

its limitations in terms of adaptability and bandwidth consumption must be carefully
considered when designing solutions for varying network environments. FRER reduces
the impact of packet loss through redundant transmissions [13,14], but it also has a similar
problem to FEC in that it requires more bandwidth.

Another existing method for fast packet recovery involves retransmitting lost packets
directly at intermediate nodes. Link-local retransmission has been extensively studied and
widely deployed in wireless networks [15]. With the development of network technology,
both switches and relay nodes now have larger packet cache spaces and network pro-
cessing capabilities integrated with turn-save-compute. Numerous previous efforts have
implemented buffers at intermediate nodes to facilitate such link-local retransmissions
(LL-ReTx). Therefore, in addition to its deployment and application in wireless networks,
link-local retransmission has increasingly been recognized by researchers in recent years
for its potential value in other types of networks, such as data centers [16,17] and satellite
networks [18], which can significantly reduce recovery delays and conserve bandwidth. A
comparison of link-layer packet loss recovery schemes in recent years is shown in Table 1.
Some of these schemes are optimized for Flow Completion Time (FCT), while others are
optimized for throughput and bandwidth.

Table 1. Comparison of link-layer packet loss recovery strategies.

Solution Method Application Platform Optimization

Wharf [12] FEC DCN 1 FPGA Throughput
LinkGuardian [16] LL-ReTx DCN P4 FCT

SQR [17] LL-ReTx DCN P4 FCT
SatGuard [18] LL-ReTx LSN 2 Simulation FCT

UEC [19] LL-ReTx AI and HPC Unknown FCT
S-FRER [14] FRER FlexE Simulation Bandwidth

1 Data Center Network (DCN). 2 Low-Earth-Orbit (LEO) Satellite Network (LSN).

Shared Queue Ring (SQR) is an on-switch mechanism that recovers packets that could
be lost during the period from the detection of a link failure to the completion of the
subsequent network configuration [17]. However, while SQR can cache lost packets during
link corruption and facilitate their recovery, it opts to switch routes instead of utilizing the
potentially damaged link. This approach may lead to suboptimal resource utilization, as the
original link could still be viable for certain types of traffic or under specific conditions. By
not leveraging the existing link, SQR may miss opportunities to maintain network capacity
and efficiency, particularly in scenarios where the damage is intermittent or localized.
Link Guardian, which leverages faulty links, primarily focuses on managing short flows,
incorporating specific designs, and optimizing for them. Furthermore, it does not offer
detailed optimizations for handling out-of-order packets and timeouts, and the recovery
mechanism has some potential bandwidth utilization problems like fake retransmissions.
These issues are especially important in bandwidth-hungry WANs. Despite P4’s ability
to achieve extremely high forwarding line rates, it has certain limitations in terms of
buffer space and protocol flexibility. In contrast, SatGuard is specifically optimized for the
dynamic node characteristics of satellite networks, whereas our work remains concentrated
on static networks in wide-area networks (WANs) and network communication across
data centers.

In summary, for certain scenarios, link-layer recovery strategies and LL-ReTx still
present opportunities for further exploration and optimization. We explored an approach
to LL-ReTx and achieved some promising results.

Electronics 2025, 14, 131 4 of 20

1.3. Proposed Approach

To address the aforementioned challenges, we propose and implement a link-local
retransmission design on a programmable data plane. Our proposed solution is based
on a prototype programmable software switch, into which we have integrated this mod-
ule. This module enhances link-layer reliability through retransmissions and extends the
switch’s bandwidth via link aggregation technology. In addition, it incorporates a cleverly
designed feedback mechanism to optimize for out-of-order packets resulting from link
aggregation. We employ a basic feedback mechanism that is distinct from existing link-layer
retransmission methods for wired networks and introduce a new special protocol field.
This field enhances the granularity of feedback provided to the sender, allowing for more
precise control over retransmission decisions. The main contributions of this paper include
the following:

1. We develop a feedback message transmission strategy that dynamically adjusts timing
based on the out-of-order packet conditions of the link. By including the mean
length deviation, we select dupthresh to avoid triggering a certain portion of spurious
fast retransmissions.

2. The implementation leverages the Data Plane Development Kit (DPDK) to achieve
high-performance packet processing. The retransmission logic is integrated into
the switch’s architecture, enabling it to monitor packet delivery and initiate retrans-
missions as needed, thereby improving overall network performance and reducing
packet loss.

2. Methods
2.1. Reliable Transmission Design Mechanism
2.1.1. Basic LL-ReTx Mechanism

Our unit is integrated into each node, and the unit structure of each node is identical.
However, one acts as the receiver and the other as the sender.

The mechanism can be summarized as follows: the sender temporarily stores the data
packets in a cache while assigning to each packet a sequence number that increments by
1. When packet loss occurs, the receiver identifies the discrepancy between the sequence
number of the received packet and its own expected sequence number, as outlined in
Algorithm 1. In response to this detection, the receiver goes through the packet processing
flow on the switch, as shown in Figure 1, and then sends a negative acknowledgment
(NACK) to the sender, indicating which packet was lost.

Algorithm 1 Packet processing algorithm in the receiver

1: Input: pkt
2: Variables: Expected_Num
3: if pkt.pkt_num == Expected_Num then
4: Expected_Num← Expected_Num + 1
5: forward()
6: else if pkt.pkt_num != Expected_Num then
7: Expected_Num←max(pkt.pkt_Num) + 1
8: Call “Processing Flow of Reliable Transmission”
9: send NACK back to Sender()

10: end if

Upon receiving the NACK, the sender retrieves the corresponding cached packet and
retransmits it to the receiver. This approach, which utilizes the receiver to send NACKs, is
specifically designed to conserve bandwidth and represents a significant departure from

Electronics 2025, 14, 131 5 of 20

the previous LL-ReTx mechanism [16,17]. By implementing this scheme, we enhance the
efficiency of packet retransmission while minimizing unnecessary network traffic.

