Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland
<p>The maximum likelihood phylogenetic tree based on the core-alignment of single nucleotide polymorphisms (SNPs) of the 23 methicillin-resistant <span class="html-italic">Staphylococcus pseudintermedius</span> and 8 methicillin-sensitive <span class="html-italic">S. pseudintermedius</span> isolates cultured from clinical canine skin and ear samples. Included in the tree are 109 clinically relevant <span class="html-italic">S. pseudintermedius</span> genomes from the literature. The genome sequence of <span class="html-italic">S. pseudintermedius</span> LMG 22219 (GCA_001792775.2) was used as the reference for the SNP analysis. The isolates in this study are identified by ‘canine_#’, coloured in red. The presence of a <span class="html-italic">mecA</span> gene, SCC<span class="html-italic">mec</span> type, sample site, country and year the isolate was cultured, number of viruses and plasmids and multilocus sequence types (MLSTs) is annotated in the outer rings.</p> "> Figure 2
<p>The maximum likelihood phylogenetic tree based on the core-alignment of single nucleotide polymorphisms (SNPs) of the five methicillin-resistant <span class="html-italic">Staphylococcus coagulans</span> and one methicillin-sensitive <span class="html-italic">S. coagulans</span> isolates cultured from clinical canine skin and ear samples. Included in the tree are 124 clinically relevant <span class="html-italic">S. coagulans</span> genomes from the literature. The genome sequence of <span class="html-italic">S. coagulans</span> DSM 6628 (GCA_002901995.1) was used as the reference for the SNP analysis. The isolates in this study were identified by ‘canine_#’, coloured in red. The presence of a <span class="html-italic">mecA</span> gene, SCC<span class="html-italic">mec</span> type, sample site, country and year the isolate was cultured and the number of viruses and plasmids is annotated in the outer rings.</p> "> Figure 3
<p>GrapeTree minimum spanning tree showing core genome multilocus sequence types (cgMLST) of the methicillin-resistant and -sensitive <span class="html-italic">Staphylococcus pseudintermedius</span> sequenced isolates in this study (n = 31). The name for each isolate from this study is shown next to the corresponding node or circle (canine_#). The blue numbers refer to the allelic differences between two isolates. Each node represents a unique cgMLST. Canine_49 is a MSSP ST749. Isolates with closely related genotypes (≤25 allelic differences) are shaded in grey. The lines are scaled logarithmically.</p> "> Figure 4
<p>GrapeTree minimum spanning tree showing core genome multilocus sequence type (cgMLST) of the methicillin-resistant and -sensitive <span class="html-italic">Staphylococcus pseudintermedius</span> sequenced isolates in this study (n = 31), and the <span class="html-italic">S. pseudintermedius</span> reference genomes (n = 109). The name for each isolate from this study is shown next to the corresponding node or circle (canine_#). The reference genome nodes are only labelled if the isolates were closely related, denoted as RG_# (n = 31 reference genomes with ≤25 allelic differences). The list of corresponding reference genomes is in the table under the tree. The blue numbers refer to the allelic differences between genomes. Each node represents a unique cgMLST. Canine_49 is a MSSP ST749. Isolates and reference genomes with closely related genotypes (≤25 allelic differences) are shaded in grey. The lines are scaled logarithmically.</p> "> Figure 5
