Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction
<p>(<b>a</b>) Top/side view of BiAgOS crystal after relaxation, (<b>b</b>) top snapshot with the corresponding variation of the total energy between 0 and 7 ps during the AIMD simulations at 300 K, (<b>c</b>) the phonon spectra and PhDOS, (<b>d</b>) variation of entropy S, heat capacity C<sub>V</sub>, and enthalpy H as a function of temperature, and (<b>e</b>) variation of Gibbs free energy as a function of temperature.</p> "> Figure 2
<p>DFT computed band structures of BiAgOS using (<b>a</b>) PBE approximation and (<b>b</b>) HSE approximation.</p> "> Figure 3
<p>DFT computed the total and partial DOS of BiAgOS using (<b>a</b>) PBE approximation and (<b>b</b>) HSE approximation. The Fermi energy level (<span class="html-italic">E<sub>f</sub></span>) is set to 0 eV.</p> "> Figure 4
<p>Computed optical properties of BiAgOS: (<b>a</b>) absorption as a function of energy, (<b>b</b>) absorption coefficient, and (<b>c</b>) reflectivity.</p> "> Figure 5
<p>Computed thermoelectric properties of BiAGOS: (<b>a</b>) electrical conductivity, (<b>b</b>) thermal conductivity, (<b>c</b>) electronic specific heat, and (<b>d</b>) Seebeck coefficient as a function of temperature.</p> "> Figure 6
<p>Variation in conduction band energy (blue) and valence band energy (red) as a function of pH.</p> ">
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Structure, Stability, and Electronic Properties
3.2. Optical Properties
3.3. Thermoelectric Properties
3.4. Photocatalytic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woessner, M.N.; Tacey, A.; Levinger-Limor, A.; Parker, A.G.; Levinger, P.; Levinger, I. The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Front. Public Health 2021, 9, 655491. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Bard, A.J.; Fox, M.A. ©, UTC. 1995. Available online: https://pubs.acs.org/sharingguidelines (accessed on 1 October 2024).
- Subramanyam, P.; Meena, B.; Suryakala, D.; Subrahmanyam, C. TiO2 Photoanodes Sensitized with Bi2Se3 Nanoflowers for Visible-Near-Infrared Photoelectrochemical Water Splitting. ACS Appl. Nano Mater. 2021, 4, 739–745. [Google Scholar] [CrossRef]
- Avcıoǧlu, C.; Avcıoǧlu, S.; Bekheet, M.F.; Gurlo, A. Photocatalytic Overall Water Splitting by SrTiO3: Progress Report and Design Strategies. ACS Appl. Energy Mater. 2023, 6, 1134–1154. [Google Scholar] [CrossRef]
- Psathas, P.; Moularas, C.; Smykała, S.; Deligiannakis, Y. Highly Crystalline Nanosized NaTaO3/NiO Heterojunctions Engineered by Double-Nozzle Flame Spray Pyrolysis for Solar-to-H2 Conversion: Toward Industrial-Scale Synthesis. ACS Appl. Nano Mater. 2022, 6, 2658–2671. [Google Scholar] [CrossRef]
- Pehlivan, İ.B.; Atak, G.; Niklasson, G.A.; Stolt, L.; Edoff, M.; Edvinsson, T. Electrochromic solar water splitting using a cathodic WO3 electrocatalyst. Nano Energy 2021, 81, 105620. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Raziq, F.; Zhang, H.; Gascon, J. Key Strategies for Enhancing H2 Production in Transition Metal Oxide Based Photocatalysts. Angew. Chem. 2023, 135, e202305385. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Wang, X. Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting. Catal Today 2019, 335, 31–38. [Google Scholar] [CrossRef]
- Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763. [Google Scholar] [CrossRef]
- Rao, V.N.; Ahn, C.W.; Lee, Y.; Shankar, M.V.; Kwon, H.; Kim, K.; Rezakazemi, M.; Kim, S.-J.; Yang, J.-M. Insights into excitons manipulation in metal chalcogenides based Nano-heterojunction Photocatalysts: A breakthrough in green hydrogen production. Coord. Chem. Rev. 2024, 522, 216176. [Google Scholar] [CrossRef]
- Tippireddy, S.; Kumar, P.; Das, S.; Mallik, R.C. Oxychalcogenides as Thermoelectric Materials: An Overview. ACS Appl. Energy Mater. 2021, 4, 2022–2040. [Google Scholar] [CrossRef]
- Gamon, J.; Giaume, D.; Wallez, G.; Labégorre, J.-B.; Lebedev, O.I.; Orabi, R.A.R.A.; Haller, S.; Le Mercier, T.; Guilmeau, E.; Maignan, A.; et al. Substituting Copper with Silver in the BiMOCh Layered Compounds (M = Cu or Ag; Ch = S, Se, or Te): Crystal, Electronic Structure, and Optoelectronic Properties. Chem. Mater. 2018, 30, 549–558. [Google Scholar] [CrossRef]
- Luu, S.D.N.; Vaqueiro, P. Layered oxychalcogenides: Structural chemistry and thermoelectric properties. J. Mater. 2016, 2, 131–140. [Google Scholar] [CrossRef]
- Sangalli, D.; Ferretti, A.; Miranda, H.; Attaccalite, C.; Marri, I.; Cannuccia, E.; Melo, P.; Marsili, M.; Paleari, F.; Marrazzo, A.; et al. Many-Body Perturbation Theory Calculations Using the Yambo Code. J. Phys. Condens. Matter. 2019, 31, 325902. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Madsen, G.K.H.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef]
- Harl, J.; Kresse, G.; Sun, L.D.; Hohage, M.; Zeppenfeld, P. Ab initio reflectance difference spectra of the bare and adsorbate covered Cu(110) surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 035436. [Google Scholar] [CrossRef]
- van Setten, M.J.; Er, S.; Brocks, G.; de Groot, R.A.; de Wijs, G.A. First-principles study of the optical properties of MgxTi(1-x)H2. Phys. Rev. B 2008, 79, 125117. [Google Scholar] [CrossRef]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids. 2001, p. 554. Available online: https://books.google.com/books/about/Electrons_and_Phonons.html?hl=fr&id=UtEy63pjngsC (accessed on 10 May 2024).
