Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam
"> Figure 1
<p>SEM images of MWCNTs/Ti (<b>a</b>,<b>d</b>) as well as S-MWCNTs/Ti before (<b>b</b>,<b>e</b>) and after irradiation with He<sup>+</sup> ions (<b>c</b>,<b>f</b>) at different magnifications.</p> "> Figure 2
<p>Raman spectra of MWCNTs/Ti as well as S-MWCNTs/Ti before and after irradiation by He<sup>+</sup> ions.</p> "> Figure 3
<p>Survey PE spectra of MWCNTs/Ti as well as S-MWCNTs/Ti before and after irradiation by He<sup>+</sup> ions.</p> "> Figure 4
<p>C 1<span class="html-italic">s</span> PE spectra of MWCNTs/Ti as well as S-MWCNTs/Ti before and after irradiation by He<sup>+</sup> ions.</p> "> Figure 5
<p>S 2<span class="html-italic">p</span> PE spectra of S-MWCNTs/Ti before and after irradiation by He<sup>+</sup> ions.</p> "> Figure 6
<p>O 1<span class="html-italic">s</span> PE spectra of MWCNTs/Ti as well as S-MWCNTs/Ti before and after irradiation by He<sup>+</sup> ions.</p> "> Figure 7
<p>Cyclic voltammograms for the MWCNTs/Ti. The initial and irradiated S-MWCNTs/Ti systems recorded in a 0.1 M KOH electrolyte at a scan rate of 10 mV/s (the horizontal dotted line indicates the onset current). The atmospheres in which the measurements were performed are given in brackets: argon (Ar) and oxygen (O<sub>2</sub>).</p> "> Figure 8
<p>Cyclic voltammograms of MWCNTs/Ti (<b>a</b>) and S-MWCNTs/Ti (<b>b</b>) at a scan rate of 50 mV/s in buffer solutions with a p<span class="html-italic">H</span> of 4 with different (10<sup>−2</sup> and 10<sup>−3</sup> M) H<sub>2</sub>O<sub>2</sub> concentrations.</p> "> Figure 9
<p>Cyclic voltammograms of helium-irradiated S-MWCNTs/Ti electrodes at different scan rates (10, 50 and 100 mV/s) in buffer solutions with p<span class="html-italic">H</span>s of 4, 7 and 9 without H<sub>2</sub>O<sub>2</sub> (<b>a</b>,<b>c</b>,<b>e</b>) and at a scan rate of 50 mV/s in buffer solutions with different (10<sup>−2</sup> and 10<sup>−3</sup> M) H<sub>2</sub>O<sub>2</sub> concentrations (<b>b</b>,<b>d</b>,<b>f</b>), as well as a comparison of CV curves in buffer solutions with p<span class="html-italic">H</span>s 4, 7 and 9 with a concentration of 10<sup>−2</sup> M H<sub>2</sub>O<sub>2</sub> (<b>g</b>).</p> "> Figure 9 Cont.