<p>Heatmap displaying the distribution of the <span class="html-italic">Staphylococcus</span> spp. multilocus sequence types (MLSTs), staphylococcal cassette chromosome <span class="html-italic">mec</span> (SCC<span class="html-italic">mec</span>) types, canine demographic factors, sample site, phenotypic antimicrobial resistance (AMR) profiles and AMR and virulence genes of the <span class="html-italic">Staphylococcus</span> spp. isolates (ordered from top to bottom by species and MLST: two methicillin-resistant coagulase-negative staphylococci (MR-CoNS), five methicillin-resistant <span class="html-italic">S. coagulans</span> (MRSC), one methicillin-sensitive <span class="html-italic">S. coagulans</span> (MSSC), 23 methicillin-resistant <span class="html-italic">S. pseudintermedius</span> (MRSP), and eight methicillin-sensitive <span class="html-italic">S. pseudintermedius</span> (MSSP) isolates). Mutations in the fluoroquinolone and mupirocin genes were also identified as an amino acid substitution. The presence and absence of the genes (or mutations) or elements is represented by the coloured and grey blocks, respectively. The horizontal colour bar on the bottom from left to right represents the canine demographic data, antimicrobials/antimicrobial classes for the phenotypic AMR profiles, AMR genes and specific virulence factors. SE-QLD = southeast Queensland; QLD = Queensland; NA = not applicable.</p> "> Figure 6
<p>Heatmap displaying the distribution of the <span class="html-italic">Staphylococcus</span> spp. multilocus sequence types (MLSTs), presence of the <span class="html-italic">mecA</span> gene, staphylococcal cassette chromosome <span class="html-italic">mec</span> (SCC<span class="html-italic">mec</span>) types, canine demographic factors, sample site, efflux pumps, quaternary ammonium compound, heavy metal genes and insertion sequence elements with the cluster identification of the <span class="html-italic">Staphylococcus</span> spp. isolates (ordered from top to bottom by species and MLST: two methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolates, five methicillin-resistant <span class="html-italic">S. coagulans</span> (MRSC), one methicillin-sensitive <span class="html-italic">S. coagulans</span> (MSSC), 23 methicillin-resistant <span class="html-italic">S. pseudintermedius</span> (MRSP), eight methicillin-sensitive <span class="html-italic">S. pseudintermedius</span> (MSSP) isolates). The presence and absence of the genes or elements is represented by the coloured and grey blocks, respectively. The horizontal colour bar on the bottom from left to right represents the canine demographic data and specific heavy metals including arsenic, cadmium and copper. SE-QLD = southeast Queensland; QLD = Queensland; NA = not applicable.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Overall Study Population
2.2. Antimicrobial Susceptibility Testing Results
2.3. Molecular Characteristics of Methicillin-Resistant and -Sensitive Staphylococci Study Population
2.4. Phylogenetic Analysis of Methicillin-Resistant and -Sensitive Staphylococcus pseudintermedius and Staphylococcus coagulans
2.5. cgMLST Comparisons of Methicillin-Resistant and -Sensitive Staphylococcus pseudintermedius
2.6. Distribution and Comparison of the Staphylococcus spp. Phenotypic and Genotypic Characteristics
2.6.1. Phenotypic and Genotypic Antimicrobial Resistance
2.6.2. Virulence Genes
2.6.3. Efflux Pumps
2.6.4. Quaternary Ammonium Compound Genes
2.6.5. Heavy Metal Genes
2.6.6. Insertion Sequence Elements
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Laboratory Sample Processing
4.3. Bacterial Identification
4.4. Antimicrobial Susceptibility Testing
4.5. Molecular Characterisation
4.5.1. DNA Extraction and Whole-Genome Sequencing
4.5.2. Genome Assembly, Protein Prediction and Annotation
4.5.3. Phylogenetic Analysis
4.5.4. Virus and Plasmid Prediction
4.5.5. Core Genome Multilocus Sequence Typing (cgMLST)
4.5.6. Distribution and Comparison of the Canine Demographic and Phenotypic and Genotypic Characteristics of Staphylococcus Species
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Yang, S.-J. Comparative assessment of genotypic and phenotypic correlates of Staphylococcus pseudintermedius strains isolated from dogs with otitis externa and healthy dogs. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101376. [Google Scholar] [CrossRef] [PubMed]
- Tesin, N.; Stojanovic, D.; Stancic, I.; Kladar, N.; Ružić, Z.; Spasojevic, J.; Tomanic, D.; Kovacevic, Z. Prevalence of the microbiological causes of canine otitis externa and the antibiotic susceptibility of the isolated bacterial strains. Pol. J. Vet. Sci. 2023, 26, 449–459. [Google Scholar] [CrossRef]