Yes

Input

Data from Recv
Call “Processing of
Data Packets from

Receiver”function

No

Data from Send

Parser

NACK from Send

No

Data Saver
Yes

NACK generator
and NACK updater

Retrans generator

Deparser

Output

Yes

No

Figure 1. Processing flow of reliable transmission.

2.1.2. NACK Dynamic Adjustment Transmission Mechanism

Packet reordering occurs when the receiving order of a flow of packets (or segments)
differs from the order in which they were sent. Studies have shown that packet reordering
is not a rare phenomenon and can have significant implications for data integrity and
application performance [20]. Most previous research focused on the transport layer,
including research on out-of-order algorithms related to the TCP protocols on the receiver
side. Some of these processing algorithms have certain reference value for our out-of-
order scenarios. Some algorithms, like state reconciliation [21], only solve the problem of
congestion window reduction caused by out-of-order packets, but they do not solve the
problem of false retransmissions.

We compared several algorithms [20,22] for handling packets out-of-order packets
under the same link conditions and evaluated their deviation from the actual waiting time
using the Root Mean Square Error (RMSE). The Fixed K Algorithm 2 adjusts the value
of K by either increasing or decreasing a fixed amount based on the previous calculation.
Its advantage is its simplicity in computation, but the downside is its slow convergence,
especially during sudden changes in link reordering. The Half-Growth Algorithm 3, on the
other hand, converges more quickly to the actual situation by calculating the average, but
it is susceptible to the impact of sudden changes, particularly during packet loss situations,
where it may lead to an overestimation of the sending time due to prolonged transmission.
In addition, there is a Fixed Time Algorithm that tolerates fixed sending times, meaning it
does nothing to handle reordering. We perform a comparative study of these algorithms in
Section 3.1.

Electronics 2025, 14, 131 6 of 20

We used link aggregation to scale the original bandwidth and throughput to 10 G, but
it also caused some problems. It is important to note that link aggregation can also lead to
the out-of-order delivery of packets, which can cause unnecessary false retransmissions,
resulting in a large number of NACKs and non-essential retransmission packets consuming
a lot of bandwidth.

Algorithm 2 Fixed K Algorithm

1: Input: L, dupthresh
2: if L > avg then
3: avg← avg + K
4: else
5: avg← avg - K
6: end if
7: dupthresh← avg

Algorithm 3 Half-Growth Algorithm

1: Input: L, dupthresh
2: avg← (avg + L)/2
3: dupthresh← avg

In our scenario, packet reordering caused by link aggregation often leads to spurious
retransmissions, which can result in significant bandwidth consumption, especially when
the packet loss rate is high. To address this issue, we have implemented a mechanism
during the processing of data packets that reduces the impact of reordering. The core idea
of this mechanism can be summarized as dynamically setting the transmission time for a
NACK based on the average arrival time of out-of-order packets. This approach aims to
minimize excessive waiting while tolerating a certain degree of reordering.

Figure 2 illustrates the internal data packet processing. In particular, this system includes
a process for handling out-of-order packets. The method employed in this paper effectively
reduces the occurrence of spurious retransmissions to some extent. The gray boxes in the
flowchart provide further clarification of Algorithms 4 and 5 that we implemented.

Algorithm 4 Send NACK packet to outside

1: Input: nack_timer, dupthresh
2: if nack_timer > dupthresh then
3: call back “send nack to outside”
4: clear nack
5: else
6: send task back to the loop
7: end if

Algorithm 5 Update dupthresh

1: Input: L, dupthresh
2: if L > avg then
3: avg← (1 − α) · avg + α · L
4: else
5: avg← (1 − α · x) · avg + (α · x) · L
6: end if
7: dupthresh← avg

Electronics 2025, 14, 131 7 of 20

Data Packet
arrive

End

Get: Type,
Pkt_Num, Dst_ID,

Src_ID, Para

Pkt_Num
= Expected number

Pkt_Num
> Expected number

Expected
number++Update NACK

L = currenttime -
timestamp

Yes

No

YesNo

Generate NACK
and timer, get

Timestamp

Expected number =
max(Pkt_Num) + 1

Call “Send
NACK packet to

outside ”function

If the nack task is
no longer updated

Call“Update

dupthresh”function

Yes

No

Extract reliable
header

Figure 2. Processing flow of data packets from the receiver.

When the receiving end detects a missing packet, it starts recording the time L of the
out-of-order packet until the missing packet arrives. When the received packet sequence
number is greater than the expected sequence number, a new retransmission request task is
created, and a timestamp is recorded. If out-of-order packets occur at this time, the arriving
packet will have a sequence number smaller than the current retransmission request task
identifier. This will update the previous retransmission request task and record the current
time of the last update before the retransmission request task. Each task will record a
timestamp when it is created and a last updated timestamp when out-of-order packets
occur. The time difference between these timestamps can be used as the retransmission
request packet’s sending time. Setting this to the average of ten measurements can avoid
the impact of a single measurement being too large or too small. If no out-of-order packets
occur, the current time is not recorded, and the sending time is set to a default value. We
use (current time—timestamp) as L in the algorithm shown below Algorithm 4.

The core of this algorithm relies on two key timings: one is the transmission time,
dupthresh, which is established when the NACK timer is created, and the other is the
actual waiting time, L, that the task needs to endure due to link reordering. The value
of dupthresh is determined by the previously established L. Once the NACK timer is set
with this dupthresh, it remains unchanged. Any modifications to L will only affect the
dupthresh assigned to the next newly created NACK timer.

The specific algorithm is shown in Algorithm 5.
In addition, we employ a clever Exponentially Weighted Moving Average (EWMA)

method to calculate the averages for this model, thereby enhancing its robustness [23].
Among them, α is the EWMA factor, usually 1/3, and x is the multiplicative factor,

usually 4. Subsequently, the dupthresh is set to the average out-of-order packet length, avg.

Electronics 2025, 14, 131 8 of 20

The advantage of this algorithm is that dupthresh can be dynamically updated according
to the network state, and it avoids the excessive influence of a single out-of-order packet
length on dupthresh.

