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Abstract: The transportation system has a big impact on daily lifestyle and it is essential to energy
transition and decarbonization initiatives. Stabilizing the grid and incorporating sustainable energy
sources require technologies like the Internet of Energy (IoE) and Internet of Vehicles (IoV). Electric
vehicles (EVs) are essential for cutting emissions and reliance on fossil fuels. According to research
on flexible charging methods, allowing EVs to trade electricity can maximize travel distances and effi-
ciently reduce traffic. In order to improve grid efficiency and vehicle coordination, this study suggests
an ideal method for energy trading in the Internet of Vehicles (IoV) in which EVs bid for electricity
and Road Side Units (RSUs) act as buyers. The Taylor Social Optimization Algorithm (TSOA) is
employed for this auction process, focusing on energy and pricing to select the best Charging Station
(CS). The TSOA integrates the Taylor series and Social Optimization Algorithm (SOA) to facilitate
flow redirection post-trading, evaluating each RSU’s redirection factor to identify overloaded or
underloaded CSs. The Flow-DNET model determines redirection policies for overloaded CSs. The
TSOA + Flow-DNET approach achieved a pricing improvement of 0.816% and a redirection success
rate of 0.918, demonstrating its effectiveness in optimizing electricity trading and flow management
within the IoV framework.

Keywords: internet of vehicles; electric vehicles; internet of energy; electricity trading; flow
redirection; pricing model

1. Introduction

The field of transportation systems research is fast developing, necessitating creative
ideas, modeling, and analysis for new advances. Using methodologies and strategies for
engineering and supervising these systems across numerous industries, this field applies
system approaches to the design, development, and administration of complex systems.
In order to improve the functionality and efficiency of transportation systems, key areas
include the integration of networking, computing, and physical processes, such as smart
grids, IoT systems, and autonomous technologies [1]. The significance of EVs in the energy
market can be found in their huge capability to simplify the crisis of fossil fuels and
minimize the poisonous emission of gases, which has also acquired the attention of people
all over the world. EVs have several benefits, like saving energy, reducing emissions, and
preserving the environment. However, the inclusive design of EVs faced several issues.
Because of the EV network’s mobility and heterogeneity, poor network management may
lead to data congestion and overloading of charging ports. As a result, it is important to
thoroughly examine the EV network’s information and energy management. Meanwhile,
the driving ability of EVs is not sturdy enough to fulfil the hopes of vehicular users,
which brings specific problems while travelling longer distances. Due to the emergence
of EVs, the power grid load can become more apparent. Recently, electricity trading
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amongst vehicles has acquired a reliable charging mode, which has also been extensively
studied [2]. Based on the benefits of EVs, collaboration amongst vehicles is supposed to
be improved to increase driving ability and also effectively prevent the overload issue in
power grids [3]. Multiple organizations exist in the IoV, and the transactions are dispersed.
As a result, ensuring the security of users’ information is a difficult task [4]. The IoV
represents an open and combined network model that influences the improved sensing,
computation, and communication abilities of its data sources like prediction of traffic [5],
RSUs [6], IoT devices, smart city applications [7], planning of routes [8], and management
of traffic [9]. By triggering vehicles to mingle with infrastructure and opponent vehicles,
the connected vehicle paradigm turns automobiles from tools for mobility into intelligent
service platforms. As a result of reducing greenhouse gas emissions from the combustion of
petroleum, electrification of transportation is speeding up the commercialization of electric
vehicles. This article presents a thorough analysis of the deployment and administration
of architectural layers, taking into account the energy flow, data communication, and
computing methods and other various aspects.

EVs have attracted universal acknowledgment as a method of offering elevated energy
efficiency, low-cost oil usage, and low gas emissions. Nevertheless, the growing acceptance
of EVs in the future has created a huge number of energy desires, which also lead to an
intrinsic yet complex issue for the providers of a CS of having to maintain effectual services
of energy at its CS. For instance, in the unforeseen circumstances of a huge number of EVs
immediately requiring to charge their batteries all at once, then their equivalent CSs can face
a high energy transmitting cost due to congestion [10,11]. In addition, because of the vibrant
energy charging desires from EVs, the CS can face overestimation or underestimation of
the energy supply amongst the EVs. Thus, the CS providers need to provide an effectual
economic model to increase their profits by attaining cheap energy transfer using dynamic
energy desires.

To handle dynamic energy desires and energy efficiency optimization, one requires
to precisely forecast the demands of energy from EVs. To predict the energy desires in
an EV network, the authors in [12–14] devised machine learning techniques like multiple
regression, k-nearest neighbor, deep neural network, shallow neural network, and online
reinforcement learning to enhance the demands of the energy prediction accuracy of
particular EVs. However, these techniques are not beneficial for a complete EV network as
they compute the prediction independently at each CS. It is essential to influence global
models or shared information that are used for predicting the energy desires to attain
enhanced prediction accuracy amongst the complete network [15].

Connected Electric Vehicles (CEVs) contribute to an improvement in road safety
and the reduction in traffic congestion in urban areas. CEVs, or electric vehicles, are of
paramount importance in energy markets due to their capacity expansion and adaptable
battery models, which enable them to function as mobile power plants. The system
possesses the capacity to participate in electricity trading activities in the event that supply
stations are offline. The International Energy Agency (IEA) has recorded a considerable
quantity of battery-operated electric vehicles (EVs), in the millions. The count is supposed
to attain 60 million by 2030. Thus, an elevated penetration of CEVs can make electricity
and data exchange a complex process. To handle this process, the ability of CEVs within a
smart city has to be devised to promote social welfare and economic problems around the
electricity routing and data exchange. The CEV may be a good option for creating workable
business plans and streamlining the energy trading process [16]. The road for both data
and power decentralization is provided by CEVs’ capacity to supplant crucial micro-grid
model functions including load balancing, disaster recovery management, and voltage and
frequency regulation. The CEV might expedite the shift to a smart electricity paradigm
by enhancing societal welfare, increasing profitability, and facilitating auctions. It is very
difficult to build an effective energy trading system between nearby nations, nevertheless,
given the present power structure. One novel and exciting challenge for preventing RSU
congestion and using the least amount of energy possible is flow redirection [17,18].
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With this backdrop, the aim of this study is to design an approach for optimal electricity
trading and a deep flow redirection mechanism for the IoV using Flow-DNET and TSOA.
The four different entities, such as EVs, auctioneers, RSUs, and the IoV server are considered.
Energy trading is a mechanism in which different EVs purchase power and RSUs function
as auctioneers, receiving and bidding on requests for electricity from EVs. Throughout the
auction process, the TSOA optimal trading model is utilized to select the most advantageous
CS, with the new objective model factors including the energy and pricing approach
also being considered. Once the electricity trading is conducted, the flow redirection is
performed. Here, the redirection factor is computed for every RSU in order to decide
whether the charging station is overloaded or under loaded. If the CS is overloaded, the
Flow-DNET model is utilized for finding the redirection policy. Here, the newly devised
TSOA is obtained by integrating Taylor series and SOA.