- Yoo, J.H.; Yoon, J.W.; Lee, S.Y.; Park, H.M. High prevalence of fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates from canine pyoderma and otitis externa in veterinary teaching hospital. J. Microbiol. Biotechnol. 2010, 20, 798–802. [Google Scholar] [PubMed]
- Bugden, D. Identification and antibiotic susceptibility of bacterial isolates from dogs with otitis externa in Australia. Aust. Vet. J. 2012, 91, 43–46. [Google Scholar] [CrossRef]
- Zur, G.; Gurevich, B.; Elad, D. Prior antimicrobial use as a risk factor for resistance in selected Staphylococcus pseudintermedius isolates from the skin and ears of dogs. Vet. Dermatol. 2016, 27, 468-e125. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.S.; Oliveira, V.; Serrano, M.; Pomba, C.; Couto, I. Phenotypic and molecular traits of Staphylococcus coagulans associated with canine skin infections in Portugal. Antibiotics 2021, 10, 518. [Google Scholar] [CrossRef]
- Eckholm, N.G.; Outerbridge, C.A.; White, S.D.; Sykes, J.E. Prevalence of and risk factors for isolation of meticillin-resistant Staphylococcus spp. from dogs with pyoderma in northern California, USA. Vet. Dermatol. 2013, 24, 154-e34. [Google Scholar] [CrossRef] [PubMed]
- Leonard, C.; Thiry, D.; Taminiau, B.; Daube, G.; Fontaine, J. External ear canal evaluation in dogs with chronic suppurative otitis externa: Comparison of direct cytology, bacterial culture and 16S amplicon profiling. Vet. Sci. 2022, 9, 366. [Google Scholar] [CrossRef]
- Hillier, A.; Lloyd, D.H.; Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Papich, M.G.; Rankin, S.; Turnidge, J.D.; et al. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet. Dermatol. 2014, 25, 163-e43. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, C.; Ziebuhr, W.; Becker, K. Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 2019, 25, 1071–1080. [Google Scholar] [CrossRef]
- Otto, M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. BioEssays 2013, 35, 4–11. [Google Scholar] [CrossRef]
- Ferrer, L.; García-Fonticoba, R.; Pérez, D.; Viñes, J.; Fàbregas, N.; Madroñero, S.; Meroni, G.; Martino, P.A.; Martínez, S.; Maté, M.L.; et al. Whole genome sequencing and de novo assembly of Staphylococcus pseudintermedius: A pangenome approach to unravelling pathogenesis of canine pyoderma. Vet. Dermatol. 2021, 32, 654–663. [Google Scholar] [CrossRef]
- Loeffler, A.; Lloyd, D.H. What has changed in canine pyoderma? A narrative review. Vet. J. 2018, 235, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Bond, R.; Loeffler, A. What’s happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. J. Small. Anim. Pract. 2012, 53, 147–154. [Google Scholar] [CrossRef]
- Lord, J.; Millis, N.; Jones, R.D.; Johnson, B.; Kania, S.A.; Odoi, A. An epidemiological study of the predictors of multidrug resistance and methicillin resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory in Tennessee, USA. PeerJ 2023, 11, e15012. [Google Scholar] [CrossRef]
- Australasian Infectious Disease Advisory Panel. Antibiotic Prescribing Detailed Guidelines; Australasian Infectious Disease Advisory Panel: Sydney, NSW, Australia, 2022. [Google Scholar]
- Pires dos Santos, T.; Damborg, P.; Moodley, A.; Guardabassi, L. Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: Inference of population structure from multilocus sequence typing data. Front. Microbiol. 2016, 7, 1599. [Google Scholar] [CrossRef] [PubMed]
- Bergot, M.; Martins-Simoes, P.; Kilian, H.; Châtre, P.; Worthing, K.A.; Norris, J.M.; Madec, J.-Y.; Laurent, F.; Haenni, M. Evolution of the population structure of Staphylococcus pseudintermedius in France. Front. Microbiol. 2018, 9, 3055. [Google Scholar] [CrossRef]
- Worthing, K.A.; Abraham, S.; Coombs, G.W.; Pang, S.; Saputra, S.; Jordan, D.; Trott, D.J.; Norris, J.M. Clonal diversity and geographic distribution of methicillin-resistant Staphylococcus pseudintermedius from Australian animals: Discovery of novel sequence types. Vet. Microbiol. 2018, 213, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Fàbregas, N.; Pérez, D.; Viñes, J.; Cuscó, A.; Migura-García, L.; Ferrer, L.; Francino, O. Diverse populations of Staphylococcus pseudintermedius colonize the skin of healthy dogs. Microbiol. Spectr. 2023, 11, e03393-22. [Google Scholar] [CrossRef]