As shown in Figure 3, whether the message generation unit qualitatively confirms
the processing description of data messages depends on the context. When the expected
sequence number is greater than the packet number, a confirmation task for the retransmis-
sion range is created based on the actual situation. The sequence number of the mapping
bitmap is 1–8 (with the start sequence number determined by the expected sequence num-
ber when the packet is created), and the timer is used to set the sending time. When the
packet with seven serial numbers is received at the last update, the time difference for
updating the sending time of subsequent negative acknowledgment packets is recorded.
The actual mapping bitmap to be sent is determined using the previously set sending
time through EWMA. For example, when packet 5 is received, the mapping bitmap in the
negative acknowledgment packet is 00000110. That is, packets numbered 6 or 7 need to
be retransmitted. Note that when a retransmission acknowledgment task is created, the
expected sequence number must be outside the acknowledgment range of an existing task.
Figure 3 shows the third build.

18 32 54 76 9 10 11 12 16 13 1514 2017 18 19 2321 22 24

1 9 9 9 9 9 9 9 9 10 11 12 13 17 17 17 18 18 21 21 21 22 24 24

The packet arrives at the
sequence number
(e.g. 8-bit mapping bitmap)

Expected serial number

record the
timestamp T1

record the
timestamp T2,

Predict the next
sending time via

EWMA

record the
timestamp T1

record the
timestamp T2,

Predict the next
sending time via

EWMA

record the
timestamp T1

record the
timestamp T2,

Predict the next
sending time via

EWMA

T2T1 send

0 0 0 0

1
0 0 0 0

0 0 0 0

1
0 1 1 0

0 0 0 0

13
0 0 0 0

0 0 0 0

13
0 1 1 0

0 0 0 0

18
0 0 0 0

0 0 0 0

18
0 0 0 1

8 bitmap

start_num

T2T1 send

T1 send

25

25

T2

Figure 3. Sending instructions for NACK.

2.2. Discussion of Implementation Details
2.2.1. Implementation Platform: Programmable Data Plane-Enabled Switch

The Data Plane Development Kit (DPDK) is a software programming framework
designed for data plane operations on general-purpose CPU platforms. It is commonly
employed to accelerate packet processing in Software-Defined Networking (SDN) software
switches [24,25]. The advantages of utilizing general-purpose CPU platforms include their
inherent flexibility, programmability, advanced computational capabilities, and strengths
in parallel processing. Software-based solutions can readily adapt to emerging network
protocols and evolving service requirements, enhancing the flexibility of network design
and maintenance. General-purpose CPUs are particularly adept at managing complex
computational tasks, and with the widespread adoption of multi-core processors, parallel
processing can significantly improve performance. With careful design, this approach can
achieve line-rate speeds of up to 10 Gbps.

This paper presents the development and validation of an enhanced transmission unit
based on a DPDK programmable switch, which we refer to as a reliable transmission unit.
While our work is applicable to various types of networks, we believe it holds particular
significance for addressing failures in data center links and facilitating communication
between data centers over wide-area networks that demand high bandwidth utilization [2].

Electronics 2025, 14, 131 9 of 20

2.2.2. New Reliable Header

As networks evolve to accommodate increasing data traffic and diverse service require-
ments, there is a pressing need for innovative solutions to enhance communication and opti-
mize resource utilization. The introduction of new protocol fields within Software-Defined
Networking (SDN) frameworks presents an opportunity to address these challenges by
providing additional context and control mechanisms that can improve packet processing,
error handling, and overall network reliability [26,27].

As illustrated in Figure 4, we have developed a novel header, referred to as the reliable
header, which is of variable length and is situated between the upper-layer header (e.g.,
TCP, UDP) and the lower-layer header (e.g., IP). This new header facilitates intermediate
nodes, specifically programmable data plane-enabled switches, to self-estimate link loss
using the information contained within the header. Consequently, these nodes can send
control packets utilizing NACK to the receiver, thereby requesting retransmission. There
are five fields in the header, which are described below.

Upper-layer header(e.g., TCP, UDP)

Lower-layer header(e.g., IP)

Type
(8 bits)

Pkt_Num
(32 bits)

Dst_IP
(64 bits)

Para.
(Variable Length)

Src_IP
(64 bits)

Upper-layer header(e.g., TCP, UDP)

Lower-layer header(e.g., IP)

Type
(8 bits)

Pkt_Num
(32 bits)

Dst_IP
(64 bits)

Para.
(Variable Length)

Src_IP
(64 bits)

Figure 4. Reliable header.

The Type field specifies the protocol type of the packet and is used to indicate whether
the reliable transmission feature is enabled. Additionally, it distinguishes between regular
data packets and control packets like NACK used to trigger retransmissions and performs
different processing.

The Dst_ID field represents the next hop address identifier of the packet, which can be
an IP address or a custom overlay source-destination identifier. Similarly, the Src_ID field
denotes the current node address identifier, which can also be an IP address or a custom
overlay source-destination identifier.

The Type, Dst_ID, and Src_ID fields are utilized to identify a reliable transmission flow
through mechanisms such as flow table matching. The reliable transmission flow refers to
the data stream that employs the reliable transmission method provided by this invention.

The Pkt_num field indicates the sequence number of the reliable transmission data
packet. The Pkt_num field is employed for packet loss detection and data packet retrans-
mission. The usage and mechanisms of this field are discussed later.

The variable Para. field can be used for critical control information in control packets.
We enable a bitmap within the NACK packet as a field to inform the sender which data
packets need to be retransmitted. This approach allows a single NACK to carry more
information, enhancing its efficiency. The length of the bitmap we utilize is 64 bits.

2.2.3. Implementation Details

Our switch can function both as a sender and a receiver. When a data packet enters
the node, it first acts as a receiver, forwarding the packet to the reliable transmission unit.
After that, the packet proceeds through the other components of the switch, such as flow
table matching and other processing routines. Once the packet is ready to exit the switch, it

Electronics 2025, 14, 131 10 of 20

is sent back to the reliable transmission unit, where it is then processed as a sender and
renumbered for sending. Now, we provide a detailed explanation of how this system
ensures a low packet loss rate between two nodes. The packet transmission topology is
illustrated in Figure 5.

