Will There Be Enough Water? A System Dynamics Model to Investigate the Effective Use of Limited Resources for Emergency Water Supply
<p>Performance-dependent resilience curve adapted from [<a href="#B25-systems-09-00002" class="html-bibr">25</a>,<a href="#B26-systems-09-00002" class="html-bibr">26</a>].</p> "> Figure 2
<p>Top-down and bottom-up approaches to the definition of required water quantity.</p> "> Figure 3
<p>Causal-loop-diagram of the model.</p> "> Figure 4
<p>Structure of the system dynamics (SD) model.</p> "> Figure 5
<p>Flow chart of the system analysis to determine the characteristic emergency situation of the water supply utility (y: yes, p: partially, p/n: partially or no, n: no).</p> "> Figure 6
<p>Amount of water required for normal supply and to meet the protection goals.</p> "> Figure 7
<p>Rate of supply with existing capacities for emergency water supply measures.</p> "> Figure 8
<p>Use of additional capacities to meet the quantitative protection goals of grid-independent supply.</p> "> Figure 9
<p>Use of additional capacities to meet the system-dependent quantitative protection goals of grid-bound supply.</p> "> Figure 10
<p>Use of additional capacities to meet the quantitative protection goals of normal supply.</p> ">
Abstract
:1. Introduction
R | Loss of resilience |
Time of damaging event | |
Time of recovery | |
Performance under normal conditions | |
Performance at time t |
2. Background
3. Materials and Methods
Number of combinations | ||
Number of containers | here 3 | |
Number of uses | here 4: Centralised raw water storage, | |
Centralised treated water storage, | ||
Decentralised treated water storage, | ||
Water transport |
4. Results
4.1. System Analysis to Identify Emergency Situation and Determine Appropriate Measures of Emergency Water Supply
4.2. Effective Use of Resources of Case Study for Emergency Water Supply
Average daily water demand per inhabitant | 120 l/(i · d) [32] | |
Minimum system dependent water demand per inhabitant | 50 l/(i · d) [35] | |
Grid-independent water demand per inhabitant | 15 l/(i · d) [36] |
4.3. Resources Required to Meet the Quantitative Protection Goals of the Case Study
4.4. Fulfillment of the Quantitative Protection Goals of the Case Study of Grid-Independent Supply by Using Additional Resources
4.5. Meeting the Quantitative Protection Goals of the System-Dependent Minimum Water Quantity by Using Additional Resources
4.6. Fulfillment of the Quantitative Protection Goals of Normal Supply by Using Additional Resources
4.7. Comprehensive Findings on the Effective Use of Existing and Additional Resources
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Daily filling machine capacities | m3/d | |
Daily mobile treatment capacities | m3/d | |
Daily transport capacities | m3/d | |
Capacity of one filling machine | m3/(fm·d) | |
Ci | Combination i of use of containers | |
Daily mobile treatment capacity of one treatment plant | m3/(mt·d) | |
Daily transport capacity of one transport vehicle | m3/(t·d) | |
Ei | Emergency situation i | |
EWS | Emergency water supply | |
Number of filling machines | ||
Number of mobile pipes | ||
Number of mobile treatment plants | ||
Number of transport vehicles | ||
Number of inhabitants supplied | ||
Total number of inhabitants | ||
Available amount of water delivered via emergency water supply | m3/d | |
Daily water quantity from own extraction plant | m3/d | |
Water from own extraction plants, which meets the applicable quality requirements | m3/d | |