- Rynhoud, H.; Forde, B.M.; Beatson, S.A.; Abraham, S.; Meler, E.; Soares Magalhães, R.J.; Gibson, J.S. Molecular epidemiology of clinical and colonizing methicillin-resistant Staphylococcus isolates in companion animals. Front. Vet. Sci. 2021, 8, 620491. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Grönlund Andersson, U.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Phophi, L.; Abouelkhair, M.A.; Jones, R.; Zehr, J.; Kania, S.A. Temporal changes in antibiotic resistance and population structure of methicillin-resistant Staphylococcus pseudintermedius between 2010 and 2021 in the United States. Comp. Immunol. Microbiol. Infect. Dis. 2023, 100, 102028. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ripa, L.; Simón, C.; Ceballos, S.; Ortega, C.; Zarazaga, M.; Torres, C.; Gómez-Sanz, E. S. pseudintermedius and S. aureus lineages with transmission ability circulate as causative agents of infections in pets for years. BMC Vet. Res. 2021, 17, 42. [Google Scholar] [CrossRef]
- Roberts, S.; O’Shea, K.; Morris, D.; Robb, A.; Morrison, D.; Rankin, S. A real-time PCR assay to detect the Panton Valentine Leukocidin toxin in staphylococci: Screening Staphylococcus schleiferi subspecies coagulans strains from companion animals. Vet. Microbiol. 2005, 107, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Chanchaithong, P.; Perreten, V.; Schwendener, S.; Tribuddharat, C.; Chongthaleong, A.; Niyomtham, W.; Prapasarakul, N. Strain typing and antimicrobial susceptibility of methicillin-resistant coagulase-positive staphylococcal species in dogs and people associated with dogs in Thailand. J. Appl. Microbiol. 2014, 117, 572–586. [Google Scholar] [CrossRef] [PubMed]
- McManus, B.A.; Coleman, D.C.; Deasy, E.C.; Brennan, G.I.; O’Connell, B.; Monecke, S.; Ehricht, R.; Leggett, B.; Leonard, N.; Shore, A.C. Comparative genotypes, Staphylococcal Cassette Chromosome mec (SCCmec) genes and antimicrobial resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus isolates from infections in humans and companion animals. PLoS ONE 2015, 10, e0138079. [Google Scholar] [CrossRef]
- Malik, S.; Coombs, G.W.; O’Brien, F.G.; Peng, H.; Barton, M.D. Molecular typing of methicillin-resistant staphylococci isolated from cats and dogs. J. Antimicrob. Chemother. 2006, 58, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Perreten, V. Clinical and molecular features of methicillin-resistant, coagulase-negative staphylococci of pets and horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef]
- Walther, B.; Hermes, J.; Cuny, C.; Wieler, L.H.; Vincze, S.; Abou Elnaga, Y.; Stamm, I.; Kopp, P.A.; Kohn, B.; Witte, W.; et al. Sharing more than friendship—Nasal colonization with coagulase-positive Staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS ONE 2012, 7, e35197. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sanz, E.; Ceballos, S.; Ruiz-Ripa, L.; Zarazaga, M.; Torres, C. Clonally diverse methicillin and multidrug resistant coagulase negative staphylococci are ubiquitous and pose transfer ability between pets and their owners. Front. Microbiol. 2019, 10, 485. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Papić, B.; Golob, M.; Zdovc, I.; Kušar, D.; Avberšek, J. Genomic insights into the emergence and spread of methicillin-resistant Staphylococcus pseudintermedius in veterinary clinics. Vet. Microbiol. 2021, 258, 109119. [Google Scholar] [CrossRef] [PubMed]
- Damborg, P.; Moodley, A.; Aalbæk, B.; Ventrella, G.; dos Santos, T.P.; Guardabassi, L. High genotypic diversity among methicillin-resistant Staphylococcus pseudintermedius isolated from canine infections in Denmark. BMC Vet. Res. 2016, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Pouget, C.; Chatre, C.; Lavigne, J.P.; Pantel, A.; Reynes, J.; Dunyach-Remy, C. Effect of antibiotic exposure on Staphylococcus epidermidis responsible for catheter-related bacteremia. Int. J. Mol. Sci. 2023, 24, 1547. [Google Scholar] [CrossRef]