<p>Cyclic voltammograms of helium-irradiated S-MWCNTs/Ti electrodes at different scan rates (10, 50 and 100 mV/s) in buffer solutions with p<span class="html-italic">H</span>s of 4, 7 and 9 without H<sub>2</sub>O<sub>2</sub> (<b>a</b>,<b>c</b>,<b>e</b>) and at a scan rate of 50 mV/s in buffer solutions with different (10<sup>−2</sup> and 10<sup>−3</sup> M) H<sub>2</sub>O<sub>2</sub> concentrations (<b>b</b>,<b>d</b>,<b>f</b>), as well as a comparison of CV curves in buffer solutions with p<span class="html-italic">H</span>s 4, 7 and 9 with a concentration of 10<sup>−2</sup> M H<sub>2</sub>O<sub>2</sub> (<b>g</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterixation
3. Results and Discussion
3.1. SEM and EDX
3.2. Raman Scattering Spectroscopy
3.3. XPS
3.4. Electrocatalytic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Njema, G.G.; Ouma, R.B.O.; Kibet, J.K. A Review on the Recent Advances in Battery Development and Energy Storage Technologies. J. Renew. Energy 2024, 2024, 1–35. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, M.; Chen, X. Supercapacitors for Renewable Energy Applications: A Review. Micro Nano Eng. 2023, 21, 100229. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zhang, Z. Oxygen Redox Catalyst for Rechargeable Lithium-Air Battery. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 541–557. [Google Scholar]
- Kong, Z.; Zhang, D.; Du, S.; Huang, G.; Wu, J.; Liu, Z.; Tao, L.; Wang, S. Supported Hydrogen–Oxygen Fuel Cell Catalysts: From Synthesis, Structure-Performance Evolution and Mechanism to Synergy Strategy. Nano Mater. Sci. 2024, in press. [CrossRef]
- Zhang, Y.; Guo, Y.; Liu, T.; Feng, F.; Wang, C.; Hu, H.; Wu, M.; Ni, M.; Shao, Z. The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a ZN-Air Battery. Front. Chem. 2019, 7, 524. [Google Scholar] [CrossRef]
- Bogdanovskaya, V.A.; Radina, M.V.; Korchagin, O.V.; Kapustina, N.A.; Kazanskii, L.P. Carbon Nanotubes Modified with Oxygen- and Nitrogen-Containing Groups as Perspective Catalysts for the Oxygen Electroreduction Reaction. Russ. J. Electrochem. 2020, 56, 809–820. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Compton, R.G. Oxygen Reduction Reaction at Single Entity Multiwalled Carbon Nanotubes. J. Phys. Chem. Lett. 2022, 13, 3748–3753. [Google Scholar] [CrossRef]
- Hu, R.; Wu, C.; Hou, K.; Xia, C.; Yang, J.; Guan, L.; Li, Y. Tailoring the Electrocatalytic Oxygen Reduction Reaction Pathway by Tuning the Electronic States of Single-Walled Carbon Nanotubes. Carbon 2019, 147, 35–42. [Google Scholar] [CrossRef]
- Mohan, R.; Modak, A.; Schechter, A. A Comparative Study of Plasma-Treated Oxygen-Doped Single-Walled and Multiwalled Carbon Nanotubes as Electrocatalyst for Efficient Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2019, 7, 11396–11406. [Google Scholar] [CrossRef]
- Ji, Y.; Du, J.; Chen, A. Review on Heteroatom Doping Carbonaceous Materials toward Electrocatalytic Carbon Dioxide Reduction. Trans. Tianjin Univ. 2022, 28, 292–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Su, D.S. Substitutional Doping of Carbon Nanotubes with Heteroatoms and Their Chemical Applications. ChemSusChem 2014, 7, 1240–1250. [Google Scholar] [CrossRef]
