Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors
<p>The proposed breast cancer detection system as a “Smart Bra”.</p> "> Figure 2
<p>(<b>a</b>–<b>d</b>) The design steps of CPW-based monopole antenna and (<b>e</b>) final design of CPW-based monopole antenna.</p> "> Figure 3
<p>Breast and tumor models fabrication: (<b>a</b>) fabrication flow chart and (<b>b</b>) breast model with tumor cells in the middle.</p> "> Figure 4
<p>Measured electrical properties of breast phantom and tumor models versus frequency: (<b>a</b>) real part of dielectric constant (ε′) and (<b>b</b>) imaginary part of dielectric constant (ε″).</p> "> Figure 5
<p>Full measurement setup of (<b>a</b>) flexible Roger substrate and (<b>b</b>) textile-based antenna connected to SMA cable at one side and other side to VNA.</p> "> Figure 6
<p>SAR measurements of the proposed antenna-based sensor: (<b>a</b>) flexible Roger substrate and (<b>b</b>) conductive textile.</p> "> Figure 7
<p>SVM classifier: (<b>a</b>) Projection of data points to compute the distance to a hyperplane [<a href="#B46-biosensors-13-00087" class="html-bibr">46</a>]. (<b>b</b>) Illustration of the maximum margin between support vectors to separate between different classes [<a href="#B46-biosensors-13-00087" class="html-bibr">46</a>].</p> "> Figure 8
<p>Illustrated example of binary decision tree.</p> "> Figure 9
<p>Simulated reflection coefficient in dB versus frequency: (<b>a</b>) different stages of monopole antenna design shown in <a href="#biosensors-13-00087-f001" class="html-fig">Figure 1</a>; (<b>b</b>) proposed monopole using flexible Roger 3003 and conductive textile fabric.</p> "> Figure 10
<p>Simulation of proposed antenna-based sensor versus frequency using flexible Roger 3003 and conductive fabric: (<b>a</b>) real and imaginary part of impedance and (<b>b</b>) gain in dBi.</p> "> Figure 11
<p>Current distribution at different frequencies: (<b>a</b>) 2.5 GHz, (<b>b</b>) 5 GHz, (<b>c</b>) 7.5 GHz, and (<b>d</b>) 10 GHz.</p> "> Figure 12
<p>(<b>a</b>) Photo of fabricated antenna-based sensor using copper conductor tape and (<b>b</b>) measured and simulated reflection coefficient in dB versus frequency.</p> "> Figure 13
<p>(<b>a</b>) Photo of fabricated antenna-based sensor using fabric conductor and (<b>b</b>) measured and simulated reflection coefficient in dB versus frequency.</p> "> Figure 14
<p>The layers model of breast with and without tumor tested using (<b>a</b>) one antenna and (<b>b</b>) two antennas.</p> "> Figure 15
<p>Simulated|S<sub>11</sub>|of proposed monopole flexible Roger antenna with tumor (first scenario as shown in <a href="#biosensors-13-00087-f014" class="html-fig">Figure 14</a>a) at different sizes of tumor: (<b>a</b>) magnitude in dB and (<b>b</b>) phase in degrees.</p> "> Figure 16
<p>Simulated |S<sub>11</sub>| of proposed monopole textile antenna with and without tumor (second scenario shown in <a href="#biosensors-13-00087-f014" class="html-fig">Figure 14</a>b) at different sizes of tumor: (<b>a</b>) magnitude in dB and (<b>b</b>) phase in degrees.</p> "> Figure 17
<p>Simulated |S<sub>21</sub>| of proposed monopole antenna with and without tumor (second scenario shown in in <a href="#biosensors-13-00087-f014" class="html-fig">Figure 14</a>b) at different sizes of tumor: (<b>a</b>) |S<sub>21</sub>| magnitude in dB and (<b>b</b>) |S<sub>21</sub>|phase in degrees.</p> "> Figure 18
<p>Measured |S<sub>11</sub>| of flexible Roger substrate antenna performance with breast phantom and tumor: (<b>a</b>) magnitude and (<b>b</b>) phase.</p> "> Figure 19
