Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication
<p>Experimental transparent ITO/ZnO/ITO memristor on glass substrate: (<b>a</b>) schematic structure; (<b>b</b>) appearance and transmission spectrum.</p> "> Figure 2
<p>SEM and AFM images of the surface of ZnO nanocrystalline films obtained at RF magnetron sputtering power: (<b>a</b>,<b>e</b>) 25 W; (<b>b</b>,<b>f</b>) 50 W; (<b>c</b>,<b>g</b>) 75 W; (<b>d</b>,<b>h</b>) 100 W.</p> "> Figure 3
<p>Structure of ZnO films and electrophysical properties of ZnO films: (<b>a</b>) transverse cleavage with a thickness of about 60 nm; (<b>b</b>) dependence of surface roughness on sputtering power; (<b>c</b>) dependence of charge carrier concentration on sputtering power; (<b>d</b>) charge carrier mobility on sputtering power.</p> "> Figure 4
<p>Structural properties of ZnO films obtained at different RF magnetron sputtering powers: (<b>a</b>) 25 W; (<b>b</b>) 50 W; (<b>c</b>) 75 W; (<b>d</b>) 100 W; (<b>e</b>) overview XPS spectrum of the film at 75 W; (<b>f</b>) high-resolution XPS spectrum of the zinc level; (<b>g</b>) high-resolution XPS spectrum of the oxygen level.</p> "> Figure 5
<p>Investigation of resistive switching and modeling of transparent ITO/ZnO/ITO memristor: (<b>a</b>) experimental current-voltage characteristic; (<b>b</b>) dependence of resistance on the number of switching cycles; (<b>c</b>) cumulative probability; (<b>d</b>) general view of the memristor structure model; (<b>e</b>) initial distribution of electric field strength with equipotential lines in the upper electrode region; (<b>f</b>) distribution of electric field strength with equipotential lines in the upper electrode region, taking into account the generation/recombination and migration of vacancies; (<b>g</b>) initial distribution of vacancy concentration in the upper electrode region; (<b>h</b>) distribution of vacancy concentration in the upper electrode region, taking into account their generation/recombination and migration; (<b>i</b>) theoretical current-voltage characteristics of the memristor structure based on ZnO film obtained at different powers of RF magnetron sputtering.</p> "> Figure 6
<p>Study of resistive switching of crossbar array of 16 transparent memristor structures: (<b>a</b>) optical image of one memristor structure; (<b>b</b>) current-voltage characteristic for one memristor structure; (<b>c</b>) dependence of resistance on the number of switching cycles for one memristor structure; (<b>d</b>) cumulative probability for one memristor structure; (<b>e</b>) optical image of crossbar; (<b>f</b>) current-voltage characteristics for crossbar array; (<b>g</b>) average statistical dependence of resistance on the number of switching cycles for crossbar array; (<b>h</b>) average statistical cumulative probability for crossbar array.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Hu, L.; Shen, L.; Wang, J.; Cheng, P.; Lu, H.; Zhuge, F.; Ye, Z. Optically driven intelligent computing with ZnO memristor. Fundam. Res. 2024, 4, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Isyaku, U.B.; Khir, M.H.B.M.; Nawi, I.M.; Zakariya, M.A.; Zahoor, F. ZnO Based Resistive Random Access Memory Device: A Prospective Multifunctional Next-Generation Memory. IEEE Access 2021, 9, 105012. [Google Scholar] [CrossRef]
- Praveen, P.; Rose, T.P.; Saji, K.J. Top electrode dependent resistive switching in M/ZnO/ITO memristors, M = Al, ITO, Cu, and Au. Microelectron. J. 2022, 121, 105388. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, J.; Qu, X.; Wang, Q.; Kang, W.; Liu, B.; Xiao, Q.; Gao, T.; Xie, Q. Tunable Resistive Switching Behaviors and Mechanism of the W/ZnO/ITO Memory Cell. Molecules 2023, 28, 5313. [Google Scholar] [CrossRef]