Average daily water demand | m3/d | |
Daily distribution capacity of mobile pipes | m3/d | |
Grid-independent water demand according to 1. WassV [36] | m3/d | |
Necessary amount of water delivered via emergency water supply | m3/d | |
Daily distribution capacity of one mobile pipe | m3/(mp·d) |
Appendix A
Proportion of Containers Used as | ||||
---|---|---|---|---|
Combination of Use | Transport | Centralised | Centralised | Decentralised |
of Containers | Vehicle | Raw Water Storage | Treated Water Storage | Treated Water Storage |
C1 | 0% | 100% | 0% | 0% |
C2 | 0% | 0% | 100% | 0% |
C3 | 0% | 0% | 0% | 100% |
C4 | 0% | 66.6% | 33.3% | 0% |
C5 | 0% | 66.6% | 0% | 33.3% |
C6 | 0% | 33.3% | 33.3% | 33.3% |
C7 | 0% | 0% | 66.6% | 33.3% |
C8 | 0% | 0% | 33.3% | 66.6% |
C9 | 100%* | 0% | 0% | 0% |
C10 | 66.6%* | 33.3% | 0% | 0% |
C11 | 66.6%* | 0% | 33.3% | 0% |
C12 | 66.6%* | 0% | 0% | 33.3% |
C13 | 33.3%* | 66.6% | 0% | 0% |
C14 | 33.3%* | 0% | 66.6% | 0% |
C15 | 33.3%* | 0% | 0% | 66.6% |
C16 | 33.3%* | 33.3% | 33.3% | 0% |
C17 | 33.3%* | 0% | 33.3% | 33.3% |
C18 | 33.3%* | 33.3% | 0% | 33.3% |
emergency situation | E1 | E2 | E3 | E4 | E5 | |
---|---|---|---|---|---|---|
own extraction plant | A1 | A1 | A1 | D1 | D1 | |
other utility | A1 | A1 | ||||
grid-independent well | B1 | B1 | ||||
surface water | C1 | C1 | ||||
connecting pipe | A2 | A2 | ||||
mobile pipes | A2 | A2 | A2 | D2A2*B2C2 | D2A2*B2C2 | |
transport vehicle | A2* | A2* | A2* | D2*A2**B2*C2* | D2*A2**B2*C2* | |
filling machine | A2** | A2** | A2** | D2**A2***B2**C2** | D2**A2***B2**C2** | |
feeding into high-level tank | A3 | A3B3C3 | ||||
feeding into grid | A3* | A3 | A3*B3*C3* | A3B3C3 | ||
direct delivery | A3** | A3* | A3 | D3A3**B3**C3** | D3A3*B3*C3* | |
A, B, C, D | different types of water that can be used alternatively; A has priority over B | |||||
B has priority over C, C has priority over D | ||||||
1, 2, 3 | successive components of the respective supply measures; 1 extraction, | |||||
2 distribution, 3 delivery | ||||||
*, **, *** | Alternatives of water distribution and delivery |
emergency situation | E6 | E7 | E8 | E9 | |
---|---|---|---|---|---|
own extraction plant | D1 | B1 | B1 | A1 | |
other utility | A1 | A1 | B1 | A1 | |
grid-independent well | B1 | C1 | C1 | C1 | |
surface water | C1 | D1 | D1 | D1 | |
connecting pipe | A2 | A2 | |||
mobile pipes | D2A2B2C2 | B2A2*C2D2 | B2A2*C2D2 | A2B2C2D2 | |
transport vehicle | D2*A2*B2*C2* | B2*A2**C2*D2* | B2*A2**C2*D2* | A2*B2*C2*D2* | |
filling machine | D2**A2**B2**C2** | B2**A2***C2**D2** | B2**A2***C2**D2** | A2**B2**C2**D2** | |
feeding into high-level tank | A3 | ||||
feeding into grid | A3* | A3 | |||
direct delivery | D3A3B3C3 | B3A3**C3D3 | B3A3*C3D3 | A3B3C3D3 | |
A, B, C, D | different types of water that can be used alternatively; A has priority over B | ||||
B has priority over C, C has priority over D | |||||
1, 2, 3 | successive components of the respective supply measures; 1 extraction, | ||||
2 distribution, 3 delivery | |||||
*, **, *** | Alternatives of water distribution and delivery |
emergency situation | E10 | E11 | E12 | E13 | E14 | |
---|---|---|---|---|---|---|
own extraction plant | B1 | B1 | A1 | |||
other utility | A1 | A1 | B1 | A1 | A1 | |
grid-independent well | B1 | B1 | ||||
surface water | C1 | C1 | ||||
connecting pipe | A2 | A2 | A2 | A2 | ||
mobile pipes | B2A2* | B2A2* | A2B2 | A2*B2C2 | A2*B2C2 | |