- Khalafallah, D.; Sarkar, R.; Demir, M.; Khalil, K.A.; Hong, Z.; Farghaly, A.A. Heteroatoms-Doped Carbon Nanotubes for Energy Applications. In Springer Ebooks; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–39. [Google Scholar]
- Kim, J.H.; Ko, Y.-I.; Kim, Y.A.; Kim, K.S.; Yang, C.-M. Sulfur-Doped Carbon Nanotubes as a Conducting Agent in Supercapacitor Electrodes. J. Alloys Compd. 2020, 855, 157282. [Google Scholar] [CrossRef]
- Kharisova, K.; Lukyanov, D.; Korusenko, P.; Beletskii, E.; Vereshchagin, A.; Levin, O.; Li, R.; Yang, P.; Alekseeva, E. Synthesis, Properties and Applications of Carbon Nanomaterials Functionalized with Anionic Groups. Nano-Struct. Nano-Objects 2024, 39, 101258. [Google Scholar] [CrossRef]
- Tavakol, H.; Keshavarzipour, F. A Sulfur Doped Carbon Nanotube as a Potential Catalyst for the Oxygen Reduction Reaction. RSC Adv. 2016, 6, 63084–63090. [Google Scholar] [CrossRef]
- Xu, D.; Wu, W.D. The Role of Sulfur-Related Species in Oxygen Reduction Reactions. In IntechOpen Ebooks; IntechOpen: London, UK, 2019. [Google Scholar]
- Macias, E.M.; Valenzuela-Muñiz, A.M.; Alonso-Núñez, G.; Sánchez, M.H.F.; Gauvin, R.; Gómez, Y.V. Sulfur Doped Carbon Nanohorns towards Oxygen Reduction Reaction. Diam. Relat. Mater. 2019, 103, 107671. [Google Scholar] [CrossRef]
- Du, G.H.; Li, W.Z.; Liu, Y.Q.; Ding, Y.; Wang, Z.L. Growth of Carbon Nanotubes by Pyrolysis of Thiophene. J. Phys. Chem. C 2007, 111, 14293–14298. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Lin, S.; Li, K.; Xue, D. Synthesis of Sulfur-Doped Carbon Nanotubes by Liquid Precursor. Mater. Focus 2013, 2, 44–47. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, M.; Cai, Y.; Lu, Y.; Ahmad, Z.; Khannal, S.; Xu, S. Novel Sulfonated Multi-walled Carbon Nanotubes Filled Chitosan Composite Membrane for Fuel-cell Applications. J. Appl. Polym. Sci. 2019, 136, 47603. [Google Scholar] [CrossRef]
- Čech, J.; Curran, S.A.; Zhang, D.; Dewald, J.L.; Avadhanula, A.; Kandadai, M.; Roth, S. Functionalization of Multi-walled Carbon Nanotubes: Direct Proof of Sidewall Thiolation. Phys. Status Solidi. 2006, 243, 3221–3225. [Google Scholar] [CrossRef]
- Wei, Y.; Ling, X.; Zou, L.; Lai, D.; Lu, H.; Xu, Y. A Facile Approach toward Preparation of Sulfonated Multi-Walled Carbon Nanotubes and Their Dispersibility in Various Solvents. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 507–513. [Google Scholar] [CrossRef]
- He, Z.; Jiang, Y.; Li, Y.; Wang, L.; Dai, L. Boosting the Electrocatalytic Performance of Carbon Nanotubes toward V(V)/V(IV) Reaction by Sulfonation Treatment. Int. J. Energy Res. 2018, 42, 1625–1634. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, S.H. Feasibility Study of Various Sulphonation Methods for Transforming Carbon Nanotubes into Catalysts for the Esterification of Palm Fatty Acid Distillate. Energy Convers. Manag. 2014, 88, 1283–1289. [Google Scholar] [CrossRef]
- Krasnikov, D.V.; Shmakov, A.N.; Kuznetsov, V.L.; Ishchenko, A.V. Towards the Optimization of Carbon Nanotube Properties via in Situ and Ex Situ Studies of the Growth Mechanism. J. Struct. Chem. 2016, 57, 1436–1443. [Google Scholar] [CrossRef]