- Hasan, S.; San, S.; Baral, K.; Li, N.; Rulis, P.; Ching, W.Y. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Materials 2022, 15, 2843. [Google Scholar] [CrossRef]
- Habiba, M.; Abdelilah, B.; Abdallah, E.K.; Abdelhafed, T.; Ennaoui, A.; Khadija, E.M.; Omar, M. Enhanced photocatalytic activity of phosphorene under different pH values using density functional theory (DFT). RSC Adv. 2021, 11, 16004–16014. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Dutta, R.K. Studies on Drastic Improvement of Photocatalytic Degradation of Acid Orange-74 Dye by TPPO Capped CuO Nanoparticles in Tandem with Suitable Electron Capturing Agents. Available online: www.rsc.org/advances (accessed on 10 May 2024).
- Tolborg, K.; Klarbring, J.; Ganose, A.M.; Walsh, A. Free energy predictions for crystal stability and synthesisability. Digit. Discov. 2022, 1, 586–595. [Google Scholar] [CrossRef]
- Parida, A.; Senapati, S.; Naik, R. Recent developments on Bi-based oxychalcogenide materials with thermoelectric and optoelectronic applications: An overview. Mater. Today Chem. 2022, 26, 101149. [Google Scholar] [CrossRef]
- Li, J.; Zhai, W.; Zhang, C.; Yan, Y.; Liu, P.F.; Yang, G. Anharmonicity and ultralow thermal conductivity in layered oxychalcogenides BiAgOCh (Ch = S, Se, and Te). Mater. Adv. 2021, 2, 4876–4882. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Yan, Y.; Yang, J.; Shi, B.; Wang, Y.; Cheng, Z. Predicting excellent anisotropic thermoelectric performance of the layered oxychalcogenides BiAgOCh (Ch = S, Se, and Te). Comput. Mater. Sci. 2020, 171, 109273. [Google Scholar] [CrossRef]
- BaQais, A.; Curutchet, A.; Ziani, A.; Ahsaine, H.A.; Sautet, P.; Takanabe, K.; Le Bahers, T. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties. Chem. Mater. 2017, 29, 8679–8689. [Google Scholar] [CrossRef]
- Yasin, G.; Ibraheem, S.; Ali, S.; Arif, M.; Ibrahim, S.; Iqbal, R.; Kumar, A.; Tabish, M.; Mushtaq, M.; Saad, A.; et al. Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower gibbs free energy of OER/HER intermediates for overall water splitting. Mater. Today Chem. 2022, 23, 100634. [Google Scholar] [CrossRef]
- Rao, V.N.; Kwon, H.; Nagaveni, M.; Ravi, P.; Lee, Y.; Lee, S.J.; Kim, K.; Kumari, M.M.; Shankar, M.V.; Yoo, J.H.; et al. Modulating Schottky barriers and active sites of Ag-Ni bi-metallic cluster on mesoporous carbon nitride for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2024, 449, 156179. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, C.; Guan, Z.; Zhen, L.; Jiang, J. Continuous iron spreading on carbon-shell composite nanotubes for electromagnetic wave absorption. Commun. Mater. 2024, 5, 30. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Khan, I.; Saha, S.; Wu, C.-C.; Barman, S.R.; Kao, F.-C.; Lin, Z.-H. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates. Nat. Commun. 2021, 12, 180. [Google Scholar] [CrossRef]
- Hong, M.; Lyu, W.; Wang, Y.; Zou, J.; Chen, Z.G. Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance. J. Am. Chem. Soc. 2020, 142, 2672–2681. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.; Salahub, D.R.; Amirian, S.; Shahmohamadi, H.; Rashid, M.A.; Faraji, M.; Fatahi, N. Multi-functional lead-free Ba2XSbO6 (X = Al, Ga) double perovskites with direct bandgaps for photocatalytic and thermoelectric applications: A first principles study. Mater. Today Commun. 2023, 35, 105617. [Google Scholar] [CrossRef]