- Martínez-Santos, V.I.; Torres-Añorve, D.A.; Echániz-Aviles, G.; Parra-Rojas, I.; Ramírez-Peralta, A.; Castro-Alarcón, N. Characterization of Staphylococcus epidermidis clinical isolates from hospitalized patients with bloodstream infection obtained in two time periods. PeerJ 2022, 10, e14030. [Google Scholar] [CrossRef] [PubMed]
- Kozitskaya, S.; Cho, S.H.; Dietrich, K.; Marre, R.; Naber, K.; Ziebuhr, W. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: Association with biofilm formation and resistance to aminoglycosides. Infect. Immun. 2004, 72, 1210–1215. [Google Scholar] [CrossRef]
- The University of Melbourne. Australian Veterinary Prescribing Guidelines: Companion Animal Medical Guidelines—Skin. Available online: https://vetantibiotics.science.unimelb.edu.au/companion-animal-guidelines/medical-guidelines/skin/ (accessed on 15 March 2023).
- The University of Melbourne. Australian Veterinary Prescribing Guidelines: Companion Animal Medical Guidelines—Ears. Available online: https://vetantibiotics.science.unimelb.edu.au/companion-animal-guidelines/medical-guidelines/ear/ (accessed on 15 March 2023).
- Beco, L.; Guaguère, E.; Méndez, C.L.; Noli, C.; Nuttall, T.; Vroom, M. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: Part 2—Antimicrobial choice, treatment regimens and compliance. Vet. Rec. 2013, 172, 156. [Google Scholar] [CrossRef] [PubMed]
- Leelaporn, A.; Paulsen, I.T.; Tennent, J.M.; Littlejohn, T.G.; Skurray, R.A. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J. Med. Microbiol. 1994, 40, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, F.; O’Neill, A.J.; Ivask, A.; Jenssen, H.; Inkinen, J.; Kahru, A.; Ahonen, M.; Schreiber, F. Selection of resistance by antimicrobial coatings in the healthcare setting. J. Hosp. Infect. 2020, 106, 115–125. [Google Scholar] [CrossRef]
- Bjorland, J.; Steinum, T.; Sunde, M.; Waage, S.; Heir, E. Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob. Agents. Chemother. 2003, 47, 3046–3052. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, T.G.; Paulsen, I.T.; Gillespie, M.T.; Tennent, J.M.; Midgley, M.; Jones, I.G.; Purewal, A.S.; Skurray, R.A. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 1992, 95, 259–265. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Brown, M.H.; Littlejohn, T.G.; Mitchell, B.A.; Skurray, R.A. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: Membrane topology and identification of residues involved in substrate specificity. Proc. Natl. Acad. Sci. USA 1996, 93, 3630–3635. [Google Scholar] [CrossRef] [PubMed]
- Narui, K.; Noguchi, N.; Wakasugi, K.; Sasatsu, M. Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus. Biol. Pharm. Bull. 2002, 25, 1533–1536. [Google Scholar] [CrossRef] [PubMed]
- Putman, M.; van Veen, H.W.; Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 672–693. [Google Scholar] [CrossRef]
- Grkovic, S.; Brown, M.H.; Roberts, N.J.; Paulsen, I.T.; Skurray, R.A. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J. Biol. Chem. 1998, 273, 18665–18673. [Google Scholar] [CrossRef]
- Wassenaar, T.; Ussery, D.; Nielsen, L.; Ingmer, H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur. J. Microbiol. Immunol. 2015, 5, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Worthing, K.A.; Marcus, A.; Abraham, S.; Trott, D.J.; Norris, J.M. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius. Vet. Microbiol. 2018, 216, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef]
- Razavi, M.; Kristiansson, E.; Flach, C.F.; Larsson, D.G.J. The association between insertion sequences and antibiotic resistance genes. mSphere 2020, 5, e03393-22. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-M.; Zhou, Y.-F.; Li, L.; Fang, L.-X.; Duan, J.-H.; Liu, F.-R.; Liang, H.-Q.; Wu, Y.-T.; Gu, W.-Q.; Liao, X.-P.; et al. Characterization of the multi-drug resistance gene cfr in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from animals and humans in China. Front. Microbiol. 2018, 9, 2925. [Google Scholar] [CrossRef]
- Varani, A.; He, S.; Siguier, P.; Ross, K.; Chandler, M. The IS6 family, a clinically important group of insertion sequences including IS26. Mobile DNA 2021, 12, 11. [Google Scholar] [CrossRef]