<p>Measured |S<sub>11</sub>| of conductive fabric antenna performance with breast phantom and tumor: (<b>a</b>) magnitude and (<b>b</b>) phase.</p> "> Figure 20
<p>Measured S21 of conductive fabric antenna performance with breast phantom and tumor: (<b>a</b>) magnitude and (<b>b</b>) phase.</p> "> Figure 21
<p>Contribution of each feature parameter for the classification accuracy of the “CatBoost” algorithm (<b>a</b>) for first dataset of first scenario and (<b>b</b>) for second dataset of second scenario.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wearable Breast Cancer Monitoring System
2.2. Antenna Sensor Fabrication Technologies and Materials
2.3. Phantom Fabrication Materials
2.4. Experimentals Setups
2.5. Specific Absorption Rate (SAR) Measurements
2.6. Classification and Detection Algorithms
2.6.1. Logistic Regression (LR)
2.6.2. Support Vector Machine (SVM)
2.6.3. Decision Trees (DT)
2.6.4. Random Forest (RF)
2.6.5. Gradient Boosting Methods (GBM)
2.6.6. Extreme Gradient Boosting (XGBoost)
2.6.7. Light Gradient Boosting Machine (Light GBM)
2.6.8. Categorical Boost (“CatBoost”)
3. Results
3.1. Characterization for Textile Antenna-Based Sensor
3.1.1. Simulation Results
3.1.2. Experimental Results
3.2. Characterization for Textile-Based Antenna-Based Sensor with Breast Models
3.2.1. Simulation Results: Reflection and Transmission Measurements
3.2.2. Experimental Results: Reflection and Transmission Measurements
3.2.3. SAR Measurements
3.3. Detection Results
3.3.1. Dataset
3.3.2. Preprocessing
3.3.3. Evaluation
- True negative: the observation is correctly classified as negative.
- False negative: the observation is incorrectly classified as negative.
- True positive: a positive class is correctly classified by the model.
- False positive: a negative observation is incorrectly classified.
3.3.4. Feature Importance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zahran, S.R.; Abdalla, M.A.; Gaafar, A. Time Domain Analysis for Foldable Thin UWB Monopole Antenna. AEU Int. J. Electron. Commun. 2018, 83, 253–262. [Google Scholar] [CrossRef]
- Gao, G.-P.; Yang, C.; Hu, B.; Zhang, R.-F.; Wang, S.-F. A Wide-Bandwidth Wearable All-Textile PIFA with Dual Resonance Modes for 5 GHz WLAN Applications. IEEE Trans. Antennas Propag. 2019, 67, 4206–4211. [Google Scholar] [CrossRef]
- Mahmood, S.N.; Ishak, A.J.; Ismail, A.; Soh, A.C.; Zakaria, Z.; Alani, S. ON-off Body Ultra-Wideband (UWB) Antenna for Wireless Body Area Networks (WBAN): A Review. IEEE Access 2020, 8, 150844–150863. [Google Scholar] [CrossRef]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popović, M.; Rusch, L.A. Flexible 16 Antenna Array for Microwave Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef]
- Lee, H.; Tak, J.; Choi, J. Wearable Antenna Integrated into Military Berets for Indoor/Outdoor Positioning System. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1919–1922. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables. IEEE Trans. Biomed. Eng. 2017, 64, 1422–1430. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Low-Profile Dual-Band Textile Antenna with Artificial Magnetic Conductor Plane. IEEE Trans. Antennas Propag. 2014, 62, 6487–6490. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Cui, Z.; Yue, T.; Zhu, Y.; Werner, D.H. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Global, Regional, National Burden of Breast Cancer in 185 Countries: Evidence from GLOBOCAN 2018. Breast Cancer Res. Treat. 2021, 187, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, L.L. Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2002, 137, 347. [Google Scholar] [CrossRef]