Figure 1 illustrates the newly devised architecture of the IoV communication network
model for EV electricity trading. The centralized cloud server, localized aggregator, cloud–
vehicle interface, control and management layer, preprocessing layer, and data processing
layer are the essential segments in this architecture.
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The major contributions of the paper are:

Proposed TSOA for electricity trading:

The electricity trading is performed using TSOA by considering the new objective
model, such as energy and the pricing strategy for choosing the best CS. A hybrid of the
SOA and Taylor series develops the TSOA.

Motivation:

The huge power accessible with the CS can be taken by EVs for refilling their batteries.
The intellectual transportation can assist this by exchanging information regarding the
power requirements amongst CS’s to EVs and deciding the specific CS for performing



Systems 2024, 12, 481 4 of 34

energy trading. This motivates us to devise a new method for energy trading. Various
electricity trading and flow redirection techniques are devised in the IoV, and there are sev-
eral entities contained in the IoV network whose transactions are dispersed. Nevertheless,
ensuring information security amongst IoV network consumers is a multifaceted challenge.

The rest of the sections are arranged as follows: Section 2 reveals the review of classical
electricity trading and flow redirection techniques in the IoV. Section 3 describes the system
of IoV for effective electricity trading. Section 4 displays the proposed model for performing
electricity trading. Section 5 discusses the efficiency of the classical model by comparing it
with existing techniques. Section 6 offers the conclusion.

2. Literature Survey

Automobiles integrate modern devices for the latest Wireless Access Technology
(WAT). The apparatus consists of a display screen, numerous application units, a central
processing unit, a sensor, an antenna, a camera, radar, and a global positioning system
receiver. Their integration as on-board components in vehicles enables vehicular commu-
nication, improving affordability, comfort, and safety. Communication devices known
as RSUs facilitate communication between on-road vehicles in environments with sparse
traffic networks [19,20]. Figure 2 exemplifies various aspects of taxonomy classification on
the IoV. As a result of substantial research and technological developments in wireless channel
communication, the conventional Intelligent Transport System (ITS) has changed to focus
more on vehicle communication. In addition to facilitating communication between on-road
vehicles, client applications would have access to a range of WAT to connect to servers situated
in smart clouds because of the heterogeneous network environment of the IoV.
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The five main types of communications between vehicles that make up the IoV
communications-based heterogeneous network architecture taxonomy and a heteroge-
neous network coordination example along with associated services are shown in Figure 3.
Implementing a diverse fleet network architecture is a difficult undertaking. V2R, V2V,
Vehicles to Sensors (V2S), Vehicles to Personal Devices (V2P), and Vehicles to Infrastructure
(V2I) are some of the categories.
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A distinct WAT is used to facilitate communication between each IoV car. Additionally,
for vehicles and RSUs, various communication devices are part of the communication
architecture. Because of the variety of devices included, the design of the IoV’s communi-
cation architecture is more complex than that of VANETs, but it still remains focused on
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the market. The IoV’s heterogeneous vehicular network infrastructure greatly enhances
the navigation and supervision of cars. It can offer a dependable framework for online
and multimedia applications on the go for a multitude of mobile devices. The following
sections emphasize the layered architecture, network concept, benefits, problems, and
future elements of the IoV.

The IoE refers to the modernization and automation of electrical infrastructure devel-
opment between energy producers and consumers. A detailed outline of the framework
is provided by [22] along with an amazing explanation of the components and structure
of this subsystem for service-oriented management for creating sustainable energy de-
velopment through the Internet of Everything. There are many benefits to using the IoE,
such as increased efficiency, significant cost savings, and a reduction in energy waste.
Everything is evolving in the energy market today, including the role of the consumer, the
integration of smart technologies, and digitalization. IoV refers to a network of automobiles
equipped with middle-tier technology, software, and sensors that allow data transfer and
communication over the Internet in accordance with predefined protocols. “VANETs” are a
type of mobile ad hoc network that provides communication between automobiles and
roadside appliances. It is anticipated that, eventually, the IoV will become an “Internet of
autonomous vehicles”. One element that is anticipated to support autonomous, connected,
electric, and shared (ACES) mobility in the future is the IoV. The authors suggested a dis-
tributed multihop task outsourcing decision model to efficiently perform responsibilities.
Two primary parts are included in the model: vehicle selection, which finds nearby cars
that can be unloaded, and task selection, which finds the best response. The discrete bat
approach and greedy algorithm tackle generalized allocation offloading next. The greedy
method, sometimes called bat-based strategy, performs better than the scheme where the
task vehicle randomly chooses nearby vehicles to transfer in terms of time delay perfor-
mance, computing power, and task size environment. The aforementioned plan carries out
all operations locally [23]. The business model of the energy market is the most needed
for research and development, with a particular emphasis on prosumers and consumers’
energy trading within local contexts. Figure 4 illustrates the transition from an item-based
energy network to a service-based management system. First, the energy internet and
management structure have been presented. Next, we examine studies on implementing
EV aggregators (AGs) to provide the energy and data infrastructure needed for the IoV. The
overview of EV scheduling features both vehicle-to-grid (V2G) and charging scheduling
based on the deployed AGs. Additionally, we survey relevant studies on computers and
information communication for each scenario.