transport vehicle | B2*A2** | B2*A2** | A2*B2* | A2**B2*C2* | A2**B2*C2* | |
filling machine | B2**A2*** | B2**A2*** | A2**B2** | A2***B2**C2** | A2***B2**C2** | |
feeding into high-level tank A3 | A3B3C3 | |||||
feeding into grid A3* | A3 | A3*B3C3 | A3B3C3 | |||
direct delivery | B3A3** | B3A3* | A3B3 | A3**B3*C3* | A3*B3*C3* | |
A, B, C, D | different types of water that can be used alternatively; A has priority over B | |||||
B has priority over C, C has priority over D | ||||||
1, 2, 3 | successive components of the respective supply measures; 1 extraction, | |||||
2 distribution, 3 delivery | ||||||
*, **, *** | Alternatives of water distribution and delivery |
emergency situation | E15 | E16 | E17 | E18 | E19 | E20 | |
---|---|---|---|---|---|---|---|
own extraction plant | |||||||
other utility | A1 | A1 | A1 | A1 | A1 | A1 | |
grid-independent well | B1 | B1 | B1 | ||||
surface water | C1 | C1 | C1 | ||||
connecting pipe | A2 | A2 | A2 | A2 | |||
mobile pipes | A2B2C2 | A2*B2C2 | A2*B2C2 | A2* | A2* | A2 | |
transport vehicle | A2*B2*C2* | A2**B2*C2* | A2**B2*C2* | A2** | A2** | A2* | |
filling machine | A2**B2**C2** | A2***B2**C2** | A2***B2**C2** | A2*** | A2*** | A2** | |
feeding into high-level tank | A3 | A3 | |||||
feeding into grid | A3* | A3 | A3* | A3 | |||
direct delivery | A3B3C3 | A3**B3C3 | A3*B3C3 | A3** | A3* | A3 | |
A, B, C, D | different types of water that can be used alternatively; A has priority over B | ||||||
B has priority over C, C has priority over D | |||||||
1, 2, 3 | successive components of the respective supply measures; 1 extraction, | ||||||
2 distribution, 3 delivery | |||||||
1*, 1**, 1*** | Alternatives of water distribution and delivery |
References
- DIN 2001-3. Trinkwasserversorgung aus Kleinanlagen und Nicht Ortsfesten Anlagen—Teil 3: Nicht Ortsfeste Anlagen zur Ersatz- und Notwasserversorgung —Leitsätze für Anforderungen an das Abgegebene Wasser, Planung, Bau, Betrieb und Instandhaltung der Anlagen (Drinking Water Supply from Small Systems and Mobile Systems—Part 3: Non-fixed Systems for Emergency Water Supply—Guiding Principles for Delivered Water Requirements, System Design, Construction, Operation and Maintenance); Deutsches Institut für Normung e. V.: Berlin, Germany, 2015. [Google Scholar]
- Bross, L.; Wienand, I.; Krause, S. Sicherheit der Trinkwasserversorgung: Teil 2: Notfallvorsorgeplanung (Security of Drinking Water Supply: Part 2: Emergency Preparedness Planning); Praxis im Bevölkerungsschutz, Federal Office of Civil Protection and Disaster Assistance: Bonn, Germany, 2019; Volume 15. [Google Scholar]
- Bross, L.; Krause, S.; Wannewitz, M.; Stock, E.; Sandholz, S.; Wienand, I. Insecure Security: Emergency Water Supply and Minimum Standards in Countries with a High Supply Reliability. Water 2019, 11, 732. [Google Scholar] [CrossRef] [Green Version]
- ÖVGW W 74. Trinkwassernotversorgung, Krisenvorsorgeplanung in der Trinkwasserversorgung (Emergency Drinking Water Supply, Crisis Preparedness Planning in Drinking Water Supply); Österreichische Vereinigung Für das Gas- und Wasserfach: Vienna, Austria, 2017. [Google Scholar]
- Mays, L.W. Water Supply Systems Security; McGraw-Hill Professional Engineering Civil Engineering; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- States, S. Security and Emergency Planning for Water and Wastewater Utilities; American Water Works Association: Denver, CO, USA, 2010. [Google Scholar]
