Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation
<p>(<b>a</b>) Schematic of (InAs)<sub>2</sub>/(GaAs)<sub>2</sub> superlattice structure with a period of 15; (<b>b</b>) HAADF-STEM image of the superlattice depicted in (<b>a</b>); (<b>c</b>) bright-field scanning transmission electron microscopy (BF-STEM) image of the superlattice illustrated in (<b>a</b>); (<b>d</b>) dark-field STEM image of the superlattice illustrated in (<b>a</b>).</p> "> Figure 2
<p>(<b>a</b>) Schematic of (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice structure with a period of 15; (<b>b</b>) HAADF-STEM image of the superlattice depicted in (<b>a</b>); (<b>c</b>) BF-STEM image of the superlattice illustrated in (<b>a</b>); (<b>d</b>) Dark-field STEM image of the superlattice illustrated in (<b>a</b>).</p> "> Figure 3
<p>TEM image of the (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice structure after annealing. (<b>a</b>) HAADF-STEM; (<b>b</b>) BF-STEM; (<b>c</b>) dark-field STEM.</p> "> Figure 4
<p>2D AFM image of a (InAs)<sub>2</sub>/(GaAs)<sub>2</sub> superlattice sample with a scanning range of 1 × 1 μm.</p> "> Figure 5
<p>(<b>a</b>) 2D AFM image of a (InAs)<sub>2</sub>/(GaAs)<sub>2</sub> superlattice sample with a scanning range of 10 × 10 μm; (<b>b</b>) cross-sectional profiles at points 1, 2, and 3 marked in (<b>a</b>).</p> "> Figure 6
<p>AFM images of (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice samples: (<b>a</b>) as-grown; and (<b>b</b>) after annealing at 580 °C.</p> "> Figure 7
<p>HRXRD patterns of (InAs)<sub>2</sub>/(GaAs)<sub>2</sub> and (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice samples obtained in the <span class="html-italic">θ</span>/2<span class="html-italic">θ</span> scanning mode.</p> "> Figure 8
<p>HRXRD patterns of (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice samples after annealing obtained in the <span class="html-italic">θ</span>/2<span class="html-italic">θ</span> scanning mode.</p> "> Figure 9
<p>Raman spectra of (InAs)<sub>4</sub>(GaAs)<sub>3</sub> superlattice samples before and after annealing.</p> "> Figure 10
<p>The pump–probe transient reflectivity result for (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice sample at room temperature. The measurement is performed at excitation wavelength of 1450 nm. The scattered blue circles are the experimental data and the red solid line is fitting results by using a single exponential decay function.</p> "> Figure 11
<p>The pump–probe transient reflectivity result at room temperature for (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattice sample after annealing. The measurement is performed at excitation wavelength of 1450 nm. The scattered blue circles are the experimental data and the red solid line is fitting results by using a single exponential decay function.</p> "> Figure 12
<p>Electrical properties of (InAs)<sub>4</sub>/(GaAs)<sub>3</sub> superlattices at different temperatures. (<b>a</b>) I-V characteristics of as-grown sample; (<b>b</b>) I-V characteristics of annealed sample; (<b>c</b>) resistance of as-grown sample; and (<b>d</b>) resistance of annealed sample.</p> "> Figure 13
<p>Simulated transient photocurrent response and potential distribution images of bare gap and tip-to-tip PCAs under laser irradiation at 800 nm, with a laser intensity of 10 mW, pulse width of 60 fs, and a repetition rate of 80 MHz; (<b>a</b>) transient photocurrent of bare gap and tip-to-tip PCAs; (<b>b</b>) potential distribution of tip-to-tip PCA; and (<b>c</b>) potential distribution of bare gap PCA.</p> "> Figure 14
<p>(<b>a</b>) Potential distribution image of a single quantum well structure consisting of a 3-cycle (InAs)<sub>8</sub>/(GaAs)<sub>6</sub> superlattice as a quantum well and a 12 nm wide In<sub>0.52</sub>Al<sub>0.48</sub>As as a barrier; and (<b>b</b>) transient photocurrent in (InAs)<sub>8</sub>/(GaAs)<sub>6</sub> and LT-InGaAs/InAlAs single quantum well structures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Crystalline Structure, Quality, and Morphology of (InAs)m/(GaAs)n Superlattices
3.2. HRXRD of (InAs)m/(GaAs)n Superlattice Structures