Figure 5 demonstrates how the electrical system acts as the central facilitator for the
connection of different energy transfer networks. Particularly with the increased penetra-
tion of renewable energy, the central role of electricity has been reinforced. Furthermore,
the electricity network is being created and modified to store the increasing level of re-
newable energy. This system employs several “power-to-X” conversion technologies to
effectively align the supply and demand of renewable energy across extended durations
and distances. These technologies include heat-to-liquid, and power-to-gas. Four energy
conduits equipped with modern energy conversion technology integrate and coordinate all
energy domains, as shown in Figure 6. At the end, it produces a multi-energy system that
is affordable and heavily dependent on renewable resources.
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The nine classical electricity trading and flow redirection techniques in the IoV are
illustrated along with its merits and demerits. Reference [4] developed a V2V electricity
trading technique on the basis of Bayesian game pricing using blockchain-assisted IoV. The
communication-oriented network subsystem with oriented layers is shown in Figure 7.
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Thereafter, the pricing game was executed by smart contracts. The method was not
adapted in order to attain effective outcomes. Reference [17] developed the Decentralized
Electricity Trading Framework (DETF) amongst CEVs using consortium blockchain, game
theoretic models, and machine learning. We developed a decentralized smart contract
system with a stochastic trading mechanism to facilitate CEVs in acquiring and selling
electricity in the most lucrative manner. The methodology did not use a comprehensive
real-world experimental platform that integrated renewable energy sources with micro-grid
architecture. [24] China’s power market effectively establishes incentive agreements and
safely trades energy, serving as an example. The digital signature technique ensures the
accuracy and dependability of financial transaction data. The energy blockchain technology
establishes a decentralized system that ensures data integrity and secure storage. The
Practical Byzantine Fault-Tolerant (PBFT) approach ensures the consistency of the data
block. The PBFT approach minimizes the time it takes to send data while simultaneously
enhancing the process velocity. Penalties for automobiles that violate the restrictions are
not included in this approach, and the objective is to enhance stability. In [25], there is a
methodology that utilizes electric vehicles (EVs) to effectively control power switching
and manipulate the direction of energy flow. In order to address power loss and other
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requirements, the CS developed Electric Vehicles as a Service (EVaaS). However, this
approach required substantial computational capacity [26]. The intellectual IoV devised a
tri-layer transmission system to reduce overall energy consumption and mitigate latency
problems. In this instance, we inputted the planning issue into a Deep Reinforcement
Learning (DRL) system. Regrettably, the design did not include any optimization strategy
to enhance the system’s performance [27]. In order to decrease the average reaction time in
fog-assisted Internet of Vehicles models, a resilient offloading approach was developed for
real-time traffic management. This method was utilized to organize the movement of traffic
between fog nodes and address the issue of optimizing offloading in this particular scenario.
In [28], a control and regulation technique was devised whose goal was to attain a balanced
production or consumption model. However, this technique was not able to optimize
the available state of charge (SoC). For the energy-efficient task offloading, [29] devised
UAV-CCIO, or UAV-Enabled Computing and Communications Intelligent Offloading. The
UAV consumed less energy and travels less distance without routing; therefore, it uses no
energy. In [30], the authors developed a consortium blockchain to minimize dependence on
trusted third parties. In addition, the PBFT algorithm was incorporated with the consensus
algorithm to minimize resource consumption and improve consensus efficiency. However,
the system’s reliability was affected because of the interference of bad nodes. In [31], the
suitable charging station for electric vehicles was determined by scheduling the charging
points using a vehicle ad hoc network. Fake security concerns and environmental changes
may delay and expend data. To save computer power and identify hazards, automated
anomaly detection was devised in [32]. In [33], the authors proposed an algorithm for
finding the optimal charging station for EVs using the proposed sailfish optimization
algorithm. This method utilized only a single optimization for finding the CS. In order
to optimize the finding of a CS, the development of a hybrid optimization technique will
provide a better solution. In [34], the authors present an energy-aware optimization (EAO)
technique for improving CAEV energy efficiency by taking into account the vehicle traffic
nexus. Moreover, this method developed a torque monitoring management approach to
control and maintain the electric powertrain for optimal efficiency. The authors proposed an
improved MRNN classifier and 2CKECC method in [35] to forecast IoV vehicular mobility,
security, and content caching. Although the energy consumption of this method was low,
this method utilized more steps to execute it. Here, an innovative Harris Self-Avoiding
Hawks Optimization (HSAHO) was devised to select the relay vehicles (RVs). However,
the processing time of this scheme was high. In [36], an efficient EV charging technique
was established based on mobile edge computing (MEC). Here, the global controller served
as a centralized cloud platform that enabled analytics from a CS and the coordinates of
charging reservations for mobile EVs to predict CS availability. The charging performance
and communication efficiency of the model was high, but the performance was reduced
due to network congestion.
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3. System Model

Electric cars have the potential to enhance road safety and alleviate traffic conges-
tion in cities. The enhanced battery system’s flexibility and capacity of EVs may render
them indispensable in the electricity market. Due to its ability to transfer energy inter-
nally, it is particularly advantageous in scenarios when power sources are momentarily or
entirely unavailable.

Figure 8 illustrates the system paradigm for power trading in the Internet of Things (IoT)
system. Consider a city divided into d× d blocks, which contains an IoV server, a group
of electric vehicles

{
V1, V2, . . . , Vi, . . . Vp

}
, and a set of RSUs

{
r1, r2, . . . rj, . . . rn

}
. Here, the

RSUs act as auctioneers and electric vehicles have bidirectional charging and discharging
capabilities. An electrical seller is a self-sufficient vehicle with a specified quantity of energy
that may be shared with other buyers or used to power itself. The RSU enables charging and
discharging between EVs. Vehicle flow arrival is denoted by RSU rj and follows the Poisson
process with λj.

The notation table is depicted in Table 1.
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Table 1. Notation table.

Symbol Definition

p total number of EVs

n number of RSUs

λj vehicle arrival rate

SoCprs
i present state of ith EV’s battery

SoCthr
i SoC threshold value

SoCmax
i maximum SoC level of ith EV

Qr rated battery capacity

Vt terminal voltage

SoCmax
l maximum SoC value at lth EV

SoCpv
l SoC of panels

Ert
l rated energy of lth EV

SoCprs
l present state of Vl battery

SoCdrw
l←i energy drawn by Vl from Vi

SoCgvm
i→l SoC given by Vi to Vl

SoCtrw
i→l SoC of Vi dissipated while travelling to Vl for charging Ereq

i

dx distance of x from end of block

dy distance of y from end of block

d fixed distance of one block

nx→y count of blocks present in x to y

Ps
i cost

Pb
i price at which EV bought the energy

g(i, k) size of load flows redirected through RSU from ri to rk

dri ,rk unit transmission delay

tj
i,redirect

total delay

a, b constant

Ereq
l energy required by lth EV

Ps
i price announced by ith EV

di←l distance

p total number of EV

Ert
l rated energy of lth EV

F initialization of solution

κ Total solution

Fρ ρth solution

rand random number

X best position

Y coefficient of personal choice

Fold
r old position of entity

S best solution

A density point



Systems 2024, 12, 481 13 of 34

Table 1. Cont.

Symbol Definition

z1 results obtained by member of society

Fk
r Taylor polynomial at current iteration

Fk′
r previous iteration Taylor polynomials

J empty point
zl

I
∑

r=1
zr

relative fitness

zr results obtained by member of society

X number of parked vehicles

µp service rate

λvehicle
j arrival rate of vehicle

K number of EVs processed

C capacity

d distance

t delay

L load

f 1
p pth visible neuron in first RBM

h1
l lth hidden neuron

q hidden neurons count

u and v biases in visible layer and hidden layer

u1
p bias linked to pth visible neuron

v1
l bias linked to lth hidden neuron

W1
pl weight amongst pth visible neuron and lth hidden neuron

σ activation function{
h1

l
}

first RBM output

W2
ll

weight amongst lth visible neuron and lth hidden neuron in second
RBM

q× q size of weight vector

v2
l bias linked to lth hidden neuron

q neurons count in input layer

M hidden neurons

z count of neurons in output layer

W I weight vector amongst input and hidden layers

W I
lK weight amongst lth input neuron and Kth hidden neuron

XK bias of hidden neuron

WH weights amongst hidden layer and output layer

WH
Kr weight amongst Kth hidden neuron and rth output neuron

sK hidden layer output
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3.1. Energy Model

The energy model [25] is discussed below. To develop an effectual electricity trading
technique, it is imperative to discover the consumed energy by each EV. Here, the CS
proceeds as an energy borrower and the EV reacts as an energy distributor. Thus, every EV
should have energy obtainable in its battery to fulfil the desires of the requested charging
stations. The quantity of energy with ith EVs can contribute to the request for a CS based
on the threshold value of SoCthr

i . Thus, the accessible SoC with ith EV SoCavl
i can contribute

to the requested CS as,
SoCavl

i = SoCprs
i − SoCthr

i (1)

The energy accessible with ith EVs
(

Eavl
i

)
can be given to the requested CS and is

formulated as,
Eavl

i =
(

SoCprs
i − SoCthr

i

)
Ert

i ; I f SoCprs
i > SoCthr

i (2)

Ert
i is the rated energy of ith EVs and is formulated as,

Ert
i = SoCmax

i QrVt (3)

The remaining energy required to reach SoCmax
l by lth EVs after assuming lth EVs (Vl)

as the buyer is given as,
SoCreq

l = SoCmax
l − SoCpv

l (4)

The energy required by Vl to reach SoCmax
l is given by,

Ereq
l =

(
SoCmax

l − SoCpv
l

)
Ert

l (5)

Ert
l is computed similarly to that of ith EVs.

