Sub-Nanosecond Single Mode-Locking Pulse Generation in an Idler-Resonant Intracavity KTA Optical Parametric Oscillator Driven by a Dual-Loss-Modulated Q-Switched and Mode-Locked Laser with an Acousto-Optic Modulator and MoWS2
<p>Characterization results of the structure and morphology: (<b>a</b>) XRD spectra, (<b>b</b>) Raman spectrum, (<b>c</b>) SEM and EDS mapping pattern, (<b>d</b>) TEM image, (<b>e</b>) high-resolution TEM image, (<b>f</b>) AFM image and height distribution.</p> "> Figure 2
<p>(<b>a</b>) Absorption spectrum and (<b>b</b>) nonlinear transmittance curve of the MoWS<sub>2</sub> SA (inset: the linear relation for low-power density).</p> "> Figure 3
<p>Schematic diagram of the experimental setup.</p> "> Figure 4
<p>The average output powers of the signal and idler waves versus pump powers for different <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>The pulse widths of the Q-switched envelopes for the signal and idler waves versus pump powers for different <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math>. Symbol: experimental data; curve: theoretical result.</p> "> Figure 6
<p>The pulse energies of the signal and idler waves’ Q-switched pulses versus pump powers for different <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math>. Symbol: experimental data; curve: theoretical result.</p> "> Figure 7
<p>The peak powers of the signal and idler waves’ Q-switched pulses versus pump powers for different <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math>. Symbol: experimental data; curve: theoretical result.</p> "> Figure 8
<p>A representative output spectrum of the idler-resonant dual-loss-modulated QML KTA IOPO at an incident pump power of 19.4 W and an AOM modulation rate of 1 kHz.</p> "> Figure 9
<p>(<b>a</b>) Extended temporal profile of the idler wave’s sub-nanosecond single ML pulse for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math> = 1 kHz and (<b>b</b>) oscilloscope trace of the idler wave’s single ML pulse train for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math> = 1 kHz.</p> "> Figure 10
<p>The pulse shapes of the signal wave at various incident pump powers when the modulation frequency is 1 kHz: (<b>a</b>) 11.29 W, (<b>b</b>) 12.52 W, (<b>c</b>) 14.01 W, (<b>d</b>) 14.68 W.</p> "> Figure 11
<p>The pulse shapes of the idler wave at different incident pump powers when the modulation frequency is 1 kHz: (<b>a</b>) 11.29 W, (<b>b</b>) 12.52 W, (<b>c</b>) 14.68 W, (<b>d</b>) 16.16 W.</p> "> Figure 12
<p>The number of ML pulses within a Q-switched envelope for both the signal and idler waves varies with pump powers at <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> </mrow> </semantics></math> = 1 kHz.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Characterizations of 2D MoWS2 SA
2.2. Experimental Setup
3. Results and Discussion
4. Theoretical Analysis
4.1. Influence of AOM
4.2. Signal Wave’s Photon Density
4.3. Rate Equations
4.4. Numerical Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huber, G.; Kränkel, C.; Petermann, K. Solid-state lasers: Status and future. J. Opt. Soc. Am. B 2010, 27, B93–B105. [Google Scholar] [CrossRef]
- Kiefer, J.; Seeger, T.; Dreier, T.; Chen, W.; Stauffer, H.; Meier, W. Laser applications to chemical, security, and environmental analysis: Introduction to the feature issue. Appl. Opt. 2019, 58, LAC1–LAC3. [Google Scholar] [CrossRef]
