Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity
"> Figure 1
<p>Chemical structures of N<sup>α</sup>-Lauroyl Arginine methyl ester (LAM), Phenylalanine lauroyl amide (PNHC<sub>12</sub>), N<sup>α</sup>-Lauroyl Phenylalanine Arginine methyl ester (C<sub>12</sub>PAM), and Phenylalanine Arginine lauroyl amide (PANHC<sub>12</sub>).</p> "> Figure 2
<p>Transmission electronic microscopy images of (<b>a</b>,<b>b</b>) blank and (<b>c</b>,<b>d</b>) Lauroyl arginine methyl ester (LAM) loaded-zein nanoparticles under different magnifications.</p> "> Figure 3
<p>Aggregation possibilities for zein nanoparticles loaded with arginine-phenylalanine surfactants. (<b>a</b>) The hydrophobic hydrocarbon chains are directly connected to the polymeric nanostructure, (<b>b</b>) nanomicelles with hydrophobic core formed by the surfactants are in contact with the polymeric structure, (<b>c</b>) combination of direct interaction of the surfactants with nanomicelles interactions, (<b>d</b>) surfactants’ polar heads are connected to the polymeric structure or (<b>e</b>) larger micelles or bilayers containing water are formed and agglomerate to the polymeric nanoparticles structure. (<b>f</b>) Blank zein nanoparticles and (<b>g</b>) the general cationic surfactant chemical structure.</p> "> Figure 4
<p>Minimum bactericide concentrations (MBC) (in µg/mL) of the surfactants in solution and nanoparticles: Lauroyl Arginine methyl ester (LAM) (<b>a</b>), Phenylalanine lauroyl amide (PNHC<sub>12</sub>) (<b>b</b>), Phenylalanine Arginine lauroyl amide (PANHC<sub>12</sub>) (<b>c</b>), and Lauroyl Phenylalanine Arginine methyl ester (C<sub>12</sub>PAM) (<b>d</b>). Concentrations assayed: 2.2, 4.4, 8.9, 17.8, and 35.6 µg/mL.</p> "> Figure 5
<p>Minimum fungicide concentrations (MFC) (in µg/mL) of the surfactants in solution and nanoparticles: Lauroyl Arginine methyl ester (LAM) (<b>a</b>), Phenylalanine lauroyl amide (PNHC<sub>12</sub>) (<b>b</b>), Phenylalanine Arginine lauroyl amide (PANHC<sub>12</sub>) (<b>c</b>) and Lauroyl Phenylalanine Arginine methyl ester (C<sub>12</sub>PAM) (<b>d</b>). Concentrations assayed: 2.2, 4.4, 8.9 17.8 and 35.6 µg/mL.</p> "> Figure 6
<p>Antibiofilm activity of the surfactant-loaded zein nanoparticles: LAM solution (<b>a</b>) and nanoparticles (<b>b</b>), PNHC<sub>12</sub> solution (<b>c</b>) and nanoparticles (<b>d</b>), PANHC<sub>12</sub> solution (<b>e</b>) and nanoparticles (<b>f</b>), and C<sub>12</sub>PAM solution (<b>g</b>) and nanoparticles (<b>h</b>) over Methicillin-resistant <span class="html-italic">Staphylococcus aureus</span> (MRSA). (*** and **** mean <span class="html-italic">p</span> < 0.005 and <span class="html-italic">p</span> < 0.001, respectively).</p> "> Figure 7
<p>Antibiofilm activity of the surfactants-loaded zein nanoparticles: LAM solution (<b>a</b>) and nanoparticles (<b>b</b>), PNHC12 solution (<b>c</b>) and nanoparticles (<b>d</b>), PANHC<sub>12</sub> solution (<b>e</b>) and nanoparticles (<b>f</b>), and C<sub>12</sub>PAM solution (<b>g</b>) and nanoparticles (<b>h</b>) over <span class="html-italic">Candida albicans</span>.(** and **** mean <span class="html-italic">p</span> < 0.01 and <span class="html-italic">p</span> < 0.001, respectively).</p> "> Figure 8
<p>Antioxidant activity of amino acid-based surfactants (LAM, PNHC<sub>12</sub>, C<sub>12</sub>PAM, and PANHC<sub>12</sub>) and their corresponding Nps at 35.6 µg/mL after 30 min and 24 h. (**, *** and **** mean <span class="html-italic">p</span> < 0.01, <span class="html-italic">p</span> < 0.005 and <span class="html-italic">p</span> < 0.001, respectively).</p> "> Figure 9
<p>Inhibition of collagenase (<b>a</b>), elastase (<b>b</b>), tyrosinase (<b>c</b>), and lipoxygenase (<b>d</b>) by LAM, PNHC<sub>12</sub>, C<sub>12</sub>PAM, PANHC<sub>12</sub> and their corresponding NPs. EGCG: epigalocatequin-3-galate; DEX: dexamethasone.</p> "> Figure 10