- Gopalakrishnan, K.; Peeta, S. Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Grigg, N.S. Water Utility Security: Multiple Hazards and Multiple Barriers. J. Infrastruct. Syst. 2003, 9, 81–88. [Google Scholar] [CrossRef]
- Spellman, F.R. Water Infrastructure Protection and Homeland Security; Government Institutes: Lanham, MD, USA, 2007. [Google Scholar]
- Mendonça, D.; Wallace, W.A. Impacts of the 2001 World Trade Center Attack on New York City Critical Infrastructures. J. Infrastruct. Syst. 2006, 12, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, D.; Wallace, W.A. Adaptive Capacity: Electric Power Restoration in New York City following the 11 September 2001 Attacks. In Proceedings of the 2nd Symposium on Resilience Engineering, Sophia Antipolis, France, 8–10 November 2006. [Google Scholar]
- Bundesministerium des Innern, für Bau und Heimat. Schutz Kritischer Infrastrukturen—Risiko- und Krisenmanagement · Leitfaden für Unternehmen und Behörden; Federal Ministry of the Interior: Berlin, Germany, 2011. [Google Scholar]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Bundesministerium des Innern, für Bau und Heimat. Nationale Strategie zum Schutz Kritischer Infrastruktur (KRITIS-Strategie) (National Strategy for Critical Infrastructure Protection); Selbstverlag: Berlin, Germany, 2009. [Google Scholar]
- Department of Homeland Security. Homeland Security Presidential Directive 7: Critical Infrastructure Identification, Prioritization, and Protection; Department of Homeland Security: Washington, DC, USA.
- Organisation for Economic Co-operation and Development. Good Governance for Critical Infrastructure Resilience; OECD Reviews of Risk Management Policies; OECD Publishing: Paris, France, 2019. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Terminology on Disaster Risk Reduction; United Nations: Geneva, Switzerland, 2009. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Terminology on Disaster Risk Reduction; United Nations: Geneva, Switzerland, 2017. [Google Scholar]
- Curnin, S. Collaboration in disasters: A cultural challenge for the utilities sector. Util. Policy 2018, 54, 78–85. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction (UNDDR): Geneve, Switzerland, 2015. [Google Scholar]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. MCEER’s Vision on the Seismic Resilience of Health Care Facilities. Available online: https://www.researchgate.net/profile/G_Cimellaro/publication/252342422_MCEER%27s_vision_on_the_seismic_resilience_of_health_care_facilities/links/541620590cf2fa878ad3fd3e/MCEERs-vision-on-the-seismic-resilience-of-health-care-facilities.pdf (accessed on 4 January 2021).
- McDaniels, T.; Chang, S.; Cole, D.; Mikawoz, J.; Longstaff, H. Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Glob. Environ. Chang. 2008, 18, 310–318. [Google Scholar] [CrossRef]
- Zobel, C.W. Comparative Visualization of Predicted Disaster Resilience. In Proceedings of the 7th International ISCRAM Conference, Seattle, WA, USA, 2–5 May 2010. [Google Scholar]
- Ayyub, B.M. Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Anal. Off. Publ. Soc. Risk Anal. 2014, 34, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Tierney, K.; Bruneau, M. Conceputalizing and measuring resilience. TR News 2007, 250, 14–17. [Google Scholar]
- Attoh-Okine, N.O.; Cooper, A.T.; Mensah, S.A. Formulation of Resilience Index of Urban Infrastructure Using Belief Functions. IEEE Syst. J. 2009, 3, 147–153. [Google Scholar] [CrossRef]