After charging Ereq
l from Vi, update the SoC, which is given by,

SoCupd
l = SoCpvs

l − SoCdrw
l←i (6)
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After updating the SoC of Vi,

SoCupd
i = SoCpvs

i − SoCgvm
i→l − SoCtrv

i→l (7)

3.2. Mobility Model

The mobility model [25] is stated to exemplify the development of EVs and to compute
the alteration in the EV’s position considering velocity, acceleration, and location in a
particular instance. The whole city is split into several d× d blocks to model the mobility
of EVs. Each block comprises various EVs and CSs. To maximize earnings and accomplish
the most efficient energy exchange, EVs seek to trade with other EVs and charging stations
(CSs) in the same block. Nonetheless, they may interchange products and services with
any other charging station. The biggest difference between CSs and EVs is the amount
of energy they use. We may calculate the distance between the two by determining dx→y
where CS is y and x using a symbol to indicate the EV’s location. The distance between
two locations x and y is determined by the actual path dx→y, which is calculated based on
the Manhattan block design:

dx→y =

∣∣∣∣dx

d

∣∣∣∣× d +

∣∣∣∣dy

d

∣∣∣∣× d + nx→y × d (8)

The EV computes the distance of each CS and sends these data to the energy trading
model that computes the net profit of the EV considering this distance.

3.3. Pricing Model

There are two scenarios in which pricing is determined: when an electric vehicle has
excess energy available for sale and when a charging station needs to buy energy [25].
Electric vehicle owners have the ability to choose the price at which their cars participate
in energy transactions. Batteries power electric vehicles for propulsion. The EVs choose a
System on Chip (SoC) to regulate the expenses associated with charging and discharging
the battery.

Ps
i = κ

(
SoCmax

i

SoCavl
i − SoCthr

i

)
; such that Ps

i > Pb
i (9)

κ is fixed in such a way that the overall supplying cost is higher compared to the
receiving price.

3.4. Redirection Model

The redirection model [26] is presented below. To balance the offloading flows of tasks,
the RSUs are adapted to be reachable amongst each other. As flows occurring at the RSUs
can be different, a high-loaded RSU can redirect flows to a low-loaded RSU. Here, the
following constraints must be fulfilled:

g(i, k) =

{
−g(k, i), i ̸= k
0, Otherwise

(10)

Indicators are given by i, k ∈ {1, 2, . . . , u}. The states of the communication channel
are supposed to be equal and kept unaltered during one scheduling time slot. Assume dri ,rk

is caused by transmitting offloading tasks amongst RSU ri and RSU rk. If redirected flow
g(i, k) < 0, the RSU rk transmits flow to RSU ri and delay

(
−g(i, k)× dri ,rk

)
exists.

The tj
i,redirect produced by redirecting flows from RSU i to the RSU with time slot j is

evaluated as,

tj
i,redirect =

u

∑
k=1

∣∣max{g(i, k), 0} × dri ,rk

∣∣ (11)
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Furthermore, the consumption of the energy of redirection for RSU ri at time slot j is
given by Ej

i,redirect = Pri × tj
i,redirect. The final arriving task flows at RSU ri can be given as,

λi = λi −
u

∑
i=1

g(i, k) (12)

4. Proposed TSOA-Based Flow-DNET for Optimal Electricity Trading

The goal is to design an approach for optimal electricity trading and deep flow redi-
rection mechanisms for the IoV using Flow-DNET and TSOA. Figure 9 represents the
schematic view of the optimal electricity trading model in the IoV using the proposed
TSOA-based Flow-DNET. Four different entities, such as EVs, auctioneers, RSUs, and IoV
servers, are considered. In the energy trading market, electric vehicles (EVs) act as buyers
by transmitting power demand to RSUs. After that, an auctioneer may employ RSUs
to make it easier for people to place bids on these requests. Finding the best charging
station is the job of the auctioneer, who employs the revised goal model that factors in
things like energy and pricing strategies. The TSOA optimal trading model serves as the
foundation for this choice. The TSOA optimal trading model redirects the current after
the power transaction is completed. For every RSU, the TSOA optimal trading model
computes the redirection factor to determine if the charging stations are overloaded or
underloaded. If a charging station is overloaded, we utilize the Flow-DNET model to find
the redirection policy. Here, the Flow-DNET is newly devised using a deep network based
on the optimization algorithm, called TSOA. Moreover, the TSOA is obtained by combining
the Taylor series [26] and SOA [37].

The different parts of IOV architecture, taxonomy, integrated energy systems, com-
pressive views, essential components, communication-oriented architecture, and system
models are all shown in Figure 10. It provides readers with a holistic understanding of the
interconnected and integrated nature of the IOV landscape. This visual synthesis brings
together diverse elements from the previously explored technologies. Beginning with the
“architecture of IOV,” the integrated framework delves into the foundational structures
that underpin IOV systems. It extends its reach to include the insights from “taxonomy,”
providing a structured classification of IOV components and entities. The figure further
explores the “Integrated Energy System for IOV,” demonstrating the interplay between
energy considerations and the overall IOV infrastructure.

Moving beyond isolated views, the framework introduces a “Compressive View,” en-
capsulating a condensed but inclusive representation of the IOV landscape. It then dissects
the “Essential Components,” emphasizing the key elements crucial for the functioning of
the IOV.

4.1. Electricity Trading

• EVs (EV buyers) send a request to auctioneers.
• The auctioneers broadcast the information to the seller and buyer.
• The trading scheme is based on three conditions and will be executed.
• RSUs provide electricity to buyers.
• If the RSU does not have sufficient energy to sell, it begins trading by finding a

suitable seller.
• If the above two conditions fail (OR) and the RSU is overloading, then redirection will

be performed.

Figure 11 represents the proposed Taylor Social Optimization model algorithm flow
with an optimal solution.

4.1.1. Trading Using Proposed TSOA

The proposed TSOA, which combines the Taylor series and SOA, serves the trading
purposes in this context. The subsections provide a comprehensive explanation of the
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phases involved in the proposed TSOA, the fitness function, and the method used for
solution encoding. The redirection factor is computed by every RSU to determine the
charging stations’ overload or underload status.