<p>Molecular docking studies showing the various interaction types observed in the contact modes between the surfactant molecules (LAM, PNHC<sub>12</sub>, and C<sub>12</sub>PAM) and the protein pocket of collagenase (PDB ID: 7ESI), elastase (PDB ID: 1ELE), lipoxygenase (PDB ID: 4NRE), and tyrosinase (PDB ID: 4P6R) receptors.</p> "> Figure 11
<p>Cellular viability with LAM, PNHC<sub>12</sub>, PANHC<sub>12</sub>, and C<sub>12</sub>PAM in solution (at 35.6 and 17.8 µg/mL) and loaded to zein nanoparticles (at 35.6 and 17.7 µg/mL) over murine Swiss albino fibroblasts (3T3 cell line) (<b>a</b>–<b>d</b>) and immortal human keratinocytes (HaCaT cell line) (<b>e</b>–<b>h</b>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoparticles Characteristics
2.2. Antimicrobial Activity
2.3. Antibiofilm Activity
2.4. Antioxidant Activity
2.5. Anti-Enzymatic Inhibitory Activities
2.6. Molecular Docking Results
2.7. Cytotoxicity
2.8. Ecotoxicity Assessment
3. Materials and Methods
3.1. Materials
3.2. Nanoparticles Preparation and Characterization
3.3. Antioxidant Activity
3.4. Biocidal Activity in Suspension
3.5. Antibiofilm Activity
3.6. Enzymatic Activities
3.6.1. Collagenase Inhibition Assay
3.6.2. Elastase Inhibition Assay
3.6.3. Tyrosinase Inhibition Assay
3.6.4. Lipoxygenase Inhibition Assay
3.7. Molecular Docking
3.8. Cytotoxicity Assays
3.8.1. The Neutral Red Uptake (NRU) Assay
3.8.2. MTT Assay
3.9. Ecotoxicological Assessment: Vibrio fisheri Luminescence Reduction Test
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.; Wang, Y. Structure–Activity Relationship of Cationic Surfactants as Antimicrobial Agents. Curr. Opin. Colloid Interface Sci. 2020, 45, 28–43. [Google Scholar] [CrossRef]
- Pinazo, A.; Manresa, M.A.; Marques, A.M.; Bustelo, M.; Espuny, M.J.; Pérez, L. Amino Acid-Based Surfactants: New Antimicrobial Agents. Adv. Colloid Interface Sci. 2016, 228, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.; Hafidi, Z.; Pinazo, A.; García, M.T.; Martín-Pastor, M.; de Sousa, F.F.O. Zein Nanoparticles Containing Arginine-Phenylalanine-Based Surfactants: Stability, Antimicrobial and Hemolytic Activity. Nanomaterials 2023, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Pérez, L.; Sentís, A.; Hafidi, Z.; Pinazo, A.; García, M.T.; Martín-Pastor, M.; de Sousa, F.F.O. Zein Nanoparticles Containing Arginine-Based Surfactants: Physicochemical Characterization and Effect on the Biological Properties. Int. J. Mol. Sci. 2023, 24, 2568. [Google Scholar] [CrossRef]
- de Sousa, F.F.O.; Pinazo, A.; Hafidi, Z.; García, M.T.; Bautista, E.; Moran, M. del C.; Pérez, L. Arginine Gemini-Based Surfactants for Antimicrobial and Antibiofilm Applications: Molecular Interactions, Skin-Related Anti-Enzymatic Activity and Cytotoxicity. Molecules 2023, 28, 6570. [Google Scholar] [CrossRef]
- Sgariglia, M.A.; Soberón, J.R.; Poveda Cabanes, A.; Sampietro, D.A.; Vattuone, M.A. Anti-Inflammatory Properties of Phenolic Lactones Isolated from Caesalpinia Paraguariensis Stem Bark. J. Ethnopharmacol. 2013, 147, 63–73. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Nanoscale Characterization of Zein Self-Assembly. Langmuir 2012, 28, 2429–2435. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Formation of Zein Microphases in Ethanol-Water. Langmuir 2010, 26, 12897–12901. [Google Scholar] [CrossRef]
- Sousa, F.F.O.; Luzardo-Álvarez, A.; Blanco-Méndez, J.; Otero-Espinar, F.J.; Martín-Pastor, M.; Sández Macho, I. Use of 1H NMR STD, WaterLOGSY, and Langmuir Monolayer Techniques for Characterization of Drug-Zein Protein Complexes. Eur. J. Pharm. Biopharm. 2013, 85, 790–798. [Google Scholar] [CrossRef]