- Chen, T.-W.; Chang, K.-C.; Chen, J.-C.; Lin, J.-H.; Wei, M.-D. Role of modulation frequency in a hybrid Q-switched Nd:LuVO4 laser with an acousto-optic modulator and a Cr4+:YAG saturable absorber. Appl. Opt. 2014, 53, 3459–3464. [Google Scholar] [CrossRef]
- Lin, J.-H.; Lin, K.-H.; Hsu, H.-H.; Hsieh, W.-F. Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism. Laser Phys. Lett. 2008, 5, 276–280. [Google Scholar] [CrossRef]
- Wang, J.; Liu, N.; Song, P.; Zhang, H. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser. Laser Phys. 2016, 26, 115401. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, S.; Yang, K.; Zhao, J.; Li, G.; Li, D.; Li, T.; Qiao, W.; Lu, J.; Wang, Y.; et al. Doubly Q-Switched Laser With AOM-and SWCNT-SA-Driven KTP Intracavity OPO. IEEE Photonics Technol. Lett. 2016, 28, 2455–2458. [Google Scholar] [CrossRef]
- Laporte, C.; Dherbecourt, J.B.; Melkonian, J.-M.; Raybaut, M.; Drag, C.; Godard, A. Pulse Compression in a Synchronously Pumped Optical Parametric Oscillator with a Graphene Saturable Absorber. In Proceedings of the 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 12–16 May 2013. [Google Scholar]
- Wang, J.; Pang, J.; Liu, S.; Zhang, H.; Tang, W.; Xia, W. Experimental and dynamical study of a dual Q-switched intracavity OPO based on few-layer MoSe2 SA. Opt. Express 2019, 27, 36474–36486. [Google Scholar] [CrossRef]
- Xie, L.M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 2015, 7, 18392–18401. [Google Scholar] [CrossRef]
- Komsa, H.-P.; Krasheninnikov, A.V. Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. J. Phys. Chem. Lett. 2012, 3, 3652–3656. [Google Scholar] [CrossRef]
- Kutana, A.; Penev, E.S.; Yakobson, B.I. Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 2014, 6, 5820–5825. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, T.; Wang, D.; Shuai, Z. Tunable electronic properties of two-dimensional transition metal dichalcogenide alloys: A first-principles prediction. J. Phys. Chem. Lett. 2014, 5, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, K.; Tang, Z.; Zhu, Z. Experimental and first-principles investigation of MoWS2 with high hydrogen evolution performance. ACS Appl. Mater. Interfaces 2016, 8, 29442–29451. [Google Scholar] [CrossRef] [PubMed]
- Klee, V.; Preciado, E.; Barroso DNguyen, A.E.; Lee, C.; Erickson, K.J.; Triplett, M.; Davis, B.; Lu, I.-H.; Bobek, S.; McKinley, J.; et al. Superlinear Composition-Dependent Photocurrent in CVD-Grown Monolayer MoS2(1−x)Se2x Alloy Devices. Nano Lett. 2015, 15, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xi, J.; Dumcenco, D.O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y.-S.; Xie, L. Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano 2013, 7, 4610–4616. [Google Scholar] [CrossRef]
- Yan, Z.; Li, T.; Zhao, J.; Yang, K.; Li, D.; Li, G.; Zhang, S.; Zhao, S. Generation of microsecond pulses at 1645 nm with MoWS2 alloy. Opt. Mater. 2018, 84, 371–374. [Google Scholar] [CrossRef]
- Ahmad, H.; Aidit, S.N.; Mohanraj, J.; Sivabalan, S.; Thambiratnam, K.; Ooi, S.I.; Tiu, Z.C. Mixed Transition Metal Dichalcogenide as Saturable Absorber in Ytterbium, Praseodymium, and Erbium Fiber Laser. IEEE J. Sel. Top. Quantum Electron. 2018, 54, 1600409. [Google Scholar] [CrossRef]