The structure of the reliable transmission unit is shown in Figure 6, connected to the
prototype DPDK switch via a virtual network interface. We first discuss how LL-ReTX
ensures a low link-loss rate between nodes.

The previous hop node increments the sequence number of the transmitted packet
and caches it, while also handling negative acknowledgment (NACK) packets received
from the next hop. When a retransmission request from the next hop arrives, the node
searches for the corresponding data packet in the cache.

Sender sends
datapackets.

Router separates
streamsand
forwards.

Receiver receives
and sends NACK

packets to
sender.

Data

Data NACK

modelingNode

sender node

receiver node

network damage meter

(loss, out-of-order)

Sender sends
datapackets.

Router separates
streams and
forwards.

Receiver receives
and sends NACK

packets to
sender.

NACK

Figure 5. Topology of the 10 Gb/s testbed, using DPDK to model LL-ReTx and faulty links.

IO Manager

NACK task
updater

DAT
saver

Retrans
genarator

NACK task
generator

NACK task
buffer

NACK task
timer

DAT buffer

DAT pool Task pool Timer pool

DAT from Recv

DAT from Recv
NACK-reply

DAT from Send

NACK from Send read

write

Add

Update

NACK

Parser and
Deparser

Retrans DAT & NACK-reply

Reliable
 Transmission Unit

Figure 6. Processing flow of the reliable transmission unit.

The next hop node maintains an expected packet sequence number and monitors for
anomalies in the data packets. If the packet sequence number does not match the expected
sequence number, it is considered an anomaly and is handed over to the data reception unit
for processing. Upon receiving a normal data packet or handling a packet with a sequence
number greater than the expected sequence number, the next hop node updates the current
expected sequence number.

Electronics 2025, 14, 131 11 of 20

When the next hop node detects an anomalous packet, it forwards the information to
the NACK generation unit for processing. If the packet sequence number is greater than
the expected sequence number, a new retransmission confirmation task is created, or an
existing task is updated, using the starting sequence number and a bitmap to mark the
sequence numbers of packets that need retransmission. If the packet sequence number is
lower than the expected sequence number, the bitmap in the existing task is updated.

Each retransmission confirmation task is controlled by a timer to manage the transmis-
sion time. The bitmap is used to merge retransmission information for multiple packets,
tolerating potential out-of-order packets on the link and thus reducing bandwidth con-
sumption. The transmission time can be adjusted based on the degree of packet reordering
on the link.

The response message from the previous hop’s transmission unit to the NACK can
trigger the reception unit to release the corresponding retransmission confirmation task,
ending the generation of NACK packets.

2.2.4. Discussion About the Number of Retransmissions

Furthermore, the flexibility to configure the number of NACK transmissions and
retransmissions according to specific application scenarios is crucial to minimizing packet
loss. In scenarios with a high link corruption rate, there is a possibility that both a retrans-
mitted packet and its corresponding NACK may be lost. To increase the likelihood of
successful retransmission, the sender does not transmit only one copy of a buffered packet
but rather multiple (N) copies, along with multiple (M) copies of the NACK in response to
a loss notification. Considering that the original packet has already been transmitted and
lost, the total number of copies sent for the lost packet is N + 1. If the NACK is also lost,
this leads to an effective loss rate of

actual_loss_rate(N+1) + actual_loss_rate(M+1) − actual_loss_rate(M+N+1) =

actual_loss_rate(N+1)[1 + actual_loss_rate(M−N) − actual_loss_rateM]
(1)

Since the actual loss rate is less than 1, this formula is constrained by the smaller of M
and N. Furthermore, both M and N are positive numbers. Our objective is not to completely
eliminate corrupted packet losses but rather to reduce the effective loss rate to a target
level specified by the operator. Therefore, we designate N as the smaller number. Ignoring
higher-order small terms, we arrive at the following relation:

(actual_loss_rate)(N+1) < (target_loss_rate) (2)

For example, if a target loss rate of 10−8 is desired by a network operator and the
actual loss rate on a corrupting link is 10−4, then retransmitting a single copy of the buffered
packet (N = 1, M > 1) would suffice to achieve an effective loss rate of 10−8. Now, solving
Equation (2), we obtain the number of retransmitted copies (N) as follows:

N >
log10(target_loss_rate)
log10(actual_loss_rate)

− 1 (3)

Since N is an integer in practice, we assign N the next integer value by taking the
ceiling of the RHS term of Equation (3). Also, note that since the loss rates are typically
very low, this strategy to retransmit multiple copies adds a very small overhead.

Electronics 2025, 14, 131 12 of 20

3. Results
3.1. NACK Dynamic Adjustment Algorithm Simulation

The topology depicted in Figure 7 illustrates our simulation and experimental setup,
where two nodes serve as the upstream and downstream entities, respectively. The
two nodes are connected by a network impairment meter and configured with differ-
ent parameters for out-of-order packets and packet loss damage. The network impairment
meter is an abstract simulator that simulates out-of-order packets and packet loss in the
network, and subsequent simulation parameters, such as packet loss rate and out-of-order
degree, are configured by this impairment meter. This configuration forms the basis for
our subsequent simulations and experiments, where we induced different degrees of re-
ordering by manipulating the link parameters and setting specific packet loss rates using a
network emulator.

Sender node Receiver nodeNetwork damage meter
(loss, out-of-order)

damage

Figure 7. Test topology.

We built a simulation environment in Python and used this algorithm to estimate a
reasonable NACK sending time. The actual measured link delay was on the order of tens of
ms. Therefore, we set the link latency to 40 ms and the link rate to 8 Mbps. The bitmap used
by the receiver to generate the NACK was set to 64 bits. The topology of this simulation,
as shown in Figure 7, involved an environment where the network impairment was 1%,
and different out-of-order rates were set. This ratio increased gradually, with a depth of
20 out-of-order packets. The parameter K used in the comparison algorithm (Algorithm 2),
as mentioned in Section 2.1.2, was typically set to 1, while the parameter α used by EWMA
in Algorithm 5 was set to 13, with the multiplicative factor parameter x set to 0.5. The
transmission waiting length L mentioned in the algorithm was the actual waiting time in
the simulation, while avg was the predicted time, with an initial value of 0, which was
calculated by the program in the subsequent simulation.