- Korusenko, P.M.; Knyazev, E.V.; Petrova, O.V.; Sokolov, D.V.; Povoroznyuk, S.N.; Ivlev, K.E.; Bakina, K.A.; Gaas, V.A.; Vinogradov, A.S. Improving the Adhesion of Multi-Walled Carbon Nanotubes to Titanium by Irradiating the Interface with He+ Ions: Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Study. Nanomaterials 2024, 14, 699. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, E.V.; Korusenko, P.M.; Petrova, O.V.; Sokolov, D.V.; Povoroznyuk, S.N.; Ivlev, K.E.; Bakina, K.A.; Gaas, V.A.; Vinogradov, A.S. Interfacial adhesion in the ”MWCNT/Ti“ system and its improvement using ion beam treatment: A comparative analysis of the effects of argon and helium ions. Tech. Phys. 2024, 69. in press. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Puech, N.; Kandara, N.; Paredes, N.; Moulin, N.; Weiss-Hortala, N.; Kundu, N.; Ratel-Ramond, N.; Plewa, N.; Pellenq, N.; Monthioux, N. Analyzing the Raman Spectra of Graphenic Carbon Materials from Kerogens to Nanotubes: What Type of Information Can Be Extracted from Defect Bands? C-J. Carbon Res. 2019, 5, 69. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Korusenko, P.M.; Nesov, S.N.; Iurchenkova, A.A.; Fedorovskaya, E.O.; Bolotov, V.V.; Povoroznyuk, S.N.; Smirnov, D.A.; Vinogradov, A.S. Comparative Study of the Structural Features and Electrochemical Properties of Nitrogen-Containing Multi-Walled Carbon Nanotubes after Ion-Beam Irradiation and Hydrochloric Acid Treatment. Nanomaterials 2021, 11, 2163. [Google Scholar] [CrossRef]
- Bobenko, N.G.; Bolotov, V.V.; Egorushkin, V.E.; Korusenko, P.M.; Melnikova, N.V.; Nesov, S.N.; Ponomarev, A.N.; Povoroznyuk, S.N. Experimental and Theoretical Study of Electronic Structure of Disordered MWCNTs. Carbon 2019, 153, 40–51. [Google Scholar] [CrossRef]
- Maldonado, S.; Morin, S.; Stevenson, K.J. Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping. Carbon 2006, 44, 1429–1437. [Google Scholar] [CrossRef]
- Bobenko, N.G.; Shunaev, V.V.; Korusenko, P.M.; Egorushkin, V.E.; Glukhova, O.E. Broken Crystal Symmetry of MWCNTs as the Key Factor in Improvement of Carboxyl Functionalization. Synth. Met. 2024, 307, 117677. [Google Scholar] [CrossRef]
- Sharma, V.; Uy, D.; Gangopadhyay, A.; O’Neill, A.; Paxton, W.A.; Sammut, A.; Ford, M.A.; Aswath, P.B. Structure and Chemistry of Crankcase and Exhaust Soot Extracted from Diesel Engines. Carbon 2016, 103, 327–338. [Google Scholar] [CrossRef]
- Xu, J.; Su, D.; Zhang, W.; Bao, W.; Wang, G. A Nitrogen–Sulfur Co-Doped Porous Graphene Matrix as a Sulfur Immobilizer for High Performance Lithium–Sulfur Batteries. J. Mater. Chem. A 2016, 4, 17381–17393. [Google Scholar] [CrossRef]
- Jung, W.R.; Choi, J.H.; Lee, N.; Shin, K.; Moon, J.-H.; Seo, Y.-S. Reduced Damage to Carbon Nanotubes during Ultrasound-Assisted Dispersion as a Result of Supercritical-Fluid Treatment. Carbon 2011, 50, 633–636. [Google Scholar] [CrossRef]
- Ya, B.; Wang, Y.; Meng, L.; Zhou, B.; Zhang, X. Study on the Performance of Syntactic Foam Reinforced by Hybrid Functionalized Carbon Nanotubes. J. Appl. Polym. Sci. 2019, 137, 48586. [Google Scholar] [CrossRef]
- Arrigo, R.; Teresi, R.; Gambarotti, C.; Parisi, F.; Lazzara, G.; Dintcheva, N.T. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials 2018, 11, 383. [Google Scholar] [CrossRef]