3.3. Raman Spectra of (InAs)m/(GaAs)n Superlattice Structures
3.4. Hall Effect and Carrier Lifetime Measurements of (InAs)m/(GaAs)n Superlattices
3.5. Electrical Properties of (InAs)m/(GaAs)n Superlattices at Different Temperatures
3.6. Simulation of Terahertz PCA
3.6.1. Theory
3.6.2. Simulation of Terahertz PCA Based on (InAs)m/(GaAs)n Superlattice Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biasco, S.; Garrasi, K.; Castellano, F.; Li, L.; Beere, H.E.; Ritchie, D.A.; Linfield, E.H.; Davies, A.G.; Vitiello, M.S. Continuous-Wave Highly-Efficient Low-Divergence Terahertz Wire Lasers. Nat. Commun. 2018, 9, 1122. [Google Scholar] [CrossRef]
- Fang, M.; Shen, N.-H.; Sha, W.E.; Huang, Z.; Koschny, T.; Soukoulis, C.M. Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency. Phys. Rev. Lett. 2019, 122, 027401. [Google Scholar] [CrossRef] [PubMed]
- Kazakov, D.; Piccardo, M.; Wang, Y.; Chevalier, P.; Mansuripur, T.S.; Xie, F.; Zah, C.; Lascola, K.; Belyanin, A.; Capasso, F. Self-Starting Harmonic Frequency Comb Generation in a Quantum Cascade Laser. Nat. Photonics 2017, 11, 789–792. [Google Scholar] [CrossRef]
- Sizov, F.; Rogalski, A. THz Detectors. Prog. Quantum Electron. 2010, 34, 278–347. [Google Scholar] [CrossRef]
- Chiang, W.-F.; Silalahi, H.M.; Chiang, Y.-C.; Hsu, M.-C.; Zhang, Y.-S.; Liu, J.-H.; Yu, Y.; Lee, C.-R.; Huang, C.-Y. Continuously Tunable Intensity Modulators with Large Switching Contrasts Using Liquid Crystal Elastomer Films That Are Deposited with Terahertz Metamaterials. Opt. Express 2020, 28, 27676–27687. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Yang, Q.; Zhang, H.; Wen, Q. Enhanced Performance of a Fast GaAs-Based Terahertz Modulator via Surface Passivation. Photonics Res. 2021, 9, 2230–2236. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chiang, W.-F.; Shih, Y.-H.; Wei, W.-Y.; Su, J.-Y.; Huang, C.-Y. Folding Metamaterials with Extremely Strong Electromagnetic Resonance. Photonics Res. 2022, 10, 2215–2222. [Google Scholar] [CrossRef]
- Liu, K.; Chen, X.; Lian, M.; Jia, J.; Su, Y.; Ren, H.; Zhang, S.; Xu, Y.; Chen, J.; Tian, Z.; et al. Nonvolatile Reconfigurable Electromagnetically Induced Transparency with Terahertz Chalcogenide Metasurfaces. Laser Photonics Rev. 2022, 16, 2100393. [Google Scholar] [CrossRef]
- Balistreri, G.; Tomasino, A.; Dong, J.; Yurtsever, A.; Stivala, S.; Azaña, J.; Morandotti, R. Time-Domain Integration of Broadband Terahertz Pulses in a Tapered Two-Wire Waveguide. Laser Photonics Rev. 2021, 15, 2100051. [Google Scholar] [CrossRef]
- Faulks, R.; Rihani, S.; Beere, H.E.; Evans, M.J.; Ritchie, D.A.; Pepper, M. Pulsed Terahertz Time Domain Spectroscopy of Vertically Structured Photoconductive Antennas. Appl. Phys. Lett. 2010, 96, 081106. [Google Scholar] [CrossRef]
- Takazato, A.; Kamakura, M.; Matsui, T.; Kitagawa, J.; Kadoya, Y. Terahertz Wave Emission and Detection Using Photoconductive Antennas Made on Low-Temperature-Grown InGaAs with 1.56 μm Pulse Excitation. Appl. Phys. Lett. 2007, 91, 011102. [Google Scholar] [CrossRef]
- Dietz, R.J.B.; Roehle, H.; Stanze, D.; Montanaro, V.; Hensel, H.J.; Schell, M.; Sartorius, B. Mesa Structured Photoconductive Antennas for 1.5 Μm: All-Fibre THz-TDS Spectroscopy beyond 4 THz. In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 5–10 September 2010; pp. 1–3. [Google Scholar]
- Dietz, R.J.B.; Globisch, B.; Gerhard, M.; Velauthapillai, A.; Stanze, D.; Roehle, H.; Koch, M.; Goebel, T.; Schell, M. 64 Mu W Pulsed Terahertz Emission from Growth Optimized InGaAs/InAlAs Heterostructures with Separated Photoconductive and Trapping Regions. Appl. Phys. Lett. 2013, 103, 061103. [Google Scholar] [CrossRef]
- Bradshaw, J.; Song, X.J.; Shealy, J.R.; Zhu, J.G.; O/stergaard, H. Characterization by Raman Scattering, x-Ray Diffraction, and Transmission Electron Microscopy of (AlAs) m (InAs) m Short Period Superlattices Grown by Migration Enhanced Epitaxy. J. Appl. Phys. 1992, 72, 308–310. [Google Scholar] [CrossRef]
- Houzay, F.; Guille, C.; Moison, J.M.; Henoc, P.; Barthe, F. First Stages of the MBE Growth of InAs on (001)GaAs. J. Cryst. Growth 1987, 81, 67–72. [Google Scholar] [CrossRef]