The sending time of the out-of-order tolerance control affects the bandwidth usage
caused by the Flow Completion Time (FCT) and false retransmissions. Therefore, it is very
important to fit the real sending time. A waiting time that is too long increases the FCT,
while a waiting time that is too short leads to false retransmissions.

Although the FCT is an end-to-end concept, it can be inferred by accumulating values
between nodes. In long flows, it is mainly related to the time of the last NACK transmission
and the delay. We simulated and compared this in Figure 8. When looking solely at
the FCT, the mean of the Fixed K Algorithm is smaller, which is an inevitable result of
its slow convergence. When the delay suddenly increases, the NACK transmission time
remains close to the previous result, but this approach causes an excessive number of false
retransmissions, as shown in Figure 9; hence, it is not a good solution.

Electronics 2025, 14, 131 13 of 20

0.2 0.4 0.6 0.8
Disorder ratio

70

80

90

100

M
ea

n
FC

T(
m

s)

EWMA
Fixed K
Half growth
Fix Time

Figure 8. Mean FCT of different algorithms.

Therefore, we simulated some methods and compared their false retransmissions to
further assess the effectiveness of our optimized link-local retransmission strategy. This
comparison provided insights into the reduction in unnecessary retransmissions and the
enhancement of network performance under various conditions.

0.2 0.4 0.6 0.8
Disorder ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Fa

ke
 re

tr
an

sm
is

si
on

(%
)

Our Work(EWMA)
Fixed K
Half Grouth
Link Guardian(Fix Time)

Figure 9. False retransmission simulation.

By simulating the packet disorder, we calculated the time for each NACK task to
gather the packets and estimated the next time based on the previous times. We compared
these algorithms for their prediction of sending times under the same environment, and
the results are shown in Figure 10.

Electronics 2025, 14, 131 14 of 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Disorder ratio

30

35

40

45

50

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r(

RM
SE

)

EWMA
Fixed K
Half growth
Fix Time

Figure 10. RMSE of different algorithms.

This method achieved better stability and lower false retransmission rates of around a
quarter compared to other methods. Considering the above indicators, EWMA is indeed
more suitable for this retransmission system.

EWMA achieved better stability and a better fit and was more sensitive to changes in
data. The fit of the Fixed K Algorithm relied heavily on the value of K, and the stability
performance was poor. When the delay of each link was stable, the disorder also remained
relatively stable. We set three different disorder conditions and simulated three aggregated
links. The fitted curves are shown in Figure 11. The true time refers to the actual waiting
time of this NACK, while the estimated time refers to the predicted time using the EWMA
algorithm. It can be observed that this algorithm is capable of dynamically adjusting the
sending time of NACKs.

0 2,000 4,000 6,000
Time(ms)

0

40

20

60

80

100

120

N
ac

k
se

nd
ti

m
e(

m
s)

True time
Estimated time

[20ms, 15ms,

8,000 10,000

10ms]

[80ms, 40ms,20ms]

[40ms, 20ms,10ms]

Burst
Burst

Figure 11. EWMA estimated time.

Electronics 2025, 14, 131 15 of 20

3.2. LL-ReTx Measurement of Real Packet Loss Scenarios

We continued utilizing the topology illustrated in Figure 7. This configuration rep-
resents a real-world link where we deployed our Data Plane Development Kit (DPDK)
program across two switches. In this setup, we intentionally enabled random packet loss
on the network interface card to simulate adverse network conditions. Furthermore, we
established multiple lines through routers, resulting in a total of 16 distinct lines. The
data traffic was segmented into multiple streams as it traversed the intermediate router,
allowing for a comprehensive analysis of network performance.

The one-way propagation delay was measured to be 40 ms. As illustrated in Figure 12,
it is evident that under the specific conditions of transmitting four negative acknowledg-
ment (NACK) messages and subsequently retransmitting three data packets, the system
demonstrated a remarkable ability to mitigate packet loss. With a real link packet loss rate
maintained at a high 1% loss rate, the actual effective packet loss rate was reduced to an
impressive extent, achieving a reduction of at least three orders of magnitude.

10 8 10 7 10 6 10 5

Effective Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1Gbps
5Gbps
10Gbps

Figure 12. Effective packet loss rate.

The algorithm we used achieved good bandwidth utilization when the packet loss
rate was below a certain magnitude. We observed that the length of the extra header
bytes for ACKs or NACKs containing the necessary information was about one-hundredth
of the maximum transmission unit (MTU). Considering the median packet size of 256 B
observed in networks [28], Table 2 shows the bandwidth utilization calculated based on this
parameter. We take into account the proportion of packets that were false retransmissions
and the proportion of bandwidth used by NACKs and ACKs. The parameters were set
according to the ratio of the false retransmission rate of the 3.1 simulation, which was
nearly a quarter.

Table 2. Comparison of theoretical values of bandwidth utilization.

Our Work LinkGuardian [26]

Utilization (loss rate = α, count = n,
retrans = m, length ratio = β) 1/(1 + nαβ + mα) 1/(1 + n(1 − α)β + 1.25 mα)

(10−2, 5, 3, 1/100) 96.9% 87.9%
(10−2, 10, 3, 1/100) 96.9% 84.3%
(10−2, 15, 3, 1/100) 96.8% 80.9%

Electronics 2025, 14, 131 16 of 20

We deployed our program on the nodes of a real-world long-distance transport net-
work, whose topology is shown in Figure 13.