- Shard, A.G. Practical Guides for X-Ray Photoelectron Spectroscopy: Quantitative XPS. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020, 38, 041201. [Google Scholar] [CrossRef]
- Korusenko, P.; Kharisova, K.; Knyazev, E.; Levin, O.; Vinogradov, A.; Alekseeva, E. Surface Engineering of Multi-Walled Carbon Nanotubes via Ion-Beam Doping: Pyridinic and Pyrrolic Nitrogen Defect Formation. Appl. Sci. 2023, 13, 11057. [Google Scholar] [CrossRef]
- Nesov, S.N.; Korusenko, P.M.; Sachkov, V.A.; Bolotov, V.V.; Povoroznyuk, S.N. Effects of Preliminary Ion Beam Treatment of Carbon Nanotubes on Structures of Interfaces in МОx/Multi-Walled Carbon Nanotube (M = Ti,Sn) Composites: Experimental and Theoretical Study. J. Phys. Chem. Solids 2022, 169, 110831. [Google Scholar] [CrossRef]
- Lien, S.-Y.; Lin, P.-C.; Chen, W.-R.; Liu, C.-H.; Lee, K.-W.; Wang, N.-F.; Huang, C.-J. The Mechanism of PEDOT: PSS Films with Organic Additives. Crystals 2022, 12, 1109. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.-P.; Sacher, E. The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment. Carbon 2007, 46, 196–205. [Google Scholar] [CrossRef]
- Bernal-Ortega, P.; Bernal, M.M.; Blume, A.; González-Jiménez, A.; Posadas, P.; Navarro, R.; Valentín, J.L. Sulfur-Modified Carbon Nanotubes for the Development of Advanced Elastomeric Materials. Polymers 2021, 13, 821. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Britcher, L.; Kumar, S.; Griesser, H.J. XPS Study of Sulfur and Phosphorus Compounds with Different Oxidation States. Sains Malays. 2018, 47, 1913–1922. [Google Scholar] [CrossRef]
- Alemán, B.; Vila, M.; Vilatela, J.J. Surface Chemistry Analysis of Carbon Nanotube Fibers by X-Ray Photoelectron Spectroscopy. Phys. Status Solidi. 2018, 215, 1800187. [Google Scholar] [CrossRef]
- Nulu, A.; Nulu, V.; Sohn, K.Y. N-Doped CNTs Wrapped Sulfur-Loaded Hierarchical Porous Carbon Cathode for Li–Sulfur Battery Studies. RSC Adv. 2024, 14, 2564–2576. [Google Scholar] [CrossRef]
- Ruan, J.; Sun, H.; Song, Y.; Pang, Y.; Yang, J.; Sun, D.; Zheng, S. Constructing 1D/2D Interwoven Carbonous Matrix to Enable High-Efficiency Sulfur Immobilization in Li-S Battery. Energy Mater. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Brandiele, R.; Parnigotto, M.; Mazzucato, M.; Dalconi, M.C.; Bertolotti, F.; Rizzi, G.A.; Sasso, G.D.; Durante, C. The Interplay between Surface Area and Sulfur Doping of Carbon Support on Pt NPs Nucleation and Growth: A Synergistic Enhancement of Catalytic Activity for Oxygen Reduction. Appl. Catal. B Environ. Energy 2023, 344, 123620. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano 2011, 6, 205–211. [Google Scholar] [CrossRef]
- Hu, Y.; Su, X. Chemically Functionalized Graphene and Their Applications in Electrochemical Energy Conversion and Storage. In InTech Ebooks; IntechOpen: London, UK, 2013. [Google Scholar]
- Ivanovskaya, M.; Ovodok, E.; Kotsikau, D.; Azarko, I.; Micusik, M.; Omastova, M.; Golovanov, V. Structural Transformation and Nature of Defects in Titanium Carbide Treated in Different Redox Atmospheres. RSC Adv. 2020, 10, 25602–25608. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Kumar, M.; Jain, S.L.; Babalola, J.O.; Vorontsov, A.V.; Kumar, U. Insights into Reinforced Photocatalytic Activity of the CNT–TiO2 Nanocomposite for CO2 Reduction and Water Splitting. J. Phys. Chem. C 2018, 123, 367–378. [Google Scholar] [CrossRef]