- Serrano, G.N.; Zhanel, G.G.; Schweizer, F. Antibacterial Activity of Ultrashort Cationic Lipo-β-Peptides. Antimicrob. Agents Chemother. 2009, 53, 2215–2217. [Google Scholar] [CrossRef]
- Lewis, K. Riddle of Biofilm Resistance. Antimicrob. Agents Chemother. 2001, 45, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Su, L.; Van der Mei, H.C.; Jutte, P.C.; Ren, Y.; Busscher, H.J. Nanotechnology-Based Antimicrobials and Delivery Systems for Biofilm-Infection Control. Chem. Soc. Rev. 2019, 48, 428–446. [Google Scholar] [CrossRef] [PubMed]
- Malaekeh-Nikouei, B.; Fazly Bazzaz, B.S.; Mirhadi, E.; Tajani, A.S.; Khameneh, B. The Role of Nanotechnology in Combating Biofilm-Based Antibiotic Resistance. J. Drug Deliv. Sci. Technol. 2020, 60, 101880. [Google Scholar] [CrossRef]
- Wang, L.S.; Gupta, A.; Duncan, B.; Ramanathan, R.; Yazdani, M.; Rotello, V.M. Biocidal and Antifouling Chlorinated Protein Films. ACS Biomater. Sci. Eng. 2016, 2, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.A.A.; Neto, A.F.S.; Noronha, M.C.S.; Santos, J.V.O.; Cavalcante, M.K.A.; Castro, M.C.A.B.; Pereira, V.R.A.; Cavalcanti, I.M.F.; Santos-Magalhães, N.S. Zein Nanoparticles Containing Ceftazidime and Tobramycin: Antibacterial Activity against Gram-Negative Bacteria. Future Microbiol. 2024, 19, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Badr-Eldin, S.M.; Mubarak Aldawsari, H.; Ahmed, O.A.A.; Kotta, S.; Abualsunun, W.; Eshmawi, B.A.; Khafagy, E.S.; Elbaramawi, S.S.; Abbas, H.A.; Hegazy, W.A.H.; et al. Utilization of Zein Nano-Based System for Promoting Antibiofilm and Anti-Virulence Activities of Curcumin against Pseudomonas Aeruginosa. Nanotechnol. Rev. 2024, 13, 20230212. [Google Scholar] [CrossRef]
- Campos, L.A. de A.; Neto, A.F.S.; Scavuzzi, A.M.L.; Lopes, A.C.D.S.; Santos-Magalhães, N.S.; Cavalcanti, I.M.F. Ceftazidime/Tobramycin Co-Loaded Chitosan-Coated Zein Nanoparticles against Antibiotic-Resistant and Biofilm-Producing Pseudomonas Aeruginosa and Klebsiella Pneumoniae. Pharmaceuticals 2024, 17, 320. [Google Scholar] [CrossRef]
- Wang, L.J.; Hu, Y.Q.; Yin, S.W.; Yang, X.Q.; Lai, F.R.; Wang, S.Q. Fabrication and Characterization of Antioxidant Pickering Emulsions Stabilized by Zein/Chitosan Complex Particles (ZCPs). J. Agric. Food Chem. 2015, 63, 2514–2524. [Google Scholar] [CrossRef]
- Pauluk, D.; Padilha, A.K.; Khalil, N.M.; Mainardes, R.M. Chitosan-Coated Zein Nanoparticles for Oral Delivery of Resveratrol: Formation, Characterization, Stability, Mucoadhesive Properties and Antioxidant Activity. Food Hydrocoll. 2019, 94, 411–417. [Google Scholar] [CrossRef]
- Zhang, F.; Khan, M.A.; Cheng, H.; Liang, L. Co-Encapsulation of α-Tocopherol and Resveratrol within Zein Nanoparticles: Impact on Antioxidant Activity and Stability. J. Food Eng. 2019, 247, 9–18. [Google Scholar] [CrossRef]
- Barbosa dos Santos, J.A.; Assis, C.F.; Soares Aragao, C.F.; dos Santos Lima, M.; Passos, T.S.; da Silva-Maia, J.K. Nanoparticles Based on Biopolymers Improved Antioxidant Activity of Phenolic Compounds from Jambolan (Syzygium cumini (L.) Skeels). Heliyon 2024, 10, e36973. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Widya Janeva, B.; Nadya, S.; Amalia, A.; Arumwardana, S.; Kusuma, H.S.W.; Arinta, Y. Antioxidant and Antiaging Activities of Jasminum Sambac Extract, and Its Compounds. J. Rep. Pharm. Sci. 2018, 7, 270. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/ Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar] [PubMed]
- García, M.T.; Bautista, E.; de la Fuente, A.; Pérez, L. Cholinium-Based Ionic Liquids as Promising Antimicrobial Agents in Pharmaceutical Applications: Surface Activity, Antibacterial Activity and Ecotoxicological Profile. Pharmaceutics 2023, 15, 1806. [Google Scholar] [CrossRef]