Traditional
Switch S1

Our Nodes

China Mobile Communications
Corporation Data Centers in Taiyuan, China

Traditional

Switch S2

China Mobile Communications
Corporation Data Centers in Yuncheng, China

Test Node C1

damage

Test Node C1

damage

Test Node C2

damage

Test Node C2

damage

M01

300km

(loss, out-of-
order)

Figure 13. Real-world long-distance transport network topology.

We compared the transmission efficiency of our solution with that of traditional
technologies in a real-world WAN environment, as shown in Table 3. At a distance of
about 500 km and a packet loss rate of 1/1000 at 10 Gbps throughput, our approach
maintained 76.8% of the network throughput, while the traditional TCP protocol, the
Cubic algorithm, dropped to 0.30% of the network throughput, and the traditional RDMA
technology dropped to 0.30% of the network throughput. The transmission efficiency of
our approach was 256 times higher than that of the traditional TCP protocol and 256 times
higher than that of the traditional RDMA technology, while the utilization rate of the entire
network link increased to 77%.

Table 3. Comparison of the efficiency of different technologies.

Solution Throughput (Gbps)

TCP Reno 0.038
TCP Cubic 0.030
TCP BBR 0.718
RDMA 0.03

Our Work 7.68

4. Discussion
4.1. Comparison with the Existing Literature

Our program has been running stably in the experimental environment for a long time.
The reduction in the packet loss rate is inherently linked to the number of retransmissions, a
concept discussed in Section 2.2.4 and further supported by the findings in Section 3.2. Our
results align with those from other studies; for instance, Link Guardian [26] demonstrated
a reduction from a 10−3 packet loss rate to a 10−6 rate through two retransmissions.

In comparison to existing link-layer retransmission mechanisms and algorithms, our
approach excels in managing out-of-order packets, which are known to trigger false re-
transmissions and excessive waiting times. As detailed in Section 3.1, our simulations
replicated the mechanisms used in other studies, including LinkGuardian [26]. Our mecha-
nism, which includes processing for out-of-order packets, outperformed these mechanisms,
reducing false retransmissions by 25%. Moreover, our NACK-based transmission strategy
provided superior link utilization, as indicated in Table 2, by conserving resources and
reducing overhead. Additionally, Table 3 illustrates that our solution mitigated the dra-
matic decrease in throughput caused by packet loss for various protocols on the devices
discussed in the introduction.

Electronics 2025, 14, 131 17 of 20

Overall, by employing link retransmission, we prevent the significant reduction in
throughput often associated with congestion control on the device side. Compared to other
link-layer retransmission mechanisms, our approach enhances tolerance to out-of-order
packets, thereby avoiding the bandwidth consumption incurred by false retransmissions.

4.2. Limitations and Future Work

While our research has made significant strides, there are certain limitations that
warrant acknowledgment and attention in future studies. One such limitation is the
handling of out-of-order packets resulting from retransmissions, which currently lacks
a specific mechanism for reordering at the nodes. Additionally, although the algorithm
and mechanisms we implemented in software provide a high degree of flexibility, the
forwarding speed and throughput are somewhat constrained because of device platform
limitations. This trade-off between flexibility and speed is a common challenge in software-
defined networking, and we are committed to optimizing this in our future work. To this
end, we plan to focus on the cache space required on the nodes for storing packets awaiting
retransmission. The efficient utilization and management of this cache space will be a key
direction for our subsequent optimization efforts.

Furthermore, while we have successfully integrated our code on programmable
switches to facilitate forwarding, our mechanism is also designed to run on other types of
nodes because the entire program is independent of the switch, and the input and output
consist only of packets. During the testing phase, we discovered that only minor configu-
ration and code changes are necessary to enable direct packet reception and transmission
from the network port on these devices. However, this adaptation requires consideration of
the storage capacity needed on these alternative devices. When applying our mechanism
to other types of nodes, it is also necessary to configure and modify the corresponding in-
terfaces within the code to accommodate the specific hardware capabilities and constraints.
Additionally, some header configuration is required for the packet.

In summary, our future work will concentrate on refining the handling of out-of-
order packets, optimizing the forwarding speed, and expanding the applicability of our
mechanism to a broader range of network nodes. By addressing these limitations, we aim to
enhance the overall performance and adaptability of our network retransmission scheme.

5. Conclusions
In this study, we implemented a novel link-local retransmission mechanism designed

to enhance the reliability of data transmission in networks prone to packet loss. Our
approach leverages continuous sequence numbers to facilitate efficient retransmission of
lost packets, thereby maintaining the operational integrity of network links until physical
repairs can be made. The implementation of this mechanism on a programmable switch
platform demonstrated significant improvements in both packet loss recovery and overall
network performance.

Through extensive simulations and real-world testing, we showed that our algorithm
effectively mitigates the impact of packet loss caused by link corruption. The results
indicate that by employing a feedback mechanism that dynamically adjusts retransmission
strategies based on network conditions, we can significantly reduce the effective packet loss
rate. This is particularly crucial in scenarios where traditional end-to-end recovery methods
may fall short, as they often misinterpret packet loss as a sign of congestion, leading to
unnecessary reductions in throughput.

Moreover, our findings highlight the importance of considering both data packets
and control signals, such as ACKs and NACKs, in the calculation of bandwidth utilization.
By optimizing the retransmission process and minimizing spurious retransmissions, we

Electronics 2025, 14, 131 18 of 20

achieved a high bandwidth utilization rate, even under significant packet loss conditions.
This not only enhances the efficiency of the network but also ensures that real-time ap-
plications, which are sensitive to delays, disruptions, and bandwidth fluctuations, can
operate smoothly.

In conclusion, we believe that our proposed solution is highly valuable for WANs. By
addressing the challenges posed by packet loss and link corruption, we contribute to the
development of more resilient and efficient networking solutions, ultimately enhancing the
quality of service for users and applications that rely on stable and high-performance net-
work connections. Future work will focus on further refining the feedback mechanisms and
switch architecture design to predict and adapt to dynamically changing network conditions.

Author Contributions: Conceptualization, L.S.; methodology, implementation, and validation, C.K.
and Y.L.; writing—original draft preparation, C.K.; writing—review and editing, L.S. and C.K.;
supervision, L.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China: Demonstration of Multimodal Network Application for Eastern Data and Western Computing
(Project. No. 2023YFB2906404).