- Casagrande Proietti, P.; Bietta, A.; Coletti, M.; Marenzoni, M.L.; Scorza, A.V.; Passamonti, F. Insertion sequence IS256 in canine pyoderma isolates of Staphylococcus pseudintermedius associated with antibiotic resistance. Vet. Microbiol. 2012, 157, 376–382. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P.; Price, S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet. Rec. 2013, 173, 475. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Gilkerson, J.R.; Billman-Jacobe, H.; Stevenson, M.A.; Thursky, K.; Bailey, K.E.; Browning, G.F. Barriers to and enablers of implementing antimicrobial stewardship programs in veterinary practices. J. Vet. Intern. Med. 2018, 32, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Horsman, S.; Meler, E.; Mikkelsen, D.; Mallyon, J.; Yao, H.; Soares Magalhães, R.J.; Gibson, J.S. Nasal microbiota profiles in shelter dogs with dermatological conditions carrying methicillin-resistant and methicillin-sensitive Staphylococcus species. Sci. Rep. 2023, 13, 4844. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Thirty-Second Edition CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals; Fifth Edition CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Larralde, M. Pyrodigal: Python bindings and interface to Prodigal, an efficient method for gene prediction in prokaryotes. J. Open Source Softw. 2022, 7, 4296. [Google Scholar] [CrossRef]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 2021, 7, 000685. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef]
- Shimizu, T.; Harada, K.; Kataoka, Y. Mutant prevention concentration of orbifloxacin: Comparison between Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus pseudintermedius of canine origin. Acta Vet. Scand. 2013, 55, 37. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.Y.; Lee, W.; Noh, G.M.; Jeong, B.H.; Park, I.; Lee, S.J. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region. Antimicrob. Resist. Infect. Control 2020, 9, 177. [Google Scholar] [CrossRef]
- Jones, M.E.; Boenink, N.M.; Verhoef, J.; Köhrer, K.; Schmitz, F.-J. Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate long-term stability in an antibiotic-free environment. J. Antimicrob. Chemother. 2000, 45, 353–356. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.L.R.; Cavalcante, F.S.; Chamon, R.C.; Ferreira, R.B.R.; dos Santos, K.R.N. Genetic mutations in the quinolone resistance-determining region are related to changes in the epidemiological profile of methicillin-resistant Staphylococcus aureus isolates. J. Glob. Antimicrob. Resist. 2019, 19, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Descloux, S.; Rossano, A.; Perreten, V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J. Clin. Microbiol. 2008, 46, 1818–1823. [Google Scholar] [CrossRef]
- Loiacono, M.; Martino, P.A.; Albonico, F.; Dell’Orco, F.; Ferretti, M.; Zanzani, S.; Mortarino, M. High-resolution melting analysis of gyrA codon 84 and grlA codon 80 mutations conferring resistance to fluoroquinolones in Staphylococcus pseudintermedius isolates from canine clinical samples. J. Vet. Diagn. Investig. 2017, 29, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Antonio, M.; McFerran, N.; Pallen, M.J. Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 438–442. [Google Scholar] [CrossRef]
- Petit III, R.A.; Read, T.D. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ 2018, 6, e5261. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, H. ISEScan: Automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.P.; Roux, S.; Schulz, F.; Babinski, M.; Xu, Y.; Hu, B.; Chain, P.S.G.; Nayfach, S.; Kyrpides, N.C. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 2023, 42, 1303–1312. [Google Scholar] [CrossRef]
- Nayfach, S.; Camargo, A.P.; Schulz, F.; Eloe-Fadrosh, E.; Roux, S.; Kyrpides, N.C. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 2021, 39, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Machado, M.P.; Silva, D.N.; Rossi, M.; Moran-Gilad, J.; Santos, S.; Ramirez, M.; Carrico, J.A. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb. Genom. 2018, 4, e000166. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- National Library of Medicine. Data Processing Pipeline. Available online: https://www.ncbi.nlm.nih.gov/pathogens/docs/data_processing/ (accessed on 16 November 2024).
