Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs
<p>XRD patterns of the as-prepared Sb<sub>2</sub>S<sub>3</sub>/carbon nanotube (CNT) nanocomposites, pure Sb<sub>2</sub>S<sub>3</sub> and CNTs.</p> "> Figure 2
<p>SEM and TEM images of the as-synthesized Sb<sub>2</sub>S<sub>3</sub>/CNT nanocomposites. (<b>a</b>,<b>b</b>) SEM images, (<b>c</b>,<b>d</b>) TEM images and (<b>e</b>) EDX spectrum. Selected-area electron diffraction (SAED) pattern is illustrated in (<b>d</b>).</p> "> Figure 2 Cont.
<p>SEM and TEM images of the as-synthesized Sb<sub>2</sub>S<sub>3</sub>/CNT nanocomposites. (<b>a</b>,<b>b</b>) SEM images, (<b>c</b>,<b>d</b>) TEM images and (<b>e</b>) EDX spectrum. Selected-area electron diffraction (SAED) pattern is illustrated in (<b>d</b>).</p> "> Figure 3
<p>Electrochemical properties of the Sb<sub>2</sub>S<sub>3</sub>/CNT anode for Na-ion batteries (NIBs) in a voltage range of 0.01–1.5 V. (<b>a</b>) Cyclic voltammetry (CV) curves, (<b>b</b>) galvanostatic discharge-charge profiles measured under a current density of 100 mA g<sup>−1</sup>, (<b>c</b>) cycling performance at 100 mA g<sup>−1</sup> and (<b>d</b>) rate capability.</p> "> Figure 4
<p>Electrochemical performance of the Sb<sub>2</sub>S<sub>3</sub>/CNT anode for K-ion batteries (KIBs). (<b>a</b>) CV curves, (<b>b</b>) the galvanostatic discharge-charge curves at various current densities, (<b>c</b>) rate capability and (<b>d</b>) cycling performance at 500 mA g<sup>−1</sup>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Materials Structure and Morphology
3.2. Amorphous Sb2S3/CNT Nanocomposites as an Anode for NIBs
3.3. Amorphous Sb2S3/CNT Nanocomposites as an Anode for KIBs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Deng, J.; Luo, W.-B.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8, 1701428. [Google Scholar] [CrossRef]
- Wu, X.; Leonard, D.P.; Ji, X. Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater. 2017, 29, 5031–5042. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, T.; Shimamura, T.; Kubota, K.; Komaba, S. Polyanionic Compounds for Potassium-Ion Batteries. Chem. Rec. 2019, 19, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Luo, W.-B.; Lu, X.; Yao, Q.; Wang, Z.; Liu, H.-K.; Zhou, H.; Dou, S.-X. High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode. Adv. Energy Mater. 2018, 8, 1701610. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Niu, C.; Meng, J.; Huang, M.; Liu, X.; Liu, Z.; Mai, L. Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Lett. 2017, 17, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Lin, X.; Huang, J.; Tan, H.; Huang, J.; Zhang, B. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 2019, 16, 97–101. [Google Scholar] [CrossRef]
- Lee, H.-W.; Wang, R.Y.; Pasta, M.; Woo Lee, S.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280. [Google Scholar] [CrossRef]
- Pei, Y.; Mu, C.; Li, H.; Li, F.; Chen, J. Low-Cost K4Fe(CN)6 as a High-Voltage Cathode for Potassium-Ion Batteries. ChemSusChem 2018, 11, 1285–1289. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 13046–13052. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, Y.; van Aken, P.A.; Maier, J.; Yu, Y. Facile Synthesis of Highly Porous Ni–Sn Intermetallic Microcages with Excellent Electrochemical Performance for Lithium and Sodium Storage. Nano Lett. 2014, 14, 6387–6392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, X.; Ni, C.; Tian, H.; Li, J.; Zhang, Z.; Mao, S.X.; Wang, J.; Xu, Y. Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries. J. Phys. Chem. C 2017, 121, 12652–12657. [Google Scholar] [CrossRef]
- Yu, D.Y.W.; Prikhodchenko, P.V.; Mason, C.W.; Batabyal, S.K.; Gun, J.; Sladkevich, S.; Medvedev, A.G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshmi, V.; Chen, Y.; Mikhaylov, A.A.; Medvedev, A.G.; Sultana, I.; Rahman, M.M.; Lev, O.; Prikhodchenko, P.V.; Glushenkov, A.M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275. [Google Scholar] [CrossRef]