Data Availability Statement: All the necessary data are included in the article.

Acknowledgments: The authors would like to extend their sincere gratitude to Lei Song, Lei Liu,
and Yifei Li for their insightful comments. Additionally, the authors are deeply appreciative of the
anonymous reviewers for their constructive feedback on the earlier drafts of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:
WAN Wide-Area Network
RDMA Remote Direct Memory Access
NPA Network Performance Anomaly
TCP Transmission Control Protocol
SACK Selective Acknowledgment
ECN Explicit Congestion Notification
FEC Forward Error Correction
DCN Data Center Network
LSN Low-Earth-Orbit (LEO) Satellite Network
HPC High-Performance Computing
ARQ Automatic Repeat Request
FRER Frame Elimination for Reliability
FPGA Field-Programmable Gate Array

LL-ReTx Link-Local Retransmissions
FCT Flow Completion Time
SQR Shared Queue Ring
DPDK Data Plane Development Kit
NACK Negative Acknowledgment
RMSE Root Mean Square Error
EWMA Exponentially Weighted Moving Average
SDN Software-Defined Networking
MTU Maximum Transmission Unit

Electronics 2025, 14, 131 19 of 20

References
1. Lu, Y.; Chen, G.; Li, B.; Tan, K.; Xiong, Y.; Cheng, P.; Zhang, J.; Chen, E.; Moscibroda, T. Multi-Path Transport for RDMA in

Datacenters. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
Renton, WA, USA, 9–11 April 2018; pp. 357–371.

2. Zhao, J.; Li, F. Research on deterministic networking requirements and technologies for RDMA-WAN. Telecommun. Sci. 2023,
39, 39–51.

3. Zhuo, D.; Ghobadi, M.; Mahajan, R.; Förster, K.T.; Krishnamurthy, A.; Anderson, T. Understanding and Mitigating Packet Cor-
ruption in Data Center Networks. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17), Los Angeles, CA, USA, 21–25 August 2017; ACM: New York, NY, USA, 2017. [CrossRef]

4. Zhou, Y.; Sun, C.; Liu, H.H.; Miao, R.; Bai, S.; Li, B.; Zheng, Z.; Zhu, L.; Shen, Z.; Xi, Y.; et al. Flow Event Telemetry on
Programmable Data Plane. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM’20), New York, NY,
USA, 10–14 August 2020; pp. 76–89. [CrossRef]

5. Chiesa, M.; Kamisinski, A.; Rak, J.; Retvari, G.; Schmid, S. A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks.
IEEE Commun. Surv. Tutor. 2021, 23, 1253–1301. [CrossRef]

6. Ha, N.V.; Nguyen, T.T.T.; Tsuru, M. TCP with Network Coding Enhanced in Bi-Directional Loss Tolerance. IEEE Commun. Lett.
2020, 24, 520–524. [CrossRef]

7. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. Commun. ACM 2017,
60, 58–66. [CrossRef]

8. Zeng, G.; Bai, W.; Chen, G.; Chen, K.; Han, D.; Zhu, Y.; Cui, L. Congestion Control for Cross-Datacenter Networks. IEEE/ACM
Trans. Netw. 2022, 30, 2074–2089. [CrossRef]

9. Mohammadpour, E.; Le Boudec, J.Y. On Packet Reordering in Time-Sensitive Networks. IEEE/ACM Trans. Netw. 2022,
30, 1045–1057. [CrossRef]

10. Michel, F.; De Coninck, Q.; Bonaventure, O. QUIC-FEC: Bringing the benefits of Forward Erasure Correction to QUIC. In Pro-
ceedings of the 2019 IFIP Networking Conference (IFIP Networking), Warsaw, Poland, 20–22 May 2019; pp. 1–9. ISSN 1861-2288.
[CrossRef]

11. Emara, S.; Fong, S.L.; Li, B.; Khisti, A.; Tan, W.T.; Zhu, X.; Apostolopoulos, J. Low-Latency Network-Adaptive Error Control for
Interactive Streaming. IEEE Trans. Multimed. 2022, 24, 1691–1706. [CrossRef]

12. Giesen, H.; Shi, L.; Sonchack, J.; Chelluri, A.; Prabhu, N.; Sultana, N.; Kant, L.; McAuley, A.J.; Poylisher, A.; DeHon, A.; et al.
In-network computing to the rescue of faulty links. In Proceedings of the 2018 Morning Workshop on In-Network Computing
(SIGCOMM’18), Budapest, Hungary, 20–25 August 2018; ACM: New York, NY, USA, 2018. [CrossRef]

13. Varga, B.; Farkas, J.; Fejes, F.; Ansari, J.; Moldován, I.; Máté, M. Robustness and Reliability Provided by Deterministic Packet
Networks (TSN and DetNet). IEEE Trans. Netw. Serv. Manag. 2023, 20, 2309–2318. [CrossRef]

14. Zhang, J.; Gao, X.; Wu, K.; Ji, Y. Segment frame replication and elimination for redundant routing provision in the FlexE-over-
WDM networks. Opt. Switch. Netw. 2023, 47, 100709. [CrossRef]

15. Li, L.; Liu, Y.; You, I.; Song, F. A Smart Retransmission Mechanism for Ultra-Reliable Applications in Industrial Wireless Networks.
IEEE Trans. Ind. Inform. 2023, 19, 1988–1996. [CrossRef]

16. Joshi, R.; Song, C.H.; Khooi, X.Z.; Budhdev, N.; Mishra, A.; Chan, M.C.; Leong, B. Masking Corruption Packet Losses in Datacenter
Networks with Link-local Retransmission. In Proceedings of the ACM SIGCOMM 2023 Conference, New York, NY, USA, 10–14
September 2023; ACM: New York, NY, USA, 2023. [CrossRef]

17. Qu, T.; Joshi, R.; Chan, M.C.; Leong, B.; Guo, D.; Liu, Z. SQR: In-network Packet Loss Recovery from Link Failures for Highly
Reliable Datacenter Networks. In Proceedings of the 2019 IEEE 27th International Conference on Network Protocols (ICNP),
Chicago, IL, USA, 8–10 October 2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

18. Li, J.; Li, H.; Lai, Z.; Wu, Q.; Liu, Y.; Zhang, Q.; Li, Y.; Liu, J. SatGuard: Concealing Endless and Bursty Packet Losses in
LEO Satellite Networks for Delay-Sensitive Web Applications. In Proceedings of the ACM Web Conference, Singapore, 13–17
May 2024.