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible Antennas: A Review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef]
- Roudjane, M.; Khalil, M.; Miled, A.; Messaddeq, Y. New Generation Wearable Antenna Based on Multimaterial Fiber for Wireless Communication and Real-Time Breath Detection. Photonics 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Monne, M.A.; Lan, X.; Chen, M.Y. Material Selection and Fabrication Processes for Flexible Conformal Antennas. Int. J. Antennas Propag. 2018, 2018, e9815631. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kaur, J. Skin and Brain Implantable Inset-Fed Antenna at ISM Band for Wireless Biotelemetry Applications. Microwave. J. Antennas Propag. Opt. Technol. Lett. 2020, 63, 510–515. [Google Scholar] [CrossRef]
- Joachimowicz, N.; Duchêne, B.; Conessa, C.; Meyer, O. Easy-to-produce adjustable realistic breast phantoms for microwave imaging. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Joachimowicz, N.; Duchêne, B.; Conessa, C.; Meyer, O. Anthropomorphic Breast and Head Phantoms for Microwave Imaging. Diagnostics 2018, 8, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, S.N.; Ishak, A.J.; Saeidi, T.; Soh, A.C.; Jalal, A.; Imran, M.A.; Abbasi, Q.H. Full Ground Ultra-Wideband Wearable Textile Antenna for Breast Cancer and Wireless Body Area Network Applications. Micromachines 2021, 12, 322. [Google Scholar] [CrossRef]
- Sharma, N.; Bhatia, S.S. Design of Printed UWBAntenna with CPW and Microstrip-Line-Fed for DCS/PCS/Bluetooth/WLAN Wireless Applications. Int. J. RF Microw. Comput. -Aided Eng. 2020, 31, 22488. [Google Scholar] [CrossRef]
- El Atrash, M.; Abdalla, M.A.; Elhennawy, H.M. A Fully-Textile Wideband AMC-Backed Antenna for Wristband WiMAX and Medical Applications. Int. J. Microw. Wirel. Technol. 2020, 13, 624–633. [Google Scholar] [CrossRef]
- Loss, C.; Gonçalves, R.; Lopes, C.; Salvado, R.; Pinho, P. Textile Antenna for RF Energy Harvesting Fully Embedded in Clothing. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Bahrami, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popovic, M.; Rusch, L.A. Flexible Sixteen Monopole Antenna Array for Microwave Breast Cancer Detection. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar] [CrossRef]
- Saha, P.; Mitra, D.; Parui, S.K. A Circularly Polarised Implantable Monopole Antenna For Biomedical Applications. Prog. Electromagn. Res. C 2018, 85, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Chen, Y.; Gong, Z.; Seet, B.-C.; Huang, L.; Lu, Y. Ultrawideband Textile Antenna for Wearable Microwave Medical Imaging Applications. IEEE Trans. Antennas Propag. 2020, 68, 4238–4249. [Google Scholar] [CrossRef]
- Elsheikh, D.; Eldamak, A.R. Microwave Textile Antenna sensors for Breast Cancer Detection. In Proceedings of the 2021 38th National Radio Science Conference (NRSC), Mansoura, Egypt, 27–29 July 2021; Volume 1, pp. 288–294. [Google Scholar] [CrossRef]
- Elsheakh, D.M.N.; Alsherif, S.A.; Eldamak, A.R. Textile Monopole Antenna sensors for Breast Cancer Detection. Res. Sq. 2022, preprint. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, S. Recent Advances in Microwave Imaging for Breast Cancer Detection. Int. J. Biomed. Imaging 2016, 2016, 5054912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahayu, Y.; Waruwu, I. Early detection of breast cancer using ultra wide band slot antenna. SINERGI 2019, 23, 115. [Google Scholar] [CrossRef]
- Porter, E.; Bahrami, H.; Santorelli, A.; Gosselin, B.; Rusch, L.A.; Popovic, M. A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening. IEEE Trans. Med. Imaging 2016, 35, 1501–1509. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, D.; Gopalakrishnan, M. Breast Cancer Detection Using Adaptable Textile Antenna Design. J. Med. Syst. 2019, 43. [Google Scholar] [CrossRef] [PubMed]