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Gu, Z. Complex heatmap visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 20 September 2023).
Demographic Factor | Number of Methicillin-Resistant and -Sensitive Staphylococci Isolates | ||||||
---|---|---|---|---|---|---|---|
MRSP (N = 24) | MSSP (N = 8) | MRSC (N = 6) | MSSC (N = 1) | MR-CoNS (N = 3) | Total (N = 42) | ||
Sampled body site | |||||||
Skin | n (%) | 18 (75.0) | 5 (62.5) | 3 (50.0) | 1 (100) | 2 (66.7) | 29 (69.0) |
Ear | n (%) | 6 (25.0) | 3 (37.5) | 3 (50.0) | 0 (0) | 1 (33.3) | 13 (31.0) |
Sampling location | |||||||
Urban SE-QLD | n (%) | 17 (70.8) | 1 (12.5) | 6 (100) | 0 (0) | 3 (100) | 29 (69.1) |
Rural SE-QLD | n (%) | 3 (12.5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (2.4) |
Gatton, QLD | n (%) | 0 (0) | 7 (87.5) | 0 (0) | 1 (100) | 0 (0) | 8 (19.0) |
North QLD | n (%) | 4 (16.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 4 (9.5) |
Sex | |||||||
Male | n (%) | 13 (54.2) | 6 (75.0) | 4 (66.7) | 1 (100) | 0 (0) | 24 (57.1) |
Female | n (%) | 11 (45.8) | 2 (25.0) | 2 (33.3) | 0 (0) | 3 (100) | 18 (42.9) |
Neuter status | |||||||
Entire | n (%) | 8 (33.3) | 0 (0) | 2 (33.3) | 0 (0) | 0 (0) | 10 (23.8) |
Desexed | n (%) | 15 (62.5) | 1 (12.5) | 4 (66.7) | 0 (0) | 3 (100) | 23 (54.8) |
Unknown | n (%) | 1 (4.2) | 7 (87.5) | 0 (0) | 1 (100) | 0 (0) | 9 (21.4) |
Age group | |||||||
0–3 years | n (%) | 7 (29.2) | 2 (25.0) | 0 (0) | 0 (0) | 1 (33.3) | 10 (23.8) |
4–7 years | n (%) | 5 (20.8) | 1 (12.5) | 2 (33.3) | 0 (0) | 0 (0) | 8 (19.0) |
8–11 years | n (%) | 10 (41.7) | 3 (37.5) | 2 (33.3) | 1 (100) | 1 (33.3) | 17 (40.5) |
12–15 years | n (%) | 2 (8.3) | 2 (25.0) | 2 (33.3) | 0 (0) | 1 (33.3) | 7 (16.7) |
Breed size | |||||||
Small | n (%) | 2 (8.3) | 3 (37.5) | 2 (33.3) | 0 (0) | 0 (0) | 7 (16.7) |
Medium | n (%) | 7 (29.2) | 3 (37.5) | 0 (0) | 1 (100) | 0 (0) | 11 (26.2) |
Large | n (%) | 2 (8.3) | 0 (0) | 0 (0) | 0 (0) | 2 (66.7) | 4 (9.5) |
Unknown | n (%) | 13 (54.2) | 2 (25.0) | 4 (66.7) | 0 (0) | 1 (33.3) | 20 (47.6) |
Antimicrobials | Methicillin-Resistant and -Sensitive Staphylococci Isolates Non-Sensitive to the Tested Antimicrobials (N = 42) | ||||
---|---|---|---|---|---|
MRSP (N = 24) |
MSSP (N = 8) |
MRSC (N = 6) |
MSSC (N = 1) |
MR-CoNS (N = 3) | |
n (%) | n (%) | n (%) | n (%) | n (%) | |
Amikacin | 24 (100) | 8 (100) | 6 (100) | 1 (100) | 3 (100) |
Penicillin | 24 (100) a | 4 (50) | 6 (100) a | 0 (0) | 3 (100) a |