- Li, W.; Chou, S.-L.; Wang, J.-Z.; Kim, J.H.; Liu, H.-K.; Dou, S.-X. Sn4+xP3@Amorphous Sn-P Composites as Anodes for Sodium-Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Adv. Mater. 2014, 26, 4037–4042. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J. Am. Chem. Soc. 2017, 139, 3316–3319. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.M.; Kim, J.; Kim, Y.; Kim, Y. Na-ion storage performance of amorphous Sb2S3 nanoparticles: Anode for Na-ion batteries and seawater flow batteries. J. Mater. Chem. A 2016, 4, 17946–17951. [Google Scholar] [CrossRef]
- Hou, H.; Jing, M.; Huang, Z.; Yang, Y.; Zhang, Y.; Chen, J.; Wu, Z.; Ji, X. One-Dimensional Rod-Like Sb2S3-Based Anode for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 19362–19369. [Google Scholar] [CrossRef]
- Shi, Y.; Li, F.; Zhang, Y.; He, L.; Ai, Q.; Luo, W. Sb2S3@PPy Coaxial Nanorods: A Versatile and Robust Host Material for Reversible Storage of Alkali Metal Ions. Nanomaterials 2019, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, D.; Zhang, X.; Hou, S.; Li, D.; Lu, T.; Yao, Y.; Pan, L. In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochimica Acta 2017, 228, 436–446. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J. Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci. China Chem. 2017, 60, 1533–1539. [Google Scholar] [CrossRef]
- Liu, Y.; Tai, Z.; Zhang, J.; Pang, W.K.; Zhang, Q.; Feng, H.; Konstantinov, K.; Guo, Z.; Liu, H.K. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat. Commun. 2018, 9, 3645. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yuan, S.; Yin, Y.-B.; Zhu, Y.-H.; Zhang, X.-B.; Yan, J.-M. Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High-Performance Na-Ion Batteries. Part. Part. Syst. Charact. 2016, 33, 493–499. [Google Scholar] [CrossRef]
- Zhao, Y.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 13205–13208. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, G.; Lin, Y.; Wang, Y.; Ou, X.; Zheng, F.; Yang, C.; Wang, J.-H.; Liu, M. Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets. ACS Nano 2016, 10, 10953–10959. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, M.; Fu, L.; Tang, A.; Mann, S. Controlled Assembly of Sb2S3 Nanoparticles on Silica/Polymer Nanotubes: Insights into the Nature of Hybrid Interfaces. Sci. Rep. 2013, 3, 1336. [Google Scholar] [CrossRef]
- Li, C.-Y.; Patra, J.; Yang, C.-H.; Tseng, C.-M.; Majumder, S.B.; Dong, Q.-F.; Chang, J.-K. Electrolyte Optimization for Enhancing Electrochemical Performance of Antimony Sulfide/Graphene Anodes for Sodium-Ion Batteries–Carbonate-Based and Ionic Liquid Electrolytes. ACS Sustain. Chem. Eng. 2017, 5, 8269–8276. [Google Scholar] [CrossRef]
- Ge, P.; Hou, H.; Ji, X.; Huang, Z.; Li, S.; Huang, L. Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater. Chem. Phys. 2018, 203, 185–192. [Google Scholar] [CrossRef]
- Zheng, T.; Li, G.; Zhao, L.; Shen, Y. Flowerlike Sb2S3/PPy Microspheres Used as Anode Material for High-Performance Sodium-Ion Batteries. Eur. J. Inorg. Chem. 2018, 2018, 1224–1228. [Google Scholar] [CrossRef]
- Bag, S.; Roy, A.; Mitra, S. Sulfur, Nitrogen Dual Doped Reduced Graphene Oxide Supported Two-Dimensional Sb2S3 Nanostructures for the Anode Material of Sodium-Ion Battery. ChemistrySelect 2019, 4, 6679–6686. [Google Scholar] [CrossRef]
- Deng, M.; Li, S.; Hong, W.; Jiang, Y.; Xu, W.; Shuai, H.; Li, H.; Wang, W.; Hou, H.; Ji, X. Natural stibnite ore (Sb2S3) embedded in sulfur-doped carbon sheets: Enhanced electrochemical properties as anode for sodium ions storage. RSC Adv. 2019, 9, 15210–15216. [Google Scholar] [CrossRef]