- Moloney, B.M.; O’Loughlin, D.; Abd Elwahab, S.; Kerin, M.J. Breast Cancer Detection—A Synopsis of Conventional Modalities and the Potential Role of Microwave Imaging. Diagnostics 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, D.; O’Halloran, M.; Moloney, B.M.; Glavin, M.; Jones, E.; Elahi, M.A. Microwave Breast Imaging: Clinical Advances and Remaining Challenges. IEEE Trans. Biomed. Eng. 2018, 65, 2580–2590. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Yang, F.; Xu, S.; Yin, Y.; Zhou, H. A feasibility study of 2-d microwave thorax imaging based on the supervised descent method. Electronics 2021, 10, 352. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Bialkowski, K.S.; Abbosh, A.M.; Crozier, S. Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection. PLoS ONE 2016, 11, e0152351. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.W.; Kemp, J.; Georget, E.; Abdeddaim, R.; Sabouroux, P. A New Method to Design a Multi-Band Flexible Textile Antenna [AMTA Corner]. IEEE Antennas Propag. Mag. 2014, 56, 240–248. [Google Scholar] [CrossRef]
- Seager, R.; Dias, T.; Zhang, S.; Acti, T.; Vardaxoglou, Y.; Whittow, W.; Chauraya, A. Effect of the Fabrication Parameters on the Performance of Embroidered Antennas. IET Microw. Antennas Propag. 2013, 7, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Tsolis, A.; Whittow, W.; Alexandridis, A.; Vardaxoglou, J. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef] [Green Version]
- Salonen, P.; Rahmat-Samii, Y.; Hurme, H.; Kivikoski, M. Effect of Conductive Material on Wearable Antenna Performance: A Case Study of WLAN Antennas. IEEE Antennas Propag. Soc. Symp. 2004, 1, 455–458. [Google Scholar] [CrossRef]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Romeo, S.; Di Donato, L.; Bucci, O.M.; Catapano, I.; Crocco, L.; Scarfì, M.R.; Massa, R. Dielectric Characterization Study of Liquid-Based Materials for Mimicking Breast Tissues. Microw. Opt. Technol. Lett. 2011, 53, 1276–1280. [Google Scholar] [CrossRef]
- Li, D.; Meaney, P.M.; Tosteson, T.D.; Jiang, S.; Kerner, T.E.; McBride, T.O.; Pogue, B.W.; Hartov, A.; Paulsen, K.D. Comparisons of Three Alternative Breast Modalities in a Common Phantom Imaging Experiment. Med. Phys. 2003, 30, 2194–2205. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.; Fear, E. A New Breast Phantom with a Durable Skin Layer for Microwave Breast Imaging. IEEE Trans. Antennas Propag. 2015, 63, 1693–1700. [Google Scholar] [CrossRef]
- Mashal, A.; Gao, F.; Hagness, S.C. Heterogeneous Anthropomorphic Phantoms with Realistic Dielectric Properties for Microwave Breast Imaging Experiments. Microw. Opt. Technol. Lett. 2011, 53, 1896–1902. [Google Scholar] [CrossRef] [Green Version]
- Rydholm, T.; Fhager, A.; Persson, M.; Geimer, S.; Meaney, P. Effects of the Plastic of the Realistic GeePS-L2S-Breast Phantom. Diagnostics 2018, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- SPEAG. Schmid & Partner Engineering AG. Available online: https://speag.swiss/ (accessed on 1 December 2022).
- Bader Alazzam, M.; Mansour, H.; Hammam, M.M.; Alsheikh, S.; Bakir, A.; Alghamdi, S.; AlGhamdi, A.S. Machine Learning of Medical Applications Involving Complicated Proteins and Genetic Measurements. Comput. Intell. Neurosci. 2021, 2021, 1094054. [Google Scholar] [CrossRef]
- Somvanshi; Madan; Chavan, P. A review of machine learning techniques using decision tree and support vector machine. In Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA), Pune, India, 12–13 August 2016. [Google Scholar]
- Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Ur Rehman, A.; Hamam, H. A Hybrid Deep Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [Google Scholar] [CrossRef]
- Nanmaran, R.; Srimathi, S.; Yamuna, G.; Thanigaivel, S.; Vickram, A.S.; Priya, A.K.; Karthick, A.; Karpagam, J.; Mohanavel, V.; Muhibbullah, M. Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine. Comput. Math. Methods Med. 2022, 2022, 7137524. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, S.; Rabiei, N.; Soltanian, A.R.; Mamani, M. Application of Machine Learning Models Based on Decision Trees in Classifying the Factors Affecting Mortality of COVID-19 Patients in Hamadan, Iran. BMC Med. Inform. Decis. Mak. 2022, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.; Dhilip Kumar, V.; Asghar, J.; Hemalatha, D.; Arulkumaran, G. A Combined Deep CNN: LSTM with a Random Forest Approach for Breast Cancer Diagnosis. Complexity 2022, 2022, 9299621. [Google Scholar] [CrossRef]
- Lenhof, K.; Eckhart, L.; Gerstner, N.; Kehl, T.; Lenhof, H.-P. Simultaneous Regression and Classification for Drug Sensitivity Prediction Using an Advanced Random Forest Method. Sci. Rep. 2022, 12, 13458. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Mahesh, T.R.; Vinoth Kumar, V.; Muthukumaran, V.; Shashikala, H.K.; Swapna, B.; Guluwadi, S. Performance Analysis of XGBoost Ensemble Methods for Survivability with the Classification of Breast Cancer. J. Antenna Sens. 2022, 2022, e4649510. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A highly efcient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Michael, E.; Ma, H.; Li, H.; Qi, S. An Optimized Framework for Breast Cancer Classification Using Machine Learning. BioMed Res. Int. 2022, 2022, 8482022. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6639–6649. [Google Scholar]
- Kumar, G.; Kumar, R. A survey on planar ultra-wideband antennas with band notch characteristics: Principle, design, and applications. AEU-Int. J. Electron. Commun. 2019, 109, 76–98. [Google Scholar] [CrossRef]
- Islam, S.; Azam, S.K.; Hossain, A.Z.; Ibrahimy, M.I.; Motakabber, S. A low-profile flexible planar monopole antenna for biomedical applications. Eng. Sci. Technol. Int. J. 2022, 35, 101112. [Google Scholar] [CrossRef]
- Samsuzzaman, M.; Islam, M.T.; Shovon, A.; Faruque, R.I.; Misran, N. A 16-modified antipodal Vivaldi Antenna Array for microwave-based breast tumor imaging applications. Microw. Opt. Technol. Lett. 2019, 61, 2110–2118. [Google Scholar] [CrossRef]
- 34Prudhvi Nadh, B.; Madhav, B.T.P.; Siva Kumar, M.; Anilkumar, T.; Venkateswara Rao, M.; Kishore, P.V.V. Windmill-Shaped Antenna with Artificial Magnetic Conductor-Backed Structure for Wearable Medical Applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, 2757. [Google Scholar] [CrossRef]
- Guruswamy, S.; Chinniah, R.; Thangavelu, K. Design and implementation of compact ultra-wideband Vivaldi antenna with directors for microwave-based imaging of breast cancer. Analog. Integr. Circuits Signal Process. 2021, 108, 45–57. [Google Scholar] [CrossRef]
- Islam, M.T.; Mahmud, M.Z.; Islam, M.T.; Kibria, S.; Samsuzzaman, M. A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array. Sci. Rep. 2019, 9, 15491. [Google Scholar] [CrossRef] [Green Version]
- Qashlan, A.M.; Aldhaheri, R.W.; Alharbi, K.H. A Modified Compact Flexible Vivaldi Antenna Array Design for Microwave Breast Cancer Detection. Appl. Sci. 2022, 12, 4908. [Google Scholar] [CrossRef]
Antenna Sensor and Substrate | Feed Line | Ground |
---|---|---|
Wsub = 24 | Wp2 = 7.5 | Ls1 = 5 |
Lsub = 45 | Lp2 = 20 | Ls2 = 3 |
Wp1 = 20 | Wf = 2.8 | Lg = 14.25 |