1. Solution encoding

The choice of result representation is crucial in determining the optimal solution for
optimization problems. To streamline the energy transfer on the Internet of Vehicles, EV
providers are selected based on the planned Transmission System Operator Agreement
(TSOA). The optimization process begins with an initial value (the solution set) and pro-
gresses towards the optimal value. The vendor assignment solution set comprises a group
of EV sellers who are enthusiastic about exchanging energy with clients. The solution
vector is generated randomly, resulting in a diverse group of EV sellers. The suitability of
the solution set then determines the optimal quantity of EV merchants. By using a fitness
function, we can ascertain the optimal number of electric vehicle vendors to include in
the trading procedure. Figure 12 illustrates the solution representation that utilizes the
produced TSOA. Please provide a roster of electric vehicle suppliers who are enthusiastic
about doing business in this area.
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2. Fitness function

When calculating an EV vendor index, we consider distance, energy consumption,
and advertising expenditures. The following statement shows the fitness examination for
optimization concerns:

Fitness =

[
a

p

∑
l=1

ln
(

b + Ereq
l Ps

i

)
+ (1− di←l)

]
; Ereq

l ≤ Ert
l (13)

Here, the utility function of the jth CS relies on the energy required and price an-
nounced by EVs, and thus, the utility function of the jth CS is given by,

Uj = aj∑ ln
(

bj + Ereq
j Ps

i

)
(14)

If the price announced by the ith EV is expressed as Ps
i and revenue availability with

the jth CS is Rj such that
(

Rj > 0
)
, then the objective function can be given by,

Oj : max Uj
{Ereq

j ,∀j∈J}
(15)

3. Proposed TSOA

The trading is performed using the proposed TSOA, which is generated by adding the
Taylor series and SOA. Here, the SOA [37] is a population-driven technique that involves
two different justice principles, namely the equality of opportunity principle and the
equality of community principle. This algorithm is very effective in solving economic
dispatch problems and performs well on unconstrained and constrained functions. The
Taylor series [38] describes the function of complicated attributes with several terms. The
hybridization of both the Taylor series with SOA achieves efficient performance by resolving
optimization problems. The proposed TSOA steps are as follows:



Systems 2024, 12, 481 19 of 34

Step 1. Initialization

The preliminary step is initialization of the solution, which is expressed as F, where
1 ≤ ρ ≤ κ.

F =
{

F1, F2, . . . , Fρ, . . . , Fκ

}
(16)

Step 2. Determination of fitness

The fitness has already been described in Section 4.1.1 using Equation (13).
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Step 3. Evaluation of equality of opportunity

As per SOA [37], the equality of opportunity states that the consequent position of
each entity is given by,

Fnew
r = Fold

r + rand
(

X−Y× Fold
r

)
(17)

Here, the best position is given as,

X = rand{S, A} (18)

The density point is given as,

A =
F1z1 + F2z2 + . . . + Fozo

z1 + z2 + . . . + zo
(19)

Equation (17) can be expressed as,

Fk+1
r = Fk

r (1− rand.Y) + rand.X (20)

From the Taylor series [38],

Fk+1
r = Fk

r +
Fk′

r
1!

+
Fk′

r
2!

(21)

Assume l = 1 and substitute Fk′
r and Fk′′

r ,

Fk+1
r = Fk

r +
Fk

r − Fk−1
r

1!
+

Fk
r − 2Fk−1 + Fk−2

2!
(22)

Fk
r =

2
5

[
Fk+1

r + 2Fk−1 − Fk−2

2

]
(23)

Substitute Equation (23) in Equation (20),

Fk+1
r =

2
5

[
Fk+1

r + 2Fk−1 − Fk−2

2

]
(1− rand.Y) + rand.X (24)

Fk+1
r =

2
5

Fk+1
r (1− rand.Y) +

2
5

2Fk−1(1− rand.Y)− 2
5

Fk−2

2
(1− rand.Y) + rand.X (25)

The final update equation of the proposed TSOA is given as,

Fk+1
r =

1
3 + 2rand.Y

[(
4Fk−1 − Fk−2

)
(1− rand.Y) + 5rand.X

]
(26)

Step 4. Evaluation of principle of community

Hence, the computation of the principle of community is expressed by,

Fnew
r = Fold

r + rand(S− J) (27)

Here, the empty point is expressed as,

J =
F1

1
z1
+ F2

1
z2
+ . . . + Fo

1
zo

1
z1
+ 1

z2
+ . . . + 1

zo

(28)



Systems 2024, 12, 481 21 of 34

Step 5. Evaluation of density point and empty point

The density point is given as,

A =
I

∑
l=1

zl
I

∑
r=1

zr

Fl (29)

The empty point is given as,

J =
I

∑
l=1

1
zl

I
∑

r=1

1
zl

Fl (30)

The density points are given as,

A =
I

∑
l=1

ẑl Fl (31)

The empty points are given as,

J =
I

∑
l=1

⌣
z l Fl (32)

Here, ẑ is given as,

ẑl =
e

zl
zmax

I
∑

r=1
e

zr

zmax

(33)

Here,
⌣
z is given as,

⌣
z l =

e
−

zl
zmax

I
∑

r=1
e
−

zr

zmax

(34)

Step 6. Re-compute fitness for update solutions

The fitness of the update solutions is recalculated to obtain the best alternative for the
best EV vendor selection.

Step 7. Terminate

Up to the maximum number of iterations, we discover the optimal solutions repeatedly.
The pseudocode of TSOA is illustrated in Algorithm 1.

4. Trading Algorithm

Here, energy trading is performed between EVs and CSs in the IoV network. The
developed model considers various aspects like the capacity of EV batteries, the mobility
of EVs, and pricing when making energy trading decisions. The method helps reduce the
response time and improves the reliability of the network. The goal of energy supply in
EVs is to make a profit, whereas for CSs, it is balancing the load. EVs move to CSs for either
charging or discharging of their batteries. After reaching the CS, the final SoC of the CS and
EV battery pool is changed. Each EV aims to acquire the maximum SoC level by charging the
needed energy from the available CSs. The trading algorithm is depicted in Algorithm 2.
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Algorithm 1. Pseudocode of proposed TSOA

Input: F: Set of solutions, k: current iteration, kmax: maximum iteration
Output: Best solution F∗

Begin
Initialize random population F;
Evaluate population;
X ← Best solution;
For k = 1 to kmax do

J ← Evaluate empty point;
For r = 1 to I do

E = rand(S, J);
F = rand{0, 1, 2};
Compute Fnew

r using Equation (26)
End
If Fnew

r better than Fold
r then

Fr ← Fnew
r

End
Evaluate new population
S← Best solution;
A← Compute Density point;
For r = 1 to I do

Evaluate Fnew
r using Equation (27)

End
If Fnew

r better than Fold
r then

Fr ← Fnew
r

End
Evaluate new population
S← Best solution;