- Abokifa, A.A.; Haddad, K.; Lo, C.S.; Biswas, P. Detection of Cyber Physical Attacks on Water Distribution Systems via Principal Component Analysis and Artificial Neural Networks. In World Environmental and Water Resources Congress 2017; Ewri, Ed.; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 676–691. [Google Scholar] [CrossRef]
- Bross, L.; Wienand, I.; Krause, S. Batten Down the Hatches—Assessing the Status of Emergency Preparedness Planning in the German Water Supply Sector with Statistical and Expert-Based Weighting. Sustainability 2020, 12, 7177. [Google Scholar] [CrossRef]
- American Water Works Association. M19 Emergency Planning for Water and Wastewater Utilities, 5th ed.; American Water Works Association: Denver, CO, USA, 2018. [Google Scholar]
- American Water Works Association. Planning for an Emergency Drinking Water Supply; U.S. Environmental Protection Agency’s National Homeland Security Research Center: Denver, CO, USA, 2011. [Google Scholar]
- Deutscher Verein des Gas- und Wasserfaches. DVGW W 410 Wasserbedarf—Kennwerte und Einflussgrößen (Technical Standard W 410—Water Demand—Parameters and Influencing Variables); Deutscher Verein des Gas- und Wasserfaches: Bonn, Germany, 2008. [Google Scholar]
- DIN 2000. Zentrale Trinkwasserversorgung—Leitsätze für Anforderungen an Trinkwasser, Planung, Bau, Betrieb und Instandhaltung der Versorgungsanlagen (Centralized Drinking Water Supply—Guiding Principles for Drinking Water Requirements, Design, Construction, Operation and Maintenance of Supply Facilities); DIN Deutsches Institut Für Normung e. V.: Berlin, Germany, 2017. [Google Scholar]
- Verordnung über Allgemeine Bedingungen für die Versorgung mit Wasser (Ordinance on General Conditions for the Supply of Water). 2014. Available online: https://www.gesetze-im-internet.de/avbwasserv/ (accessed on 6 January 2021).
- Bundesministerium des Innern, für Bau und Heimat. Konzeption Zivile Verteidigung (Concept Civil Defense); Federal Ministry of the Interior: Berlin, Germany, 2016. [Google Scholar]
- Erste Wassersicherstellungsverordnung (First Water Security Ordinance). 1970. Available online: https://www.gesetze-im-internet.de/wassv_1/BJNR003570970.htm (accessed on 6 January 2021).
- Niemeyer, G. Kybernetische System- und Modelltheorie: System Dynamics; Systemstudium Wirtschaftsinformatik, Vahlen: Munich, Germany, 1977. [Google Scholar]
- Forrester, J.W. Urban Dynamics, 4th ed.; MIT Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Richardson, G.P. Reflections on the foundations of system dynamics. Syst. Dyn. Rev. 2011, 27, 219–243. [Google Scholar] [CrossRef]
- Forrester, J.W. Lessons from system dynamics modeling. Syst. Dyn. Rev. 1987, 3, 136–149. [Google Scholar] [CrossRef]
- Wolstenholme, E.F. Qualitative vs. quantitative modelling: The evolving balance. J. Oper. Res. Soc. 1999, 50, 422–428. [Google Scholar] [CrossRef]
- Bossel, H. Systeme, Dynamik, Simulation: Modellbildung, Analyse und Simulation Komplexer Systeme (Modeling and Simulation: Concepts, Methods, and Models for the Behavior of Dynamic Systems); Books on Demand: Norderstedt, Germany, 2004. [Google Scholar]
- Milling, P. Der Technische Fortschritt beim Produktionsprozeß: Ein Dynamisches Modell für Innovative Industrieunternehmen (The Technical Progress in the Production Process: A Dynamic Model for Innovative Industrial Enterprises); Gabler Verlag: Wiesbaden, Germany, 1974. [Google Scholar] [CrossRef]