- Kalčíková, G.; Zagorc-Končan, J.; Gotvajn, A.Ž. Artemia Salina Acute Immobilization Test: A Possible Tool for Aquatic Ecotoxicity Assessment. Water Sci. Technol. 2012, 66, 903–908. [Google Scholar] [CrossRef]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, Elastase, Hyaluronidase, Inhibitory and Antioxidant Activity of Sri Lankan Medicinal Plants for Novel Cosmeceuticals. Ind. Crop. Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Ksiksi, T.; Hamza, A.A. Antioxidant, Lipoxygenase and Histone Deacetylase Inhibitory Activities of Acridocarbus Orientalis from Al Ain and Oman. Molecules 2012, 17, 12521–12532. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Cao, H.Y.; Ding, H.T.; Su, H.N.; Liu, S.C.; Liu, G.; Zhang, X.; Li, C.Y.; Peng, M.; et al. Structure of Vibrio Collagenase VhaC Provides Insight into the Mechanism of Bacterial Collagenolysis. Nat. Commun. 2022, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Mattos, C.; Giammona, D.A.; Petsko, G.A.; Ringe, D. Structural Analysis of the Active Site of Porcine Pancreatic Elastase Based on the X-Ray Crystal Structures of Complexes with Trifluoroacety 1-Dipeptide-Anilide Inhibitors. Biochemistry 1995, 34, 3193–3203. [Google Scholar] [CrossRef] [PubMed]
- Kobe, M.J.; Neau, D.B.; Mitchell, C.E.; Bartlett, S.G.; Newcomer, M.E. The Structure of Human 15-Lipoxygenase-2 with a Substrate Mimic. J. Biol. Chem. 2014, 289, 8562–8569. [Google Scholar] [CrossRef] [PubMed]
- Goldfeder, M.; Kanteev, M.; Isaschar-Ovdat, S.; Adir, N.; Fishman, A. Determination of Tyrosinase Substrate-Binding Modes Reveals Mechanistic Differences between Type-3 Copper Proteins. Nat. Commun. 2014, 5, 4505. [Google Scholar] [CrossRef]
- Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. Protoss: A Holistic Approach to Predict Tautomers and Protonation States in Protein-Ligand Complexes. J. Cheminform. 2014, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A Semiempirical Free Energy Force Field with Charge-Based Desolvation. J. Comput. Chem. 2007, 28, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, J.; Jo, H.; Song, H.; Cheon, S.; Seo, D.; Lee, M.; Lee, J. Ecotoxicity Assessment for Monitoring Hazardous Substances on Vibrio Fischeri. J. Korean Soc. Mar. Environ. Energy 2022, 25, 217–227. [Google Scholar] [CrossRef]
Formulation | Size (nm) ± SD | pdI | Zeta Potential (mV) |
---|---|---|---|
BZNp | 194.3 ± 4.8 | 0.101 | +16.5 |
NpLAM | 287.0 ± 4.2 | 0.048 | +29.7 |
NpPNHC12 | 272.8 ± 13.1 | 0.052 | +24.9 |
NpPANHC12 | 286.3 ± 5.9 | 0.046 | +44.3 |
NpC12PAM | 312.5 ±6.3 | 0.106 | +34.7 |
Surfactant | EC50 (95% CI) (mg/L) | |
---|---|---|
Solution | Nanoparticles | |
LAM | 1.7 (1.3–2.2) | 5.4 (2.4–12) |
PNHC12 | 0.9 (0.7–1.1) | 2.3 (0.3–16) |
PANHC12 | 1.7 (1.0–2.9) | 2.1 (0.5–8.0) |
C12PAM | 2.3 (0.4–14) | >9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, F.F.O.d.; Hafidi, Z.; García, M.T.; Moran, M.d.C.; Vazquez, S.; Pérez, L. Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity. Antibiotics 2024, 13, 1149. https://doi.org/10.3390/antibiotics13121149
Sousa FFOd, Hafidi Z, García MT, Moran MdC, Vazquez S, Pérez L. Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity. Antibiotics. 2024; 13(12):1149. https://doi.org/10.3390/antibiotics13121149
Chicago/Turabian StyleSousa, Francisco Fábio Oliveira de, Zakaria Hafidi, María Teresa García, Maria del Carmen Moran, Sergio Vazquez, and Lourdes Pérez. 2024. "Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity" Antibiotics 13, no. 12: 1149. https://doi.org/10.3390/antibiotics13121149
APA StyleSousa, F. F. O. d., Hafidi, Z., García, M. T., Moran, M. d. C., Vazquez, S., & Pérez, L. (2024). Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity. Antibiotics, 13(12), 1149. https://doi.org/10.3390/antibiotics13121149