- Osinniy, V.; Lysgaard, S.; Kolkovsky, V.; Pankratov, V.; Nylandsted Larsen, A. Vertical Charge-Carrier Transport in Si Nanocrystal/SiO2 Multilayer Structures. Nanotechnology 2009, 20, 195201. [Google Scholar] [CrossRef]
- Galiev, G.B.; Grekhov, M.M.; Kitaeva, G.K.; Klimov, E.A.; Klochkov, A.N.; Kolentsova, O.S.; Kornienko, V.V.; Kuznetsov, K.A.; Maltsev, P.P.; Pushkarev, S.S. Terahertz-Radiation Generation in Low-Temperature InGaAs Epitaxial Films on (100) and (411) InP Substrates. Semiconductors 2017, 51, 310–317. [Google Scholar] [CrossRef]
- Colvard, C.; Gant, T.A.; Klein, M.V.; Merlin, R.; Fischer, R.; Morkoc, H.; Gossard, A.C. Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices. Phys. Rev. B 1985, 31, 2080–2091. [Google Scholar] [CrossRef]
- Jusserand, B.; Alexandre, F.; Dubard, J.; Paquet, D. Raman Scattering Study of Acoustical Zone-Center Gaps in GaAs/AlAs Superlattices. Phys. Rev. B 1986, 33, 2897–2899. [Google Scholar] [CrossRef]
- Gérard, J.M.; Marzin, J.Y.; Jusserand, B.; Glas, F.; Primot, J. Structural and Optical Properties of High Quality InAs/GaAs Short-period Superlattices Grown by Migration-enhanced Epitaxy. Appl. Phys. Lett. 1989, 54, 30–32. [Google Scholar] [CrossRef]
- Wang, Y.; Kostakis, I.; Saeedkia, D.; Missous, M. Optimised THz Photoconductive Devices Based on Low-Temperature Grown III-V Compound Semiconductors Incorporating Distributed Bragg Reflectors. IET Optoelectron. 2017, 11, 53–57. [Google Scholar] [CrossRef]
- Lee, Y.-S. Principles of Terahertz Science and Technology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 170, ISBN 0-387-09540-3. [Google Scholar]
- Bashirpour, M.; Khankalantary, S.; Hajizadeh, M. A New Hybrid Metasurface Design for Performance Improvement of Thin Film Unbiased Terahertz Photoconductive Source. Optik 2021, 246, 167817. [Google Scholar] [CrossRef]
- Bashirpour, M.; Poursafar, J.; Kolahdouz, M.; Hajari, M.; Forouzmehr, M.; Neshat, M.; Hajihoseini, H.; Fathipour, M.; Kolahdouz, Z.; Zhang, G. Terahertz Radiation Enhancement in Dipole Photoconductive Antenna on LT-GaAs Using a Gold Plasmonic Nanodisk Array. Opt. Laser Technol. 2019, 120, 105726. [Google Scholar] [CrossRef]
- Emadi, R.; Safian, R.; Nezhad, A.Z. Theoretical Modeling of Terahertz Pulsed Photoconductive Antennas Based on Hot-Carriers Effect. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 8400309. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Operating temperature | 300 K |
Bandgap of LT-GaAs | 1.424 V |
Bandgap of InAs | 0.354 V |
Electron affinity of LT-GaAs | 4.07 V |
Electron affinity of InAs | 4.9 V |
Low-field electron mobility of LT-GaAs | 4 × 102 cm2/(V·s) |
Low-field hole mobility of LT-GaAs | 1 × 102 cm2/(V·s) |
Low-field electron mobility of InAs | 4 × 104 cm2/(V·s) |
Low-field hole mobility of InAs | 5 × 102 cm2/(V·s) |
Carrier lifetime | 1.77 ps |
Effective conduction band density of states of LT-GaAs | 4.7 × 1017 1/cm3 |
Effective valence band density of states of LT-GaAs | 9.0 × 1018 1/cm3 |
Effective conduction band density of states of InAs | 6.6 × 1018 1/cm3 |
Effective valence band density of states of InAs | 8.7 × 1016 1/cm3 |
Profile of incident light | Gaussian |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Li, X.; Du, H.; Yan, J.; Kong, C.; Liu, G.; Lu, G.; Zhang, X.; Song, S.; Zhang, X.; et al. Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation. Nanomaterials 2024, 14, 294. https://doi.org/10.3390/nano14030294
Chen R, Li X, Du H, Yan J, Kong C, Liu G, Lu G, Zhang X, Song S, Zhang X, et al. Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation. Nanomaterials. 2024; 14(3):294. https://doi.org/10.3390/nano14030294
Chicago/Turabian StyleChen, Ruolin, Xuefei Li, Hao Du, Jianfeng Yan, Chongtao Kong, Guipeng Liu, Guangjun Lu, Xin Zhang, Shuxiang Song, Xinhui Zhang, and et al. 2024. "Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation" Nanomaterials 14, no. 3: 294. https://doi.org/10.3390/nano14030294
APA StyleChen, R., Li, X., Du, H., Yan, J., Kong, C., Liu, G., Lu, G., Zhang, X., Song, S., Zhang, X., & Liu, L. (2024). Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation. Nanomaterials, 14(3), 294. https://doi.org/10.3390/nano14030294