- Hillenbrand, T. Analyse und Bewertung neuer Urbaner Wasserinfrastruktursysteme (Analysis and Evaluation of New Urban Water Infrastructure Systems); Schriftenreihe SWW Karlsruhe; Verl. Siedlungswasserwirtschaft: Karlsruhe, Germany, 2009; Volume 134. [Google Scholar]
- Meadows, D.H. The Unavoidable A Priori. In Elements of the System Dynamics Method; Randers, J., Ed.; MIT Press: Cambridge, MA, USA, 1980; pp. 23–56. [Google Scholar]
- Wolstenholme, E.F. System Enquiry: A System Dynamics Approach; Reprinted; Wiley: Chichester, UK, 1994. [Google Scholar]
Extraction | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Water | Water | Water | ||||||||||||||||
from Own | from | from Grid | from | ||||||||||||||||
Extraction | Other | Independent | Surface | ||||||||||||||||
Plant | Utility | Wells | Waters | ||||||||||||||||
1 | 2 | 3 | 4 | ||||||||||||||||
distribution | connecting pipe | 2a | |||||||||||||||||
mobile pipes | 1a | 2b | 3a | 4a | |||||||||||||||
transport vehicle | 1b | 1c | 2c | 2d | 3b | 3d | 4b | 4d | |||||||||||
no distribution by utility | 1d | 2e | 3c | 3e | 4c | 4e | |||||||||||||
delivery | Feeding into supply system | 1a | 1b | 2a | 2b | 2c | 3a | 3b | 4a | 4b | |||||||||
direct delivery | 1c | 2d | 3c | 3d | 4c | 4d | |||||||||||||
filling machine a | 1d | 2e | 3e | 4e |
Emergency Situation | ||||
---|---|---|---|---|
E1 & E2 | E7 & E8 | E12 | E16 & E17 | |
Raw water quantity | ≥ | ≥ | ≥ | < |
Treated water quantity | ≥ | < | < | < |
Treatment capacity | Stationary treatment | ≥ | < | ≥ |
Grid | Functional | Functional | Not functional | Functional |
Emergency supply measures a | ||||
Possible extraction method b | 1 | 1, 2, 3, 4 | 1, 2 | 2, 3, 4 |
Grid-bound measures a | 1a, 1b | 2a, 2b, 2c | none | 2a, 2b, 2c |
Grid-independent | 1c, 1d | 1c, 1d, 2d, 2e, 3c, | 1c, 1d, 2d, 2e | 2d, 2e, 3c, 3d, |
measures a | 3d, 3e, 4c, 4d, 4e | 3e, 4c, 4d, 4e |
Quantitative protection goal | ||||||
---|---|---|---|---|---|---|
Protection goal | 15 l/(P·d) | 50 l/(P·d) | 120 l/(P·d) | |||
per person | ||||||
Capacities | 310 m3/d | 1032 m3/d | 2497 m3/d | |||
needed | ||||||
Available | Resources used to meet the | |||||
capacities | quantitative protection goal | |||||
Mobile | a | 225 m3/d | 450 m3/d | 1125 m3/d | 2700 m3/d | |
treatment plants | 1 mt | 2 mt | 5 mt | 12 mt | ||
Transport | b | 45 m3/d c | 315 m3/d c | 1035 m3/d c | 2520 m3/d c | |
vehicles | 3 t | 21 t | 69 t | 168 t | ||
Mobile | d | – | 315 m3/d e | 1035 m3/d e | 2520 m3/d e | |
pipes | – | 6 mp | 20 mp | 48 mp | ||
Filling | f | – | 315 m3/d e | 1050 m3/d e | 2520 m3/d e | |
machines | – | 3 fm | 10 fm | 24 fm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bross, L.; Krause, S. Will There Be Enough Water? A System Dynamics Model to Investigate the Effective Use of Limited Resources for Emergency Water Supply. Systems 2021, 9, 2. https://doi.org/10.3390/systems9010002
Bross L, Krause S. Will There Be Enough Water? A System Dynamics Model to Investigate the Effective Use of Limited Resources for Emergency Water Supply. Systems. 2021; 9(1):2. https://doi.org/10.3390/systems9010002
Chicago/Turabian StyleBross, Lisa, and Steffen Krause. 2021. "Will There Be Enough Water? A System Dynamics Model to Investigate the Effective Use of Limited Resources for Emergency Water Supply" Systems 9, no. 1: 2. https://doi.org/10.3390/systems9010002
APA StyleBross, L., & Krause, S. (2021). Will There Be Enough Water? A System Dynamics Model to Investigate the Effective Use of Limited Resources for Emergency Water Supply. Systems, 9(1), 2. https://doi.org/10.3390/systems9010002