End
Print best solution

Algorithm 2. Trading algorithm

For l = 1 to p and l ̸= i
Compute SoCprs

l
If SoCprs

l < SoCthr
l

Compute SoCreq
l and Ereq

l
Announce Ereq

l to RSU’s
For i = 1 to p and i ̸= 1

If SoCprs
i > SoCthr

i
Compute SoCavl

i and Eavl
i

End if
End for

End if
End for
Compute Ps

i and di←1
For SoCreq

l < SoCthr
l

Call TSOA
Draw Ereq

l from corresponding EV’s
Update SoCupd

i and SoCupd
l

End for

4.2. Flow Redirection Using Proposed Flow-DNET

After electricity trading, the system performs flow redirection to evaluate the redirection
factor for each RSU and determine if the CS is overloaded or underloaded. If the CS is
overloaded, we utilize the Flow-DNET model to find the redirection policy. In this case,
the trading is considered a failure. Thus, a broadcast message will be sent to neighboring
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RSUs by the RSU. The neighboring RSU acknowledges the corresponding RSU by computing
redirection factors, namely the load, number of EVs processed, distance, capacity, and delay.

Here, the load is given by,

L =

n
∑

j=1

(
Xµp + λvehicle

j

)
n
∑

j=1
λj

(35)

The distance is obtained from the mobility model, which has already been described
in Section 3.2., and the capacity is the assumption.

The delay is obtained from the redirection model, which has already been described
in Section 3.4.

Prediction of flow redirection priority using DBN

The flow redirection is predicted using a DBN [39]. Here, the input attributes like the
load, capacity, number of EVs processed, distance, and delay are considered as inputs to the
DBN. The structure of the DBN is revealed in Figure 13. One MLP layer and two RBM layers
compose the DBN. The load, number of EVs managed, distance, capacity, and delay are the
redirection factors that comprise the input for the first RBM in the DBN’s visible layer. The
second RBM receives the output from the hidden layer and passes it on to the MLP.
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The visible layer considers the load, capacity, number of EVs processed, distance, and
delay as its input, and the hidden layer of the first RBM is given by,

f 1 =
{

f 1
1 , f 1

2 , . . . , f 1
p , . . . , f 1

10

}
; 1 ≤ p ≤ 10 (36)

h1 =
{

h1
1, h1

2, . . . , h1
l , . . . , h1

q

}
; 1 ≤ l ≤ q (37)

The two biases linked to neurons amongst both layers for the first RBM are expressed as,

u1 =
{

u1
1, u1

2, . . . , u1
p, . . . , u1

10

}
(38)

v1 =
{

v1
1, v1

2, . . . , v1
l , . . . , v1

q

}
(39)

The weights from the first RBM are given by,

W1 =
{

W1
pl

}
; 1 ≤ p ≤ 10 ; 1 ≤ l ≤ q (40)
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where the weight vector size is given by 10× q. Thus, the hidden layer output from the first
RBM is provided with its bias and weights linked to each visible neuron and is expressed as,

h1
l = σ

[
v1

l + ∑
p

f 1
pW1

pl

]
(41)

Thus, the output generated from the first RBM is given by,

h1 =
{

h1
l

}
; 1 ≤ l ≤ q (42)

Thus, the learning of the second RBM layer starts with the hidden layer output of the
first one. The first RBM output is the visible layer input of the second RBM. Thus, the count
of visible neurons is equal to the count of hidden neurons in the first RBM and is given by,

f 2 =
{

f 2
1 , f 2

2 , . . . , f 2
q

}
=
{

h1
l

}
; 1 ≤ l ≤ q (43)

The hidden layer of the second RBM is expressed as,

h2 =
{

h2
1, h2

2, . . . , h2
l , . . . , h2

q

}
; 1 ≤ l ≤ q (44)

For the second RBM, the weight vector is given by,

W2 =
{

W2
ll

}
; 1 ≤ l ≤ q (45)

The output of the lth hidden neuron is given by,

h2
l = σ

[
v2

l + ∑
p

f 2
pW2

ll

]
∀ f 2

p = h1
l (46)

Hence, the output of the hidden layer generated is expressed as,

h2 =
{

h2
l

}
; 1 ≤ l ≤ q (47)

The aforementioned equation establishes MLP input in which neurons count in the
input layer as q. The MLP input layer is given by,

g =
{

g1, g2, . . . , gl , . . . , gq
}

=
{

h2
l

}
; 1 ≤ l ≤ q (48)

The MLP hidden layer is obtained by,

s = {s1, s2, . . . , sK, . . . , sM} ; 1 ≤ K ≤ M (49)

Consider XK as the bias of the Kth hidden neuron in which K = 1, 2, . . . ., M. The third
layer represents the MLP output, which is given as,

o = {o1, o2, . . . , or, . . . , oz} ; 1 ≤ r ≤ z (50)

MLP poses two weight vectors, one amongst the input layer and hidden layer, and the
other amongst the hidden layer and output layer. Assume W I is given by,

W I =
{

W I
lK

}
; 1 ≤ l ≤ q ; 1 ≤ K ≤ M (51)

The hidden layer output is given by,
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sK =

[
q

∑
l=1

W I
lK ∗ gl

]
XK∀gl = h2

l (52)

The weights amongst the hidden layer and output layer are expressed as,

WH =
{

WH
Kr

}
; 1 ≤ K ≤ M ; 1 ≤ r ≤ z (53)

Hence, the output vector is evaluated with the weight and hidden layer output as,

or =
M

∑
K=1

WH
Kr ∗ sK (54)

Thus, the output O is the priority level for RSU redirection where the priority is that
the output to the RSU has maximum priority, and the flow will be redirected.

5. Results and Discussion

The efficiency of the TSOA-based Flow-DNET is evaluated considering pricing, fitness,
and redirection success rate by altering rounds with 100, 150, 200, and 250 nodes. The
TSOA-based Flow-DNET is run on a Windows 10 PC with 2 GB of RAM and an Intel core
CPU using MATLAB 2020A [40].

5.1. Experimental Results

Figure 14 reveals the experimental results of the proposed TSOA-based Flow-DNET
using 100 nodes and 150 nodes. The analysis with 100 nodes is displayed in Figure 14a.
The analysis with 150 nodes is displayed in Figure 14b. Here, the red square represents the
EV that moves towards the charging station.

5.2. Evaluation Measures

The created approach is modified by implementing some of the processes stated in
Section 3. The evaluation metrics used for assessing the performance of the proposed
TSOA-based Flow-DNET are fitness, pricing, and redirection success rate. The expressions
for these measures have already been defined in Sections 3.3 and 3.4.

5.3. Comparative Methods

The techniques considered for the assessment of pricing includes Bayesian-Game-
Based trading [4], DETF [17], PBFT [24], EVaaS [25], and the proposed TSOA + Flow-DNET.

The techniques taken for the assessment of the redirection success rate include Deep
Reinforcement Learning [26], FORT [27], a control and regulation algorithm [28], and the
proposed TSOA+ Flow-DNET.