- Ahmad, H.; Sharbirin, A.S.; Ismail, M.F. Molybdenum tungsten disulphide (MoWS2) as a saturable absorber for a passively Q-switched thulium/holmium-codoped fibre laser. J. Mod. Opt. 2019, 66, 1163–1171. [Google Scholar] [CrossRef]
- Niu, Z.; Feng, T.; Li, T.; Yang, K.; Zhao, J.; Li, G.; Li, D.; Zhao, S.; Qiao, W.; Chu, H.; et al. Doubly Q-switched mode-locked Tm:YAP laser at 2 μm with ternary MoWS2 alloy and EOM. Opt. Commun. 2022, 520, 128544. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef]
- Dumcenco, D.O.; Chen, K.Y.; Wang, Y.P.; Huang, Y.S.; Tiong, K.K. Raman study of 2H-Mo1−xWxS2 layered mixed crystals. J. Alloys Compd. 2010, 506, 940–943. [Google Scholar] [CrossRef]
- Ren, K.; Yu, G.; Zhang, Z.; Wu, W.; Tian, P.; Chhattal, M.; Gong, Z.; Li, Y.; Zhang, J. Self-organized transfer film-induced ultralow friction of Graphene/MoWS4 heterostructure nanocomposite. Appl. Surf. Sci. 2022, 572, 151443. [Google Scholar] [CrossRef]
- Miremadi, B.K.; Morrison, S.R. Preparation of alternating MoS2 and WS2 single layers to form a new MoWS4 structure. J. Appl. Phys. 1990, 67, 1515–1520. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Wu, Y.; Jiao, L. Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.A.; Le, T.S.; Park, D.Y.; Suh, D.; Jeong, M.S. Synthesis of MoWS2 on flexible carbon-based electrodes for high-performance hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 37550–37558. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Chu, H.; Xu, M.; Xu, S.; Pan, Z.; Zhao, S.; Li, D. Oxygen vacancy engineering of MOF-derived ZnO/Co3O4 nanocomposites for high harmonic mode-locking operation. J. Mater. Chem. C 2022, 10, 16564–16572. [Google Scholar] [CrossRef]
- Bélanger, P.A. Beam propagation and the ABCD ray matrices. Opt. Lett. 1991, 16, 196–198. [Google Scholar] [CrossRef]
- Stratan, A.; Rusen, L.; Dabu, R.; Fenic, C.; Blanaru, C. Picosecond laser system based on microchip oscillator. J. Optoelectron. Adv. Mater. 2008, 10, 3022–3028. [Google Scholar]
- Weller, D. Relating wideband DSO rise time to bandwidth: Lose the 0.35! EDN 2002, 47, 89–94. [Google Scholar]
- Chen, Y.F.; Tsai, S.W. Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser. IEEE J. Quantum Electron. 2001, 37, 580–586. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lee, J.L.; Hsieh, H.D.; Tsai, S.W. Analysis of passively Q-switched lasers with simultaneous mode-locking. IEEE J. Quantum Electron. 2002, 38, 312–317. [Google Scholar] [CrossRef]
- Zhao, S.; Li, G.; Li, D.; Yang, K.; Li, Y.; Li, M.; Li, T.; Zhang, G.; Cheng, K. Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber. Appl. Opt. 2010, 49, 1802–1808. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Wang, Q.; Liu, Z.; Zhang, X.; Wan, X.; Lan, W.; Jin, G.; Tao, X.; Sun, Y. Theoretical and experimental studies on output characteristics of an intracavity KTA OPO. Opt. Express 2012, 20, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Debuisschert, T.; Raffy, J.; Pocholle, J.P.; Papuchon, M. Intracavity optical parametric oscillator: Study of the dynamics in pulsed regime. J. Opt. Soc. Am. B 1996, 13, 1569–1587. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, S.; Yang, K.; Zhao, J.; Li, G.; Li, D.; Li, T.; Qiao, W.; Lu, J.; Wang, Y.; et al. High-peak-power sub-nanosecond intracavity KTiOPO4 optical parametric oscillator pumped by a dual-loss modulated laser with acousto-optic modulator and single-walled carbon nanotube. Appl. Phys. Exp. 2016, 9, 082701. [Google Scholar] [CrossRef]