- Cristian Teran, L.; Calderon, J.A.; Quiroz, H.P.; Dussan, A. Optical properties and bipolar resistive switching of ZnO thin films deposited via DC magnetron sputtering. Chin. J. Phys. 2021, 74, 1–8. [Google Scholar] [CrossRef]
- Prakash, C.; Gupta, L.R.; Mehta, A.; Vasudev, H.; Tominov, R.; Korman, E.; Fedotov, A.; Smirnov, V.; Kesari, K.K. Computing of neuromorphic materials: An emerging approach for bioengineering solutions. Mater. Adv. 2023, 4, 5882–5919. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Li, G. Recent progress in transparent memristors. J. Phys. D Appl. Phys. 2023, 56, 313001. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Zhao, H.; Sun, Z.; Liu, Z.; He, L.; Li, Y. Research Progress of Biomimetic Memristor Flexible Synapse. Coatings 2022, 12, 21. [Google Scholar] [CrossRef]
- Chen, P.-X.; Panda, D.; Tseng, T.-Y. All oxide based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 2023, 13, 1454. [Google Scholar] [CrossRef]
- Kiran, M.R.; Ulla, H.; Satyanarayan, M.N.; Umesh, G. Effects of annealing temperature on the resistance switching behaviour of solution-processed ZnO thin films. Superlattices Microstruct. 2020, 148, 106718. [Google Scholar] [CrossRef]
- Patnaik, A.; Mohanty, S.K.; Sahoo, N.; Panda, D. Effect of oxygen concentration in ZnO-based transparent flexible memristor synapse. J. Mater. Sci. Mater. Electron. 2023, 34, 1406. [Google Scholar] [CrossRef]
- Li, H.; Dong, W.; Wu, X.; Xi, J.; Ji, Z. Resistive switching characteristics of ZnO/a-TiO2 bilayer film fabricated on PET/ITO transparent and flexible substrates. Mater. Res. Bull. 2016, 84, 449–454. [Google Scholar] [CrossRef]
- Tomino, R.V.; Vakulov, Z.E.; Avilov, V.I.; Shikhovtsov, I.A.; Varganov, V.I.; Kazantsev, V.B.; Gupta, L.R.; Prakash, C.; Smirnov, V.A. Approaches for Memristive Structures Using Scratching Probe Nanolithography: Towards Neuromorphic Applications. Nanomaterials 2023, 13, 1583. [Google Scholar] [CrossRef]
- Abduev, A.K.; Akhmedov, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. ZnO-based transparent conductive layers obtained by the magnetron sputtering of a composite cermet ZnO:Ga–Zn target: Part 2. Journal of Surface Investigation. X-Ray Synchrotron Neutron Tech. 2021, 15, 121–127. [Google Scholar] [CrossRef]
- Khan, S.A.; Lee, G.H.; Mahata, C.; Ismail, M.; Kim, H.; Kim, S. Bipolar and Complementary Resistive Switching Characteristics and Neuromorphic System Simulation in a Pt/ZnO/TiN Synaptic Device. Nanomaterials 2021, 11, 315. [Google Scholar] [CrossRef]
- Kandpal, K.; Singh, J.; Gupta, N.; Shekhar, C. Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 2018, 29, 14501–14507. [Google Scholar] [CrossRef]
- Tominov, R.V.; Vakulov, Z.E.; Avilov, V.I.; Khakhulin, D.A.; Fedotov, A.A.; Zamburg, E.G.; Smirnov, V.A.; Ageev, O.A. Synthesis and memristor effect of a forming-free ZnO nanocrystalline films. Nanomaterials 2020, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Kaim, P.; Lukaszkowicz, K.; Szindler, M.; Szindler, M.M.; Basiaga, M.; Hajduk, B. The influence of magnetron sputtering process temperature on ZnO thin-film properties. Coatings 2021, 11, 1507. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.-T. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem. Rev. J. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Lv, Z.; Zhu, S.; Wang, Y.; Ren, Y.; Luo, M.; Wang, H.; Zhang, G.; Zhai, Y.; Zhao, S.; Zhou, Y.; et al. Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors. Adv. Mater. 2024, 36, 2405145. [Google Scholar] [CrossRef]
- Wu, S.; Ren, L.; Qing, J.; Yu, F.; Yang, K.; Yang, M.; Wang, Y.; Meng, M.; Zhou, W.; Zhou, X.; et al. Bipolar Resistance Switching in Transparent ITO/LaAlO3/SrTiO3 Memristors. ACS Appl. Mater. Interfaces 2014, 6, 8575–8579. [Google Scholar] [CrossRef] [PubMed]