- Bentour, H.; Belasfar, K.; Boujnah, M.; El Yadari, M.; Benyoussef, A.; El Kenz, A. DFT study of Se/Mn and Te/Mn codoped SrTiO3 for visible light-driven photocatlytic hydrogen production. Opt. Mater. 2022, 129, 112431. [Google Scholar] [CrossRef]
- Kosem, N.; Honda, Y.; Watanabe, M.; Takagaki, A.; Tehrani, Z.P.; Haydous, F.; Lippert, T.; Ishihara, T. Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli. Catal. Sci. Technol. 2020, 10, 4042–4052. [Google Scholar] [CrossRef]
- Benyoussef, M.; Saitzek, S.; Rajput, N.S.; El Marssi, M.; Jouiad, M. Effect of Sr and Ti substitutions on optical and photocatalytic properties of Bi1−xSrxFe1−xTixO3 nanomaterials. Nanoscale Adv. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Al-Shami, A.; Sibari, A.; Mansouri, Z.; El Kassaoui, M.; El Kenz, A.; Benyoussef, A.; Loulidi, M.; Jouiad, M.; El Moutaouakil, A.; Mounkachi, O. Photocatalytic Properties of ZnO:Al/MAPbI3/Fe2O3 Heterostructure: First-Principles Calculations. Int. J. Mol. Sci. 2023, 24, 4856. [Google Scholar] [CrossRef]
- Walters, L.N.; Zhang, C.; Dravid, V.P.; Poeppelmeier, K.R.; Rondinelli, J.M. First-Principles Hydrothermal Synthesis Design to Optimize Conditions and Increase the Yield of Quaternary Heteroanionic Oxychalcogenides. Chem. Mater. 2021, 33, 2726–2741. [Google Scholar] [CrossRef]
- Zhao, R.; Zhou, Y.; Dong, Y.; Dong, S.; Zhang, F.; Zhou, J.; He, F.; Gai, S.; Yang, P. Ball-milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment. Chem. Eng. J. 2021, 411, 128568. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Yin, X.; Liu, Y.; Chen, Y.; Wang, Q.; Yang, W. Simplified method for the synthesis of efficient Ohm-Schottky heterojunction photocatalysts for hydrogen evolution reaction and nitrogen fixation. Int. J. Hydrogen Energy 2024, 51, 809–819. [Google Scholar] [CrossRef]
- Zuo, L.; Li, R.; Liu, Q.; Duan, Y.; Wang, H.; Fan, H.; Li, B.; Wang, L. In situ Mo-doped ZnIn2S4/Ni–Ni Hofmann-type coordination polymer composites for photocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2024, 661, 207–218. [Google Scholar] [CrossRef]
- Liu, C.; Ma, J.; Fu, Z.; Zhao, P.; Bai, M.; Gao, Y.; Zhao, M.; He, Y.; Xiao, H.; Jia, J. Gallium-based materials for electrocatalytic and photocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 73, 490–509. [Google Scholar] [CrossRef]
- Choi, J.; Jung, W.; Gonzalez-Carrero, S.; Durrant, J.R.; Cha, H.; Park, T. Understanding charge carrier dynamics in organic photocatalysts for hydrogen evolution. Energy Environ. Sci. 2024, 17, 7999–8018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Abdelhadi, O.; El Kassaoui, M.; Moatassim, H.; Kotbi, A.; Balli, M.; Mounkachi, O.; Jouiad, M. Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction. Nanomaterials 2024, 14, 1869. https://doi.org/10.3390/nano14231869
Ben Abdelhadi O, El Kassaoui M, Moatassim H, Kotbi A, Balli M, Mounkachi O, Jouiad M. Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction. Nanomaterials. 2024; 14(23):1869. https://doi.org/10.3390/nano14231869
Chicago/Turabian StyleBen Abdelhadi, Oumaima, Majid El Kassaoui, Hajar Moatassim, Ahmed Kotbi, Mohamed Balli, Omar Mounkachi, and Mustapha Jouiad. 2024. "Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction" Nanomaterials 14, no. 23: 1869. https://doi.org/10.3390/nano14231869
APA StyleBen Abdelhadi, O., El Kassaoui, M., Moatassim, H., Kotbi, A., Balli, M., Mounkachi, O., & Jouiad, M. (2024). Unveiling the Photocatalytic Potential of BiAgOS Solid Solution for Hydrogen Evolution Reaction. Nanomaterials, 14(23), 1869. https://doi.org/10.3390/nano14231869