19. Ultra Ethernet Consortium. UEC Progresses Towards v1.0 Set of Specifications. 18 March 2024. Available online: https:
//ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/ (accessed on 12 November 2024).

20. Leung, K.c.; Li, V.O.; Yang, D. An Overview of Packet Reordering in Transmission Control Protocol (TCP): Problems, Solutions,
and Challenges. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 522–535. [CrossRef]

21. Sarolahti, P.; Kojo, M.; Yamamoto, K.; Hata, M. Forward Rto-Recovery (F-RTO): An Algorithm for Detecting Spurious Retrans-
mission Timeouts with TCP. Network Working Group. 2009. Available online: https://datatracker.ietf.org/doc/html/rfc5682
(accessed on 12 November 2024).

http://doi.org/10.1145/3098822.3098849
http://dx.doi.org/10.1145/3387514.3406214
http://dx.doi.org/10.1109/COMST.2021.3063980
http://dx.doi.org/10.1109/LCOMM.2019.2961096
http://dx.doi.org/10.1145/3009824
http://dx.doi.org/10.1109/TNET.2022.3161580
http://dx.doi.org/10.1109/TNET.2021.3129590
http://dx.doi.org/10.23919/IFIPNetworking.2019.8816838
http://dx.doi.org/10.1109/TMM.2021.3070134
http://dx.doi.org/10.1145/3229591.3229595
http://dx.doi.org/10.1109/TNSM.2023.3284590
http://dx.doi.org/10.1016/j.osn.2022.100709
http://dx.doi.org/10.1109/TII.2022.3183221
http://dx.doi.org/10.1145/3603269.3604853
http://dx.doi.org/10.1109/icnp.2019.8888055
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
http://dx.doi.org/10.1109/TPDS.2007.1011
https://datatracker.ietf.org/doc/html/rfc5682

Electronics 2025, 14, 131 20 of 20

22. Rani, A.R.; Lakshmi Nadh, K.; Sivanageswara Rao, S. An Analysis on Packet Reordering and Fast Retransmit schemes for TCP.
Int. J. Electr. Electron. Comput. Syst. (IJEECS) 2015, 3. Available online: https://www.semanticscholar.org/paper/An-Analysis-
on-Packet-Reordering-and-Fast-schemes-Rani-K.LakshmiNadh/efc6c62dbbebd29dd3380c5d45d4acad5a17a5df (accessed on 12
November 2024).

23. Leung, K.C.; Ma, C. Enhancing TCP performance to persistent packet reordering. J. Commun. Netw. 2005, 7, 385–393. [CrossRef]
24. Shanmugalingam, S.; Ksentini, A.; Bertin, P. DPDK Open vSwitch performance validation with mirroring feature. In Proceedings

of the 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 1–6.

25. Jin, M.; Wang, C.; Li, P.; Han, Z. Survey of load balancing method based on DPDK. In Proceedings of the 2018 IEEE 4th
International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance
and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), Omaha, Nebraska, 3–5
May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 222–224.

26. Joshi, R.; Guo, Q.; Budhdev, N.; Mishra, A.; Chan, M.C.; Leong, B. LinkGuardian: Mitigating the impact of packet corruption loss
with link-local retransmission. In Proceedings of the 6th Asia-Pacific Workshop on Networking, Fuzhou, China, 1–2 July 2022;
ACM: New York, NY, USA, 2022. [CrossRef]

27. Ha, N.V.; Tuan Kiet, T.N.; Thanh Binh, B.N.; Tri, N.M.; Thao Nguyen, T.T.; Tsuru, M. Real-Time In-Band Network Link Loss
Detection With Programmable Data Plane. In Proceedings of the 2024 16th International Conference on Knowledge and Smart
Technology (KST), Krabi, Thailand, 28 February–2 March 2024; pp. 167–172. ISSN 2473-764X. [CrossRef]

28. Roy, A.; Zeng, H.; Bagga, J.; Porter, G.; Snoeren, A.C. Inside the Social Network’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication (SIGCOMM’15), New York, NY, USA, 17–21 August
2015; pp. 123–137. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.semanticscholar.org/paper/An-Analysis-on-Packet-Reordering-and-Fast-schemes-Rani-K.LakshmiNadh/efc6c62dbbebd29dd3380c5d45d4acad5a17a5df
https://www.semanticscholar.org/paper/An-Analysis-on-Packet-Reordering-and-Fast-schemes-Rani-K.LakshmiNadh/efc6c62dbbebd29dd3380c5d45d4acad5a17a5df
http://dx.doi.org/10.1109/JCN.2005.6389822
http://dx.doi.org/10.1145/3542637.3542643
http://dx.doi.org/10.1109/KST61284.2024.10499673
http://dx.doi.org/10.1145/2785956.2787472

	Introduction
	Motivation
	Related Works
	Proposed Approach

	Methods
	Reliable Transmission Design Mechanism
	Basic LL-ReTx Mechanism
	NACK Dynamic Adjustment Transmission Mechanism

	Discussion of Implementation Details
	Implementation Platform: Programmable Data Plane-Enabled Switch
	New Reliable Header
	Implementation Details
	Discussion About the Number of Retransmissions

	Results
	NACK Dynamic Adjustment Algorithm Simulation
	LL-ReTx Measurement of Real Packet Loss Scenarios

	Discussion
	Comparison with the Existing Literature
	Limitations and Future Work

	Conclusions
	References