5.4. Comparative Analysis

The assessment of the techniques using pricing, fitness, and the redirection success
rate is described with 100, 150, 200, and 250 nodes.

5.4.1. Assessment with 100 Nodes

Figure 15 depicts the assessment with 100 nodes and varied iterations. Figure 15a
summarizes the fitness analysis findings. The suggested TSOA + Flow-DNET obtained a
result of 0.109 after 101 repetitions. DETF, PBFT, EVaaS, and Bayesian-Game-Based Trading
each received fitness ratings of 0.253, 0.138, 0.134, and 0.354, respectively. Furthermore,
TSOA + Flow-DNET achieved a fitness measure of 0.013 for 451 iterations. Likewise, DETF,
PBFT, Bayesian-Game-Based Trading, and EVaaS methods achieved fitness values as high
as the proposed model. The analysis with pricing is shown in Figure 15b. For 101 iterations,
the costs evaluated by Bayesian-Game-Based trading, DETF, PBFT, and EVaaS are 6.458%,
6.082%, 5.714%, and 8.100%, while that of the proposed TSOA + Flow-DNET is 5.000%.
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Additionally, for 451 iterations, the pricings evaluated by Bayesian-Game-Based trading,
DETF, PBFT, and EVaaS are 16%, 15.526%, 15.061%, and 17.260%, while that of the proposed
TSOA + Flow-DNET is 14.160%. The analysis of the redirection success rate is revealed
in Figure 15c. For 101 iterations, the redirection success rates evaluated by Deep Rein-
forcement Learning, FORT, and the control and regulation algorithm are 0.524, 0.533, and
0.570, while that of the proposed TSOA + Flow-DNET is 0.600. Moreover, for 451 iterations,
the redirection success rates evaluated by Deep Reinforcement Learning, FORT, and the
control and regulation algorithm are 0.672, 0.683, and 0.731, while that of the proposed
TSOA + Flow-DNET is 0.769. The performance improvements of Deep Reinforcement
Learning, FORT, and the control and regulation algorithm with respect to the proposed
TSOA+ Flow-DNET using the redirection success rate are 12.613%, 11.183%, and 4.941%.
From the analysis, it is concluded that our proposed TSOA + Flow-DNET achieved better
performance than the existing model due to the effectiveness of the proposed system. This
is because, in order to attain the best performance, the devised model adapted the opti-
mization concept that aims to provide the optimal solution. Hence, the same performance
was assessed by varying the nodes to 150, 200, and 250.
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5.4.2. Assessment with 150 Nodes

Figure 16 represents the assessment with 150 nodes when altering the number of
iterations. The analysis of fitness is revealed in Figure 16a. For 101 iterations, the fitness
evaluated by Bayesian-Game-Based Trading is 0.439, DETF is 0.836, PBFT is 0.605, EVaaS
is 0.437, and the proposed TSOA + Flow-DNET is 0.303. Additionally, for 451 iterations,
the fitness evaluated by Bayesian game-based trading is 0.437, DETF is 0.352, PBFT is
0.603, and EVaaS is 0.437, and the proposed TSOA + Flow-DNET is 0.301. The analysis
with pricing is shown in Figure 16b. For 101 iterations, the pricing evaluated by Bayesian-
Game-Based Trading is 11.488%, DETF is 9.143%, PBFT is 5.065%, EVaaS is 7.690%, and
the proposed TSOA + Flow-DNET is 2.400%. Moreover, for 451 iterations, the pricing
evaluated by Bayesian-Game-Based Trading is 26.432%, DETF is 24.087%, PBFT is 18.562%,
EVaaS is 22.118%, and the proposed TSOA + Flow-DNET is 14.953%. The analysis of the
redirection success rate is revealed in Figure 16c. For 101 iterations, the redirection success
rate evaluated by Deep Reinforcement Learning is 0.547, FORT is 0.559, the control and
regulation algorithm is 0.584, and the proposed TSOA+ Flow-DNET is 0.621. Additionally,
for 451 iterations, the redirection success rate evaluated by Deep Reinforcement Learning is
0.713, FORT is 0.729, the control and regulation algorithm is 0.762, and the proposed TSOA+
Flow-DNET is 0.810. The performance improvements of Deep Reinforcement Learning,
FORT, and the control, and regulation algorithm with respect to the proposed TSOA+
Flow-DNET using redirection success rates are 11.975%, 10%, and 5.925%, respectively.
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5.4.3. Assessment with 200 Nodes

Figure 17 presents the assessment with 200 nodes when altering the number of iter-
ations. The analysis of fitness is revealed in Figure 17a. For 101 iterations, the smallest
fitness of 0.014 is evaluated by the proposed TSOA + Flow-DNET, while the fitness val-
ues of Bayesian game-based trading, DETF, PBFT, and EVaaS are 0.028, 0.020, 0.054, and
0.036. Additionally, for 451 iterations, the smallest fitness of 0 is evaluated by the pro-
posed TSOA + Flow-DNET, while the fitness value of Bayesian game-based trading, DETF,
PBFT, and EVaaS is 0 for each. The analysis with pricing is shown in Figure 17b. For
101 iterations, the lowest pricing of 13.669% is evaluated by the proposed TSOA + Flow-
DNET, while the pricings measured by Bayesian-Game-Based Trading, DETF, PBFT, and
EVaaS are 16.537%, 16.875%, 15.894%, and 15.358%. Moreover, for 451 iterations, the lowest
pricing of 20.074% is evaluated by the proposed TSOA + Flow-DNET, while the pricings
evaluated by Bayesian-Game-Based Trading, DETF, PBFT, and EVaaS are 24.287%, 24.782%,
23.341%, and 22.555%. The analysis of the redirection success rate is shown in Figure 17c.
For 101 iterations, the biggest redirection success rate of 0.714 is evaluated by the proposed
TSOA+ Flow-DNET, while the redirection success rates evaluated by Deep Reinforcement
Learning, FORT, and the control and regulation algorithm are 0.635, 0.656, and 0.676. In
addition, for 451 iterations, the biggest redirection success rate of 0.918 is evaluated by the
proposed TSOA+ Flow-DNET, while the redirection success rates evaluated by Deep Rein-
forcement Learning, FORT, and the control and regulation algorithm are 0.816, 0.844, and 0.869.
The performance improvements of Deep Reinforcement Learning, FORT, and the control and
regulation algorithms with respect to the proposed TSOA+ Flow-DNET using redirection
success rates are 11.111%, 8.061%, and 5.337%.
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5.4.4. Assessment with 250 Nodes