- Han, C.; Chu, H.; Feng, T.; Zhao, S.; Li, D.; Feng, C.; Zhao, J.; Huang, W. High-power idler-resonant intracavity KTA OPO driven by a dual-loss-modulated Q-switched mode-locked laser with AOM and Sb2Te3 nanosheets. Opt. Express 2024, 32, 29868–29886. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
σg | 6.98 × 10−19 cm2 | lsa | 10 nm |
σe | 3.4 × 10−19 cm2 | ns0 | 2.968 × 1023 cm−3 |
τs | 714.1 µs |
Parameters | Values | Parameters | Values | Parameters | Values |
---|---|---|---|---|---|
σ | 2.5 × 10−18 cm2 | α | 3.8 cm−1 | tao | 14 ns |
l | 10 mm | λp | 808 nm | δa | 1 |
la | 47 mm | λs | 1535 nm | deff | −2.99 pm/V |
Lc | 1195 mm | λf | 1064 nm | h | 6.63 × 10−34 J·s |
lopo | 38 mm | λid | 3467 nm | 8.85 × 10−12 F/m | |
lKTA | 20 mm | n | 1.96 | Kc | 5.1 W/mK |
wp | 200 μm | na | 1.53 | c | 3.0 × 108 m/s |
wl | 187 μm | ns | 1.385 | Rs | 0.007 |
wg | 184 μm | nf | 1.367 | Rid | 0.91 |
wa | 206 μm | ni | 1.4 | L | 0.1 |
ws | 216 μm | τ | 90 μs | Ls | 0.05 |
wk | 141 μm | τp | 450 ps | Lid | 0.01 |
wid | 141 μm | fa | 0.43 |
SA | Gain Medium | Nonlinear Crystal | Resonant Wave | Output Power | Pulse Width | Repetition Rate | Pulse Energy | Peak Power | Refs. |
---|---|---|---|---|---|---|---|---|---|
SWCNT | YVO4/Nd:YVO4 | KTP | Signal wave | Signal wave: 373 mW | Signal wave: 119 ps | 2 kHz | Signal wave: 124 μJ | Signal wave: 1.04 MW | [35] |
Sb2Te3 | YVO4/Nd:YVO4 | KTA | Idler wave | Signal wave: 353 mW; Idler wave: 173 mW | Signal wave: 545 ps; Idler wave: 936 ps | 1 kHz | Signal wave: 353 μJ; Idler wave: 173 μJ | Signal wave: 648 kW; Idler wave: 185 kW | [36] |
MoWS2 | YVO4/Nd:YVO4 | KTA | Idler wave | Signal wave: 318 mW; Idler wave: 169 mW | Signal wave: 720 ps; Idler wave: 830 ps | 1 kHz | Signal wave: 318 μJ; Idler wave: 169 μJ | Signal wave: 441.6 kW; Idler wave: 203.6 kW | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Chu, H.; Feng, T.; Zhao, S.; Li, D.; Zhang, H.; Zhao, J.; Huang, W. Sub-Nanosecond Single Mode-Locking Pulse Generation in an Idler-Resonant Intracavity KTA Optical Parametric Oscillator Driven by a Dual-Loss-Modulated Q-Switched and Mode-Locked Laser with an Acousto-Optic Modulator and MoWS2. Nanomaterials 2024, 14, 1491. https://doi.org/10.3390/nano14181491
Han C, Chu H, Feng T, Zhao S, Li D, Zhang H, Zhao J, Huang W. Sub-Nanosecond Single Mode-Locking Pulse Generation in an Idler-Resonant Intracavity KTA Optical Parametric Oscillator Driven by a Dual-Loss-Modulated Q-Switched and Mode-Locked Laser with an Acousto-Optic Modulator and MoWS2. Nanomaterials. 2024; 14(18):1491. https://doi.org/10.3390/nano14181491
Chicago/Turabian StyleHan, Chao, Hongwei Chu, Tianli Feng, Shengzhi Zhao, Dechun Li, Han Zhang, Jia Zhao, and Weiping Huang. 2024. "Sub-Nanosecond Single Mode-Locking Pulse Generation in an Idler-Resonant Intracavity KTA Optical Parametric Oscillator Driven by a Dual-Loss-Modulated Q-Switched and Mode-Locked Laser with an Acousto-Optic Modulator and MoWS2" Nanomaterials 14, no. 18: 1491. https://doi.org/10.3390/nano14181491