- Xie, J.; Liu, L.; Xia, J.; Zhang, Y.; Li, M.; Ouyang, Y.; Nie, S.; Wang, X. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries. Nano-Micro Lett. 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhao, J.; Zhao, Y.; Xu, T.; Xu, J. Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chem. Phys. Lett. 2019, 716, 171–176. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ha, C.-W.; Choi, H.-Y.; Shin, H.-C.; Lee, S.-M. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Met. Mater. Int. 2017, 23, 1241–1249. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, L.; Gu, Q.; Chao, D.; Jaroniec, M.; Qiao, S.-Z. Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 2019, 60, 591–599. [Google Scholar] [CrossRef]
- Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode. Adv. Energy Mater. 2016, 6, 1501874. [Google Scholar] [CrossRef]
- Sultana, I.; Ramireddy, T.; Rahman, M.M.; Chen, Y.; Glushenkov, A.M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Zhao, Q.; McCulloch, W.D.; Wu, Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321. [Google Scholar] [CrossRef]
- Li, D.; Sun, Q.; Zhang, Y.; Chen, L.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. Surface-Confined SnS2@C@rGO as High-Performance Anode Materials for Sodium- and Potassium-Ion Batteries. ChemSusChem 2019, 12, 2689–2700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Yang, M.; Wu, J.; Chen, F.; Huang, W.; Han, N.; Ye, H.; Zhao, F.; Li, Y.; et al. Hierarchical VERSUS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Adv. Mater. 2017, 29, 1702061. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Cui, C.; Wu, M.; Zhang, M.; Gao, T.; Fan, X.; Chen, J.; Wang, T.; Ma, J.; Wang, C. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346–352. [Google Scholar] [CrossRef]
Anode Materials | Initial Coulomb Efficiency | Current Density (mA g−1) | Charge Capacity (mAh g−1) | Rate Capability (mAhg−1/mAg−1) | Voltage Cange (V) |
---|---|---|---|---|---|
Amorphous Sb2S3 [19] | 65% | 50 | 647 | 534/3000 | 0.01–2.5 |
Sb2S3@PPy [21] | 63.7% | 100 | 860 | 290/2000 | 0.01–3.0 |
MWNTs@Sb2S3@PPy [25] | 75% | 50 | 626 | 376/2000 | 0–2.0 |
Sb2S3-graphite [26] | 84% | 100 | 733 | 631/3000 | 0.01–3.0 |
Sb2S3/graphene [29] | 65% | 50 | 660 | 240/1500 | 0.01–2.0 |
HS Sb2S3/C [30] | 64.8% | 200 | 693 | 220/3200 | 0.01–3.0 |
Sb2S3/PPy [31] | 70% | 100 | 605 | 236/800 | 0.01–2.5 |
SN-rGO/Sb2S3 [32] | 57% | 100 | 592 | 365/2000 | 0.01–2.0 |
Sb2S3/SCS [33] | 68.8% | 100 | 642.8 | 263/1000 | 0.01–2.5 |
Sb2S3 HMS [34] | 62% | 200 | 616 | 314/3000 | 0.01–2.0 |
RGO/Sb2S3 nanorods [35] | 52.6% | 100 | 673 | 381/2000 | 0.01–2.0 |
Sb2S3/C [36] | 78% | 50 | 642 | 520/2000 | 0.005–2.0 |
Multi-shell Sb2S3 [37] | 55% | 100 | 901 | 604/2000 | 0.01–2.0 |
Amorphous Sb2S3/CNT (this work) | 77.8% | 100 | 870 | 441/3000 | 0.01–1.5 |
Anode Materials | Charge Capacity (mA h g−1/mA g−1) | Cycling Performance (mA h g−1/n) | Rate Capability (mA h g−1/mA g−1) | Voltage Range (V) | Ref. |
---|---|---|---|---|---|
Sb2S3@PPy coaxial nanorods | 628/100 | 487/18 | 690/100 280/1000 | 0.01–3.0 | [21] |
Sb2S3-SNG composite | 537/100 | 480/100 | 548/25 340/1000 | 0.1–3.0 | [23] |
Amorphous Sb2S3/CNT | 286.5/500 | 212.4/50 | 451/25 166.6/1000 | 0.01–2.5 | this work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, F.; Pan, J.; Li, L.; Zhang, Y.; Yao, Q.; Zhou, H.; Deng, J. Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials 2019, 9, 1323. https://doi.org/10.3390/nano9091323
Li M, Huang F, Pan J, Li L, Zhang Y, Yao Q, Zhou H, Deng J. Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials. 2019; 9(9):1323. https://doi.org/10.3390/nano9091323
Chicago/Turabian StyleLi, Meng, Fengbin Huang, Jin Pan, Luoyang Li, Yifan Zhang, Qingrong Yao, Huaiying Zhou, and Jianqiu Deng. 2019. "Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs" Nanomaterials 9, no. 9: 1323. https://doi.org/10.3390/nano9091323
APA StyleLi, M., Huang, F., Pan, J., Li, L., Zhang, Y., Yao, Q., Zhou, H., & Deng, J. (2019). Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials, 9(9), 1323. https://doi.org/10.3390/nano9091323