- Saenko, A.V.; Vakulov, Z.E.; Klimin, V.S.; Bilyk, G.E.; Malyukov, S.P. Effect of Magnetron Sputtering Power on ITO Film Deposition at Room Temperature. Russ. Microelectron. 2023, 23, 297–302. [Google Scholar] [CrossRef]
- Cruz, M.R.A.; Ceballos-Sanchez, O.; Luevano-Hipolito, E.; Torres-Martinez, L.M. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int. J. Hydrogen Energy 2018, 43, 10301–10310. [Google Scholar] [CrossRef]
- Hajara, P.; Praveen, P.; Rose, T.P.; Saji, K.J. Exploring Transparent ZnO-based Memristors: Synaptic Emulation and Conduction Mechanism with Varied Top Electrodes. NanoWorld J. 2024, 10, S19–S25. [Google Scholar]
- Patnaik, A.; Acharya, A.; Tiwari, K.; Saha, P.; Sahoo, N.; Panda, D. Synaptic plasticity in zinc oxide-based flexible invisible transparent memristor by modulating oxygen concentration. J. Appl. Phys. 2024, 136, 045109. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Simanjuntak, F.M.; Panda, D.; Tseng, T.-Y. Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans. Electron Devices 2019, 66, 4722–4726. [Google Scholar] [CrossRef]
- Chang, T.; Jo, S.-H.; Kim, K.-H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 2011, 102, 857–863. [Google Scholar] [CrossRef]
- Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376. [Google Scholar] [CrossRef]
- Lin, C.-L.; Tang, C.-C.; Wu, S.-C.; Juan, P.-C.; Kang, T.-K. Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectron. Eng. 2015, 136, 15–21. [Google Scholar] [CrossRef]
- Yu, H.; Kim, M.; Kim, Y.; Lee, J.; Kim, K.-K.; Choi, S.-J.; Cho, S. Al-doped ZnO as a switching layer for transparent bipolar resistive switching memory. Electron. Mater. Lett. 2014, 10, 321–324. [Google Scholar] [CrossRef]
- Aziz, T.; Rosli, A.B.; Yusoff, M.M.; Herman, S.H.; Zulkifli, Z. Transparent hybrid ZnO-graphene film for high stability switching behavior of memristor device. Mater. Sci. Semicond. Process. 2019, 89, 68–76. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction. J. Mater. Sci. Mater. Electron. 2020, 31, 1105–1115. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Zhang, Q.L.; Dong, S.R.; Luo, J.K. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 2013, 102, 012113. [Google Scholar] [CrossRef]
- Chauhan, A.K.S.; Sharma, D.K.; Datta, A. Rate limited filament formation in Al-ZnO-Al bipolar ReRAM cells and its impact on early current window closure during cycling. J. Appl. Phys. 2019, 125, 104503. [Google Scholar] [CrossRef]
- Manna, A.K.; Dash, P.; Das, D.; Srivastava, S.K.; Sahoo, P.K.; Kanjilal, A.; Kanjilal, D.; Varma, S. Resistive switching properties and photoabsorption behavior of Ti ion implanted ZnO thin films. Ceram. Int. 2022, 48, 3303–3310. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Ohno, T.; Samukawa, S.J. Neutral Oxygen Beam Treated ZnO-Based Resistive Switching Memory Device. ACS Appl. Electron. Mater. J. 2019, 1, 18–24. [Google Scholar] [CrossRef]
- Jung, J.; Kwon, D.; Jung, H.; Lee, K.; Yoon, T.; Kang, C.J.; Lee, H.H. Multistate resistive switching characteristics of ZnO nanoparticles embedded polyvinylphenol device. J. Ind. Eng. Chem. 2018, 64, 85–89. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhu, Y.Y.; Liu, Y. Characteristics of the bipolar resistive switching behavior in memory device with Au/ZnO/ITO structure. Chin. J. Phys. 2018, 56, 3073–3077. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S.P.; et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [Google Scholar] [CrossRef]