Lp1 = 23.75 |
Flexible Monopole Antenna | Textile Monopole Antenna | Power Level | ||
---|---|---|---|---|
10 g | 1 g | 10 g | 1 g | (dBm) |
0.035 W/kg | 0.172 W/kg | 0.034 W/kg | 0.073 W/kg | 5 |
0.110 W/kg | 0.332 W/kg | 0.110 W/kg | 0.232 W/kg | 10 |
0.223 W/kg | 0.463 W/kg | 0.123 W/kg | 0.263 W/kg | 15 |
0.32 W/kg | 0.657 W/kg | 0.125 W/kg | 0.267 W/kg | 20 |
0.75 W/kg | 1.24 W/kg | 0.25 W/kg | 0.55 W/kg | 25 |
Proposed Monopole Antenna Copper | Proposed Monopole Antenna Textile | Power Level | ||
---|---|---|---|---|
10 g | 1 g | 10 g | 1 g | (dBm) |
0.010 W/kg | 0.039 W/kg | 0.010 W/kg | 0.039 W/kg | 5 |
0.018 W/kg | 0.054 W/kg | 0.016 W/kg | 0.065 W/kg | 10 |
0.115 W/kg | 0.280 W/kg | 0.036 W/kg | 0.088 W/kg | 15 |
0.174 W/kg | 0.542 W/kg | 0.115 W/kg | 0.280 W/kg | 20 |
0.547 W/kg | 1.70 W/kg | 0.3 W/kg | 0.624 W/kg | 25 |
|S11| + Phase | |S11| + |S21| + Phase | |||||||
---|---|---|---|---|---|---|---|---|
Classes | No Tumor | 10 mm | 20 mm | Total | No Tumor | 10 mm | 20 mm | Total |
Logistic Regression | 33% | 50% | 38% | 40% | 67% | 17% | 43% | 31% |
Support Vector Machine | 33% | 50% | 46% | 43% | 33% | 17% | 29% | 26% |
Decision Tree | 42% | 58% | 54% | 51% | 67% | 50% | 100% | 73% |
Random Forest | 58% | 58% | 31% | 48% | 67% | 17% | 43% | 42% |
LightGBM | 50% | 58% | 46% | 51% | 50% | 100% | 57% | 68% |
Kneighbors | 58% | 42% | 54% | 51% | 67% | 33% | 57% | 52% |
XGBboost | 42% | 67% | 54% | 54% | 67% | 83% | 43% | 63% |
AdaBoost | 33% | 50% | 38% | 40% | 67% | 33% | 57% | 52% |
CatBoost | 42% | 67% | 69% | 59% | 83% | 83% | 100% | 89% |
|S11| + Phase | |S11|+ |S21| + Phase | |
---|---|---|
Frequency | 14.0% | 7.0% |
S11 Phase | 14.8% | 9.1% |
S11 Magnitude | 28.2% | 13.9% |
S11 Axial | 42.9% | 19.5% |
S21 Phase | - | 28.3% |
S21 Magnitude | - | 22.2% |
Ref. | Antenna Type | Size mm3 | Flexible | Operating Bandwidth GHz | Efficiency η % | Imaging Method | Gain (dBi) | SAR (W/kg) | Wearable | |
---|---|---|---|---|---|---|---|---|---|---|
[21] | Monopole | 30 × 30 × 0.05 | 0.22 × 0.22 | Yes | 2–4 | NM | NM | NM | 1.6 | Yes |
[61] | Monopole | 13 × 13 × 0.0125 | 0.35 × 0.35 | Yes | 7 to 14 | 65 | NM | 4.4 | NM | Yes |
[62] | Vivaldi | 40 × 40 × 1.6 | 0.4 × 0.4 | No (FR4) | 2.5–11 | 77 | MERIT | 7.2 | NM | No |
[63] | Monopole | 30 × 30 × 0.1 | 1.09 × 1.09 | Yes | 5.71–5.99 | 80.5 | NM | 3.08 | 0.174 | Yes |
[64] | Vivaldi | 49 × 46 × 0.8 | 1.1 × 1 | No (FR4) | 3.1–10.6 | NM | DMAS | 7.5 | NM | No |
[65] | Vivaldi | 51 × 42 × 0.05 | 0.8 × 0.65 | No (Roger 5870) | 2.8–7 | 70 | IC-DAS | 7.5 | NM | No |
[66] | Vivaldi | 25 × 20 × 0.1 | 0.58 × 0.47 | No (Polyamide substrate) | 3.8–4 & 8–10 | NM | MERIT | 2.33 | NM | Not |
Our | Monopole | 24 × 45 × 0.17 | 0.38 × 0.2 | Yes | 1.8–10 | 70 | CatBoost | 3.5 | 0.58 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsheakh, D.N.; Mohamed, R.A.; Fahmy, O.M.; Ezzat, K.; Eldamak, A.R. Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors. Biosensors 2023, 13, 87. https://doi.org/10.3390/bios13010087
Elsheakh DN, Mohamed RA, Fahmy OM, Ezzat K, Eldamak AR. Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors. Biosensors. 2023; 13(1):87. https://doi.org/10.3390/bios13010087
Chicago/Turabian StyleElsheakh, Dalia N., Rawda A. Mohamed, Omar M. Fahmy, Khaled Ezzat, and Angie R. Eldamak. 2023. "Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors" Biosensors 13, no. 1: 87. https://doi.org/10.3390/bios13010087
APA StyleElsheakh, D. N., Mohamed, R. A., Fahmy, O. M., Ezzat, K., & Eldamak, A. R. (2023). Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors. Biosensors, 13(1), 87. https://doi.org/10.3390/bios13010087