- Polcik, M.; Wilde, L.; Haase, J.; Brena, B.; Cocco, D.; Comelli, G.; Paolucci, G. Adsorption and Temperature-Dependent Decomposition of SO2 on Cu(100) and Cu(111): A Fast and High-Resolution Core-Level Spectroscopy Study. Phys. Review. B Condens. Matter 1996, 53, 13720–13724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, L.; Glans, P.-A.; Zhang, Y.; Zhu, J.; Guo, J. Electronic Structure and Chemical Bonding of a Graphene Oxide–Sulfur Nanocomposite for Use in Superior Performance Lithium–Sulfur Cells. Phys. Chem. Chem. Phys. 2012, 14, 13670. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-J.; Arrigo, R.; Liu, X.; Su, D.S. Characterization and Use of Functionalized Carbon Nanotubes for the Adsorption of Heavy Metal Anions. New Carbon Mater. 2011, 26, 57–62. [Google Scholar] [CrossRef]
- Bogdanovskaya, V.; Vernigor, I.; Radina, M.; Sobolev, V.; Andreev, V.; Nikolskaya, N. Modified Carbon Nanotubes: Surface Properties and Activity in Oxygen Reduction Reaction. Catalysts 2021, 11, 1354. [Google Scholar] [CrossRef]
Sample | Concentration, at. % | |||
---|---|---|---|---|
[C] | [O] | [S] | [Ti] | |
EDX | ||||
MWCNTs/Ti | 80.75 | 5.41 | - | 13.84 |
S-MWCNTs/Ti before irradiation | 80.34 | 5.71 | 0.56 | 13.39 |
S-MWCNTs/Ti after irradiation | 80.32 | 6.50 | 0.68 | 12.50 |
XPS | ||||
MWCNTs/Ti | 93.80 | 5.21 | - | 0.99 |
S-MWCNTs/Ti before irradiation | 94.92 | 3.40 | 1.68 | - |
S-MWCNTs/Ti after irradiation | 76.10 | 13.11 | 10.79 | - |
Sample | S8 | S–C | -SO2 | -SO3 | -SO4 |
---|---|---|---|---|---|
Relative Component Intensity, % | |||||
S-MWCNTs/Ti before irradiation | 65.6 | 6.8 | 4.4 | 11.7 | 11.5 |
S-MWCNTs/Ti after irradiation | 50.4 | 38.9 | 3.6 | 3.6 | 3.5 |
Concentration, at.% | |||||
S-MWCNTs/Ti before irradiation | 1.11 | 0.11 | 0.07 | 0.20 | 0.19 |
S-MWCNTs/Ti after irradiation | 5.43 | 4.20 | 0.39 | 0.39 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korusenko, P.M.; Knyazev, E.V.; Vinogradov, A.S.; Kharisova, K.A.; Filippova, S.S.; Rodionova, U.M.; Levin, O.V.; Alekseeva, E.V. Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam. Nanomaterials 2024, 14, 1948. https://doi.org/10.3390/nano14231948
Korusenko PM, Knyazev EV, Vinogradov AS, Kharisova KA, Filippova SS, Rodionova UM, Levin OV, Alekseeva EV. Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam. Nanomaterials. 2024; 14(23):1948. https://doi.org/10.3390/nano14231948
Chicago/Turabian StyleKorusenko, Petr M., Egor V. Knyazev, Alexander S. Vinogradov, Ksenia A. Kharisova, Sofya S. Filippova, Ulyana M. Rodionova, Oleg V. Levin, and Elena V. Alekseeva. 2024. "Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam" Nanomaterials 14, no. 23: 1948. https://doi.org/10.3390/nano14231948
APA StyleKorusenko, P. M., Knyazev, E. V., Vinogradov, A. S., Kharisova, K. A., Filippova, S. S., Rodionova, U. M., Levin, O. V., & Alekseeva, E. V. (2024). Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam. Nanomaterials, 14(23), 1948. https://doi.org/10.3390/nano14231948