Figure 18 presents the assessment with 250 nodes when altering the number of iterations.
The analysis of fitness is revealed in Figure 18a. For 101 iterations, the fitness values evaluated
by Bayesian game-based trading, DETF, PBFT, EVaaS, and the proposed TSOA + Flow-DNET
are 0.162, 0.167, 0.306, 0.428, and 0.132. Moreover, for 451 iterations, the fitness values
evaluated by Bayesian game-based trading, DETF, PBFT, EVaaS, and the proposed TSOA +
Flow-DNET are 0.016, 0.016, 0.024, 0.049, and 0.013. The analysis of pricing is revealed in
Figure 18b. For 101 iterations, the pricings evaluated by Bayesian game-based trading, DETF,
PBFT, EVaaS, and the proposed TSOA + Flow-DNET are 6.678%, 6.289%, 5.909%, 8.375%,
and 5.170%. Additionally, for 451 iterations, the pricings evaluated by Bayesian game-based
trading, DETF, PBFT, EVaaS, and the proposed TSOA + Flow-DNET are 16.544%, 16.053%,
15.573%, 17.847%, and 14.641%. The analysis of the redirection success rate is shown in
Figure 18c. For 101 iterations, the redirection success rates evaluated by Deep Reinforcement
Learning, FORT, the control and regulation algorithm, and the proposed TSOA+ Flow-DNET
are 0.633, 0.644, 0.688, and 0.725. In addition, for 451 iterations, the redirection success rates
evaluated by Deep Reinforcement Learning, FORT, the control and regulation algorithm,
and the proposed TSOA+ Flow-DNET are 0.811, 0.825, 0.883, and 0.929. The performance
improvements of Deep Reinforcement Learning, FORT, and the control, and regulation
algorithm with respect to the proposed TSOA+ Flow-DNET using redirection success rates
are 12.701%, 11.194%, and 4.951%, respectively.
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5.5. Comparative Discussion

In this section, the analysis is carried out for two processes, pricing and the redirection
success rate. To analyze the performance of pricing, the existing models, such as Bayesian-
Game-Based trading, DETF, PBFT, and EVaaS, have been considered. Here, the analysis is
performed by increasing the number of nodes from 100 to 250 with four equal divisions
since the performance should vary when changing the setup. Table 2 shows the results of
the comparative test, which prioritized cost and fitness. DETF, PBFT, EVaaS, and Bayesian
game-based trading had fitness ratings of 0.020, 0.013, 0.041, and 0.011, respectively, out of
all the evaluated techniques. At 0.011, the TSOA + Flow-DNET algorithm has the lowest
fitness value. The algorithm performs best with 100 nodes. The TSOA + Flow-DNET plan
costs USD 14,160,000, including PBFT at 15.061 percent, DETF at 15.526 percent, and EVaaS
at 17.26 percent. The CS and EV exchange energy to optimize their financial benefits since
their owners control their pricing. The TSOA + Flow-DNET model calculates a maximum
price of 14.953% and a minimum fitness value of 0.301 using a network of 150 nodes. The
TSOA + Flow-DNET architecture achieves a minimal fitness of 0 and an optimum cost
of 0.816% with 200 nodes. When using 250 nodes, the suggested TSOA + Flow-DNET
achieves the highest cost of 14.641% and the lowest fitness of 0.013.

To analyze the performance of pricing, the existing models, such as Deep Rein-
forcement Learning, FORT, and the control and regulation algorithm, have been con-
sidered. Here, the analysis is performed by increasing the number of nodes by the order of
100 nodes, 150 nodes, 200 nodes, and 250 nodes since the performance should vary when
modifying the experimental setup. Table 3 presents the assessment of techniques with
redirection success rates by altering iterations. Using 100 nodes, the highest redirection
success rate of 0.769 is measured by the proposed TSOA + Flow-DNET, while the redirec-
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tion success rates of Deep Reinforcement Learning, FORT, and the control and regulation
algorithm are 0.672, 0.683, and 0.731. The highest redirection success rate is measured by the
proposed TSOA+ Flow-DNET, which reveals faster and more effective trip speeds. Using
150 nodes, the highest redirection success rate of 0.810 is measured by the proposed TSOA
+ Flow-DNET. Using 200 nodes, the highest redirection success rate of 0.918 is measured by
the proposed TSOA+ Flow-DNET. Using 250 nodes, the highest redirection success rate of
0.929 is measured by the proposed TSOA+ Flow-DNET.

Table 2. Comparative analysis.

Nodes Metrics Bayesian-Game-
Based Trading DETF PBFT EVaaS Proposed TSOA +

Flow-DNET

100 nodes
Fitness 0.020 0.013 0.013 0.041 0.011

Pricing (%) 16.000 15.526 15.061 17.260 14.160

150 nodes
Fitness 0.437 0.352 0.603 0.437 0.301

Pricing (%) 26.432 24.087 18.562 22.118 14.953

200 nodes
Fitness 0 0 0 0 0

Pricing (%) 0.816 0.844 0.869 0.918 0.816

250 nodes
Fitness 0.016 0.016 0.024 0.049 0.013

Pricing (%) 16.544 16.053 15.573 17.847 14.641

Table 3. Analysis with redirection success rate.

Nodes Deep Reinforcement
Learning FORT Control and

Regulation Algorithm
Proposed TSOA +

Flow-DNET

100 nodes 0.672 0.683 0.731 0.769

150 nodes 0.713 0.729 0.762 0.810

200 nodes 0.816 0.844 0.869 0.918

250 nodes 0.811 0.825 0.883 0.929

5.6. Analysis Based on Computational Time

Table 4 shows the analysis based on the computational time. This table shows the
computational time of the proposed method is lower than other comparative methods.

Table 4. Analysis based on computational time.

Methods Computational Time (mins)

Setup 1

Bayesian-Game-Based trading 8.782346782569

DETF 7.846758264756

PBFT 6.893748641209

EVaaS 5.08784675123

Proposed TSOA + Flow-DNET 4.56913749103

Setup 2

Deep Reinforcement Learning 7.03256645632

FORT 6.64893573894

Control and regulation algorithm 5.09277364751

Proposed TSOA+ Flow-DNET 4.673648735687
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6. Conclusions

An approach is developed for optimum electricity trading with a deep flow redirec-
tion mechanism in the IoV, considering the Flow-DNET model. Here, four entities are
adapted that include EVs, auctioneers, RSUs, and the IoV server. In the electrical market,
electric vehicles act as energy consumers, putting demands on power providers, or RSUs.
Afterwards, an auctioneer supervises these providers as they participate in auctions. The
auction process is constructed using a recently developed optimization approach called
TSOA, which takes into account the fitness function. A novel approach to energy and cost
analysis identifies the most beneficial exercise models for charging stations. In addition,
we obtain the proposed TSOA by combining the ideas of the Taylor series and the Social
Optimization Algorithm. The redirection of flow is carried out after the electricity trade. As
per the analysis carried out for both pricing and the redirection success rate, the proposed
TSOA + Flow-DNET achieved better performance than the existing models. Here, the
redirection factor is computed for each RSU to make a decision regarding the overloading
or under loading conditions of the CS. If the CS is overloaded, the Flow-DNET model is
used to find the redirection policy. The proposed TSOA + Flow-DNET provided enhanced
efficiency with the smallest pricing of 0.816% and the highest redirection success rate of
0.918. In the future, other advanced optimization techniques can be adapted to check the
feasibility of the developed model.
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