Ampicillin | 24 (100) a | 4 (50) | 6 (100) a | 0 (0) | 3 (100) a |
Amoxicillin/clavulanate (2:1) | 24 (100) a | 0 (0) | 6 (100) a | 0 (0) | 3 (100) a |
Cefovecin | 24 (100) a | 0 (0) | 6 (100) a | 0 (0) | 3 (100) a |
Cefpodoxime | 24 (100) a | 0 (0) | 6 (100) a | 0 (0) | 3 (100) a |
Cefazolin | 24 (100) a | 0 (0) | 6 (100) a | 0 (0) | 3 (100) a |
Cephalothin | 24 (100) a | 0 (0) | 6 (100) a | 0 (0) | 3 (100) a |
Chloramphenicol | 18 (75) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Clindamycin | 17 (70.8) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Doxycycline | 22 (91.7) | 5 (62.5) | 6 (100) | 1 (100) | 3 (100) |
Minocycline | 18 (75) | 2 (25) | 1 (16.7) | 0 (0) | 1 (33.3) |
Tetracycline | 24 (100) | 7 (87.5) | 5 (83.3) | 1 (100) | 3 (100) |
Enrofloxacin | 18 (75) | 0 (0) | 5 (83.3) | 0 (0) | 1 (33.3) |
Marbofloxacin | 18 (75) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Pradofloxacin | 18 (75) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Erythromycin | 18 (75) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Gentamicin | 9 (37.5) | 0 (0) | 1 (16.7) | 0 (0) | 1 (33.3) |
Imipenem | NA | NA | NA | NA | NA |
Nitrofurantoin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Oxacillin + 2% NaCl | 24 (100) | 0 (0) | 6 (100) | 0 (0) | 3 (100) |
Rifampin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Trimethoprim-sulfamethoxazole (1:19) | 15 (62.5) | 1 (12.5) | 3 (50) | 0 (0) | 2 (66.7) |
Vancomycin | 0 (0) | 0 (0) | 1 (16.7) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horsman, S.; Zaugg, J.; Meler, E.; Mikkelsen, D.; Soares Magalhães, R.J.; Gibson, J.S. Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland. Antibiotics 2025, 14, 80. https://doi.org/10.3390/antibiotics14010080
Horsman S, Zaugg J, Meler E, Mikkelsen D, Soares Magalhães RJ, Gibson JS. Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland. Antibiotics. 2025; 14(1):80. https://doi.org/10.3390/antibiotics14010080
Chicago/Turabian StyleHorsman, Sara, Julian Zaugg, Erika Meler, Deirdre Mikkelsen, Ricardo J. Soares Magalhães, and Justine S. Gibson. 2025. "Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland" Antibiotics 14, no. 1: 80. https://doi.org/10.3390/antibiotics14010080
APA StyleHorsman, S., Zaugg, J., Meler, E., Mikkelsen, D., Soares Magalhães, R. J., & Gibson, J. S. (2025). Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland. Antibiotics, 14(1), 80. https://doi.org/10.3390/antibiotics14010080