- Xia, Q.F.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shim, E.L.; Choi, Y.J. Fabrication of transparent AZO/ZnO/ITO resistive random access memory devices and their ZnO active layer deposition temperature-dependent switching characteristics. J. Nanosci. Nanotechnol. 2016, 16, 10303. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Ismail, M.; Kim, Y.; Kim, S. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering. Appl. Surf. Sci. 2021, 544, 148796. [Google Scholar] [CrossRef]
- Yang, M.; Pei-Jian, Z.; Zi-Yu, L.; Zhao-Liang, L.; Xin-Yu, P.; Xue-Jin, L.; Hong-Wu, Z.; Dong-Min, C. Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches. Chin. Phys. B 2010, 19, 037304. [Google Scholar] [CrossRef]
- Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611. [Google Scholar] [CrossRef]
- Gupta, I.; Serb, A.; Khiat, A.; Zeitler, R.; Vassanelli, S.; Prodromakis, T. Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun. 2016, 7, 12805. [Google Scholar] [CrossRef]
- Jung, C.M.; Choi, J.M.; Min, K.S. Two-step write scheme for reducing sneak-path leakage in complementary memristor array. IEEE Trans. Nanotechnol. 2012, 11, 611–618. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, W.; Li, L.; Chen, J.; Zhang, J.; Zuo, Y.; Fu, J. Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM. Appl. Surf. Sci. 2009, 255, 4673–4679. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar]
- Ghantasala, S.B.; Sharma, S. Magnetron sputtered thin films based on transition metal nitride: Structure and properties. Phys. Status Solidi (A) 2023, 220, 2200229. [Google Scholar] [CrossRef]
- Won Seo, J.; Park, J.-W.; Lim, K.S.; Kang, S.J.; Hong, Y.H.; Yang, J.H.; Fang, L.; Sung, G.Y.; Kim, H.-K. Transparent flexible resistive random access memory fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 133508. [Google Scholar] [CrossRef]
- Shang, J.; Liu, G.; Yang, H.; Zhu, X.; Chen, X.; Tan, H.; Hu, B.; Pan, L.; Xue, W.; Li, R.-W. Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv. Funct. Mater. 2014, 24, 2171. [Google Scholar] [CrossRef]
- Han, X.; Xu, R.; Sun, B.; Xu, J.; Hong, W.; Cai, G.; Qian, K. Conductive silver grid electrode for flexible and transparent memristor applications. Adv. Electron. Mater. 2020, 7, 2000948. [Google Scholar] [CrossRef]
- Chen, C.; Pan, F.; Wang, Z.S.; Yang, J.; Zeng, F. Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J. Appl. Phys. 2012, 111, 013702–013705. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Gao, X.; Liu, X.; Yang, C.; Yang, R.; Jin, P. All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature. J. Phys. D Appl. Phys. 2011, 44, 255104. [Google Scholar] [CrossRef]
- Tominov, R.V.; Vakulov, Z.E.; Polupanov, N.V.; Saenko, A.V.; Avilov, V.I.; Ageev, O.A.; Smirnov, V.A. Nanoscale-resistive switching in forming-free zinc oxide memristive structures. Nanomaterials 2022, 12, 455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saenko, A.V.; Tominov, R.V.; Jityaev, I.L.; Vakulov, Z.E.; Avilov, V.I.; Polupanov, N.V.; Smirnov, V.A. Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials 2024, 14, 1901. https://doi.org/10.3390/nano14231901
Saenko AV, Tominov RV, Jityaev IL, Vakulov ZE, Avilov VI, Polupanov NV, Smirnov VA. Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials. 2024; 14(23):1901. https://doi.org/10.3390/nano14231901
Chicago/Turabian StyleSaenko, Alexander V., Roman V. Tominov, Igor L. Jityaev, Zakhar E. Vakulov, Vadim I. Avilov, Nikita V. Polupanov, and Vladimir A. Smirnov. 2024. "Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication" Nanomaterials 14, no. 23: 1901. https://doi.org/10.3390/nano14231901
APA StyleSaenko, A. V., Tominov, R. V., Jityaev, I. L., Vakulov, Z. E., Avilov, V. I., Polupanov, N. V., & Smirnov, V. A. (2024). Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials, 14(23), 1901. https://doi.org/